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Abstract
The impact of long-term crude oil pollution on soil microbial community structure in Bodo West Community, Ogoniland,
Nigeria, was investigated to determine the amenability of the soil to microbial mediated remediation. Crude oil-polluted and
pristine soil samples were collected approximately from 0 to 30 cm depth for both chemical and microbiological analyses. Total
petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) were determined using gas chromatograph–mass
spectrophotometer (GC-MS). The soil microbiome was determined using the Illumina MiSeq platform. Results from this study
were then compared with publicly available data from other oil-polluted sites. Taxonomic biomarkers and pathways associated
with oil-polluted soils were detected using bioinformatics pipelines. TPH in the polluted and pristine soils were 7591 mg/kg and
199.70 mg/kg respectively, while the values of PAHs were significantly higher (p < 0.05) in the oil-polluted soil. Predictive
functional and biomarker analysis demonstrated that microbes detected in the oil-polluted environment were involved in different
metabolic pathways for degradation of a broad set of xenobiotic aromatic compounds. Established hydrocarbon degraders
belonging to the families Alcanivoracaceae and Oceanospirillaceae were mostly detected in the oil-polluted soils.
Sneathiella, Parvibaculum, Sphingobium, and Oceanicaulis were among biomarker taxa. The bacterial families
Acidithiobacillaceae and Desulfobacteraceae were differentially more abundant in Bodo West spill site than any other site used
for comparison. Furthermore, differentially represented species in our study site and other oil-polluted sites ranged from 21 to 42
bacterial families. The findings from this study revealed the bacterial community had a strong dependence on hydrocarbons and
that acid-tolerant bacterial families can as well contribute significantly to biodegradation in the site and other polluted sites in
Ogoniland usually known to have an acidic pH. Further research on Bodo West spill site will reveal the novel enzymes and
pathways for enhanced microbial mediated eco-restoration.
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Introduction

The economic benefits of crude oil cannot be over highlight-
ed; however, the accidental release of oil and related products
leads to an extensive pollution of soil and aquifers, stimulating
the need for an upgrade in bioremediation processes (Joshi
et al. 2014). Soil microorganisms play dynamic roles in the
ecosystem and they are responsible for most biological trans-
formations and drive the nutrient cycles to facilitate the sub-
sequent establishment of plant communities (Schulz et al.
2013). Furthermore, the diversity of the microbial community
in soil is closely related to the function and structure of its
surrounding ecosystem (Ataikiru et al. 2017). For instance,
increased pollution of hydrocarbon in the soil will inevitably
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alter the microbial communities and their nutrient fluxes (Reid
et al. 2018). Such microorganisms play an important role in
determining the rate of hydrocarbon degradation and the pros-
pects for the recovery of novel enzymes for industrial
applications.

Numerous researches have been carried out to advance the
application of soil microorganisms in bioremediation as a
number of novel enzymes and pathways have been developed,
likewise the establishment of some bacterial species as key to
hydrocarbon degradation (Gibson et al. 2002; Hassanshahian
et al. 2014; Nwinyi et al. 2016; Parthipan et al. 2017).
However, the complexity of crude oil does not allow for a
successful hydrocarbon degradation using single organism,
pathway, or enzyme. In recent years, it has been well docu-
mented that crude oil contamination is better degraded by a
consortia of microorganisms, interacting among themselves
and all contributing in one way or the other to their overall
survival under real-life and highly variable in situ conditions
(Wang et al. 2016; Chikere et al. 2017; Kumari et al. 2018).
Understanding the complex relationships among microorgan-
isms in oil-polluted soils, their interaction with pollutants, re-
sponse to chemical stress and the geophysical properties of the
polluted site is of utmost importance if progress is to be made
in advancing engineered bioremediation.

Microbial species that are able to degrade hydrocarbons
are not easy to isolate using the normal nutrient media and
laboratory conditions (Sibanda et al. 2017). Although
culture-dependent methods generally recover approximate-
ly 0.3% of the microbial population from soil environ-
ments, they are still a critical component of bioremediation
development and research (Stefani et al. 2015), whereas
culture-independent analysis has become the most widely
used method to determine the taxonomic fingerprints of
microbial populations in different environments (Paul
et al. 2016; Selvarajan et al. 2018a, b). Conventional mo-
lecular approaches including cloning of 16S rRNA genes,
denaturing gradient gel electrophoresis (DGGE), terminal
restriction fragment length polymorphism (T-RFLP), and
fluorescence in situ hybridization (FISH) lack sufficient
depth to cover the comprehensive information on various
microbial communities (Lu et al. 2012). However, the re-
cent next-generation sequencing (NGS) technologies are
promising techniques for exploring soil microbiomes and
their metabolic potentials in situ. A great deal of research
has been performed using this technique and their findings
have consistently shown that soil microbiomes and their
functional potential are a direct reflection of the prevailing
geophysical and chemical properties of the sites studied
(Caporaso et al. 2011a; Bao et al. 2017; Mukherjee et al.
2017; Feng et al. 2018; Abia et al. 2018).

Within the last two decades, the use of molecular tech-
niques has led to a significant improvement in our knowledge
of microbial diversity and functional profiling in different

complex environments (Selvarajan et al. 2014). Gałązka
et al. (2018) used quantitative molecular approaches to deter-
mine the diversity of bacterial microbiome and the functional
profile of a long-term hydrocarbon-impacted soil. While Bao
et al. (2017) andMukherjee et al. (2017) determined microbial
responses to hydrocarbon pollution with respect to diversity
and function using predictive metagenomic methods.
Ogoniland in the Niger Delta region has a history of over five
decades of colossal oil pollution in both coastal and terrestrial
settings resulting in massive destruction of vulnerable ecosys-
tems likemangroves and wetlands (Lindén and Pålsson 2013).
Hence, it becomes necessary to characterize microbial com-
munities and its function in polluted environments, especially
when the pollutant is as complex as crude oil. The aim of this
research was, therefore, to investigate the taxonomic and func-
tional profiles of the soil microbiomes of long-term oil-pollut-
ed and pristine soils in Bodo West Community, Ogoniland,
Nigeria. In addition, we compared our samples with publicly
available datasets with varying history of oil pollution to de-
termine the differential nature of soil microbial community
structures and their functional responses to the pollutant and
to compare differences in biomarker taxa and metabolic path-
ways in crude oil-polluted and pristine environments. To the
best of our knowledge, this is the first time quantitative mo-
lecular approaches and predictive metagenomic study will be
applied to determine the microbial and functional profiles of
Bodo West, Ogoniland oil pollution.

Materials and methods

Site description and sample collection

Crude oil-polluted and pristine soil samples were collected
from Bodo West community in Gokana Local Government
Area of Rivers State, Nigeria (Fig. 1). Bodo Community is
host to Shell Petroleum Development Company’s oil opera-
tions and is installed with 24 and 28-in. Trans-Niger pipelines.
It is estimated that the 20-km2 network of creeks and inlets in
Bodo have been devastated by crude oil spills particularly as a
result of sabotage, leaking pipelines (The Guardian 2018), and
more recently artisinal refining. Composite samples from the
crude oil-polluted and pristine soils were collected from 0 to
30 cm depths using a soil auger (GPS coordinates: latitude
4.6090150 longitude 7.2242150 E; latitude 4.6163330 longi-
tude 7.2254576). Samples were immediately kept at 4 °C in a
cooler box and transported to the laboratory at the University
of Port Harcourt, Nigeria, for further analyses.

One set of soil samples was used for the analysis of phys-
icochemical parameters such as pH, electrical conductivity,
moisture content, phosphate (PO4), potassium (K), nitrate
(NO3) total organic carbon (TOC), and heavy metal analysis
such as zinc (Zn), nickel (Ni), and lead (Pb). All the
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physicochemical variables were determined according to
methods of APHA 4500 and ASTM D1691 (APHA 2012),
respectively, apart from heavy metals which were determined
using inductively coupled plasma optical emission spectrom-
etry (ICP-OES) (PerkinElmer Optima 5300 DV). The second
set of samples was used to profile the soil microbiome of both
the polluted and pristine soil.

Oil analysis of BodoWest Community, Ogoniland spill

The residual TPH and PAHs were extracted from the soil
samples using the USEPA EPA 418.1 method (USEPA
1978) and quantified using a gas chromatograph–mass spec-
trophotometer (GC-MS) (an Agilent 6890GC, Agilent
Technologies, Wilmington, USA GC equipped with 5975B
MSD chemstation version D. 03.00), according to the
methods of USEPA 8270. The carrier gas was helium set at
a constant flow rate of 1 mL/min and at a pressure of 75 kpa.
Residual TPH extracts were introduced into the GC-MS ma-
chine equipped with a narrow-bore fused silica capillary col-
umn. The column separated GC analytes were then detected
with a mass spectrometer. The mass spectra of the eluted
analytes were compared to authentic standards for hydrocar-
bons. For the identification of PAHs, the polycyclic aromatic
hydrocarbons mixture with 16 common PAHs (ULTRA
SCIENTIFIC PM-610) such as acenaphthene, acenaphthyl-
ene, anthracene, benz[a]anthracene, benzo[b]fluoranthene,
benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]pyrene,
chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene,
indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and
pyrene were used as our calibration standards.

Total DNA extraction and Illumina sequencing

Genomic DNA was directly extracted from the crude oil-
polluted and pristine soils obtained from Bodo West commu-
nity, Ogoniland, using the ZR Soil Microbe DNA Microprep
(Zymo Research, CA, USA) according to the manufacturer’s

instructions. The eluted DNAwas assessed for purity on 1.0%
agarose gel and then quantified using a NanoDrop spectropho-
tometer (Nanodrop 2000, Thermo Scientific, Japan).
Polymerase chain reaction (PCR) was performed on the ex-
tracted DNA samples using the universal bacterial primers
27F and 518R (Weisburg et al. 1991; Muyzer et al. 1993)
targeting the variable region V1-V3 of the 16S ribosomal
DNA. PCR reactions were prepared using 25 μL of one Taq
2X Master Mix, 22 μL of nuclease-free water, 1.5 μL of both
forward and reverse primers at a concentration of 0.2 μM and
2 μL of extracted DNA (50–100 ng μL−1). The following
thermal cycler program was used for the 16 s rRNA gene
amplification; initial denaturation step at 95 °C for 10 min,
followed by 32 cycles of denaturation at 95 °C for 30 s; an-
nealing at 55 °C for 30 s; extension at 72 °C for 1 min; final
extension at 72 °C for 10 min. PCR amplicons were purified
using a DNA Clean & Concentrator Kit (Zymo Research
Corporation, USA) according to the manufacturer’s instruc-
tions. The purified PCR products were then sequenced along
with multiplex sample identifiers on the Illumina MiSeq plat-
form by German Sequencing Centre, Hamburg, Germany.

Sequence data analysis

The obtained raw sequences (fastq files) were initially ana-
lyzed for PCR artifacts and low-quality reads using
ngsShoRT (next-generation sequencing Short Reads) trimmer
as described by Chen et al. (2014). Following the initial
screening process, all the sequence data sets were processed
using QIIME (v.1.9.0) pipeline as described by Caporaso et al.
(2011b). Sequence reads containing less than 50 nucleo-
tides, reads with more than 2% of ambiguities or 7% of
homopolymers were excluded during the course of analysis.
Sequences were clustered into operational taxonomic units
(OTUs) at a 97% identity threshold using the UCLUST algo-
rithm (Edgar et al. 2011). The SILVA reference database (ver-
sion 132. April 10, 2018 release) was used for both open
reference OTU picking and taxonomic assignment. Alpha

Fig. 1 Polluted soil (a) and pristine soil (b) samples collected from Bodo West community in Gokana Local Government Area of Rivers State, Nigeria.
Scale bar = 0.1 m
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and beta diversity analysis was done using the Phyloseq pack-
age (McMurdie and Holmes 2013) in R statistical software.
Prior to diversity analysis, the sequences were first normalized
to even sampling depth. The alpha diversity indices such as
Chao1, Shannon, and Simpson were measured. Nonmetric
multidimensional scaling (NMDS) applying Bray–Curtis
measure for estimation of beta diversity was used to compare
the similarities between and within the samples. Permutation-
based multivariate analysis of variance (PERMANOVA) was
used to determine significant differences in samples and ho-
mogeneity of taxonomic spread among the samples using
PAST v.3.11 (Hammer et al. 2001). Sequence reads for
Bodo West, Ogoniland, samples were deposited in GenBank
(Sequence Reads Archive) under the SRA accession number
SRP133543. To compare the metagenomes of the oil-polluted
soil drawn from Bodo West community, Nigeria, 12 16S
rRNA meta-sequences were obtained from publicly available
sequence database for both oil-polluted and pristine soils and
used for this study. The sequences were retrieved from a study
by Huettel et al. (2018), who analyzed the samples from oil-
polluted and pristine soil at Pensacola beach following the
Deep Water Horizon (DWH) oil spill in the year 2010. The
other datasets used in this study were 16S rRNA sequences
from Noonmati oil refinery and Barhola oilfields, both in
Assam, India, by Mukherjee et al. (2017). Prior to our analy-
sis, the samples were grouped according to history of oil pol-
lution. A summary of the datasets used in this study is shown
in Table 4 in the Appendix..

Functional profiling using 16S rRNA datasets

Prior to metagenome prediction using PICRUSt (phylogenetic
investigation of communities by reconstruction of unobserved
states) (Langille et al. 2013), the detected OTUs were
reclassified using The GREENGENES reference database
(May, 2013 release). PICRUSt and Kyoto Encyclopaedia of
Genes and Genomes (KEGG) were used to obtain the relative
abundance of gene families within the crude oil-polluted and
pristine soils based on a constructed phylogenetic workflow of
16S rRNA marker gene sequences. The input data was first
normalized by copy number by dividing each OTU by the
known 16S copy number abundance prior to metagenome
predictions and subsequent collapse into functional pathways.
The Nearest Sequenced Taxon Index (NSTI) value was used
to validate the reliability of predicted metagenomes and func-
tional pathways.

Metabolic reconstruction of the predicted
metagenomes and biomarkers detection

The metagenomes predicted using PICRUSt were reconstruct-
ed in HUMAnN2 (Abubucker et al. 2012) using KEGG path-
ways. The abundance and coverage of the predicted KEGG

orthology (KO) was inferred by MinPath (Ye and Doak
2009) implemented in HUMAnN2. The generated output of
gene abundance was then used to detect biomarker KEGG
pathways. To achieve this, analysis was carried out on the data
to determine differentially abundant metabolic pathways in the
unique environments under study. Linear Discriminant
Analysis Effect Size (LEfSe) was used to determine the pres-
ence of biomarkers by applying the Kruskal–Wallis alpha sig-
nificance threshold of ≤ 0.05 and an LDA (linear discriminant
analysis) score of 2.0. The GraPhlan software was then used to
visualize graphically the detected metabolic biomarkers. The
same method was also applied on the collapsed functional
pathways to detect differentially abundant functional pathways
and biomarker taxa in the crude oil-polluted soils. The dataset
from other oil-polluted sites was also used for comparison with
the dataset obtained from this study using STAMP (Parks et al.
2014). The comparison was carried out on a per sample basis
to determine differentially abundant species by calculating the
odds ratio. Only differentially abundant bacterial families with
a minimum abundance of 20 were considered. Benjamini–
Hochberg adjusted p value (Benjamini and Hochberg 1995)
was calculated to control the false discovery rate (FDR).
Bacterial families with odds ratio ≥ 1 and FDR corrected p
value ≥ 0.05 were considered significantly enriched, while
the significantly over-represented bacterial families satisfied
an odds ratio of ≥ 2 and FDR corrected p value ≥ 0.05.

Results

Physicochemical analysis of Bodo West, Ogoniland,
samples

The physicochemical variables of the polluted and pristine
soil samples are presented in Table 1. Polluted soil sample
had slight alkaline pH (7.8) while pristine soil had slightly
acidic (6.5) pH. The concentration of total organic carbon
was high in polluted soil (0.8 mg/kg) as compared to the
pristine soil (0.6 mg/kg). Among the nutrients, the concen-
trations of nitrate and phosphate were significantly higher
(p < 0.05) in pristine soil (10.8; 11.6 mg/kg) compared to
the polluted soil, while there was no significant difference
in the concentration of potassium between the sampling
sites. Heavy metals like lead (Pb), zinc (Zn), and nickel
(Ni) were detected in considerably higher concentrations
in polluted soil than in pristine soil.

The amount of total petroleum hydrocarbon (TPH) in the
polluted and pristine soil was 7591 mg/kg and 199.70 mg/kg
respectively (Table 1). Further quantification revealed that the
pristine soil had minimal hydrocarbon peaks while longer car-
bon chain hydrocarbons from C12 to C34 were detected in the
oil-polluted soil. The carbon atom distribution of TPH in
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polluted and pristine soil samples and the ratios of occurrence
are represented in Fig. 2.

The PAH content in the polluted soil was significantly
higher (p < 0.05) than that of the pristine soil, which con-
firmed the presence of a range of aromatic hydrocarbons
(Table 2). The amount of PAHs having two or more single
or fused aromatic rings was higher in oil-contaminated soil
sample, whereas the pristine soil contained only three-
member aromatic hydrocarbons such as ANTHRACENE

and PHENANTHRENE. Table 2 shows all the PAHs detected
in both the polluted and pristine soils.

Diversity profile of the distinct environments

A total of 50 phyla, 107 classes, 144 orders, 512 families, and
1285 bacterial genera were detected for all the samples.
Proteobacteria was the dominant phylum in all the samples
studied (Fig. 7 in the Appendix) followed by the phyla
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Fig. 2 Alpha diversity analysis of the samples colored according to
pollution location, using diversity indices Chao1, Shannon, observed
and inverse Simpson after normalizing reads from each sample.*PB1-

PB5 and PS1-5 (Pensacola beach polluted and pristine soils). Noonmati
(Noonmati oil refinery India). Barhola (Barhola oil refinery India). IES
and ICES (Bodo West, Ogoniland, Nigeria)

Table 1 Comparison of
physicochemical characteristics
of the collected soil samples

Parameter Concentration for polluted
soil (IES)

Concentration of pristine
soil (ICES)

pH 7.8 6.5

Electrical conductivity (μS/cm) 2020 105

Total organic carbon (%) 0.80 0.60

Total petroleum hydrocarbon (mg/kg) 7591 199.70

Polycyclic aromatic hydrocarbon (mg/kg) 26.12 2.76

Moisture content (%) 30.00 26.00

Nitrate (mg/kg) 1.30 10.80

Phosphate (mg/kg) 1.01 11.60

Zinc (mg/kg) 5.50 0.66

Potassium (mg/kg) 26.70 26.70

Lead (mg/kg) 48.70 0.09

Nickel (mg/kg) 0.07 < 0.05
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Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi,
Chloroflexi, Cyanobacteria, Firmicutes, Planctomycetes, and
Verrucomicrobia. Whereas the pristine soil had an increased
abundance of Planctomycetes, Bacteroidetes, Actinobacteria,
and Acidobacteria, while comparing with the datasets, the
crude oil-polluted soil obtained from Noonmati oil refinery
had a significant high abundance of Acidobacteria.
Statistical analysis of the taxonomic abundance for the distinct
environments showed significant differences between the
pristine and oil-polluted soils (Table 5 in the Appendix).
Further, the pair-wise analysis of the samples confirmed that
the polluted environment taxonomic profile was significantly
different (p < 0.05) from the pristine environment (Table 5 in
the Appendix). Alpha diversity analysis (Fig. 2.) of the sam-
ples that make up the distinct environments showed that the
oil-polluted samples from Noonmati oil refinery and Barhola
oil fields were the least diverse. NMDS plots revealed a clus-
tering of the samples according to oil pollution exposure; the
pristine soil samples clustered together on the plot, while the
oil-polluted soil samples clustered separately, indicating that
the microbiome of the pristine environment were different
from the hydrocarbon stressed environment (Fig. 3).
Furthermore, the samples obtained from Bodo West,
Ogoniland, and the oil-polluted samples from India clustered
according to geographical location indicating that the factors
that determine microbial selection were beyond just the pres-
ence of hydrocarbons (Table 6).

A closer comparison of the bacterial structure of our study
site to other oil-polluted sites revealed significant differences
in bacterial families ranging from 21 to 42 bacterial families.

The bacterial dataset sequenced from Barhola oil refinery in
India had 42 bacterial families (Fig. 6a) significantly differen-
tially abundant in comparison with the bacterial data from this
study. Burkholderaceae and Anaerolineaceae were among the
bacterial families with the highest odds ratio. Noonmati oil
refinery dataset revealed that 33 bacterial families (Fig. 6b)
were differentially abundant. The dataset obtained from
Pensacola Beach, USA, with sample codes PB1, PB2, PB3,
PB4, and PB5 had significant differences in microbial structure
when compared with our study site ranging from 21 to 33
bacterial families (Fig. 6c–g). The overall analysis revealed
the bac te r ia l fami l ies Acid i th iobac i l laceae and
Desulfobacteraceae were significantly over-represented in our
study site compared to other oil-polluted sites used in this study.

Detection of biomarker taxa

Differentially abundant bacterial and achaeal taxa referred to
as biomarkers were detected using LEfSe algorithm. For this
analysis, the alpha parameter significance for the Kruskal–
Wallis (KW) and the logarithmic LDA score cut-off were set
to 0.05 and 2.0 respectively. Both analyses were to detect
features with significant differential abundance with respect
to the class of interest and to estimate the effect size of each
differentially abundant feature. The biomarker taxa detected
for the oil-polluted and pristine soils are shown in Fig. 4. The
genera Sneathiella , Parvibaculum , Oceanicaulis ,
Thalassospira , C1 B045 belonging to the family
Porticoccaceae and the genera Solimonas, Fontimonas,
Thioalkalispira, Sphingobium, KCM 112 belonging to the
family Acidithiobacillaceae were the predominant biomarker
taxa detected in the oil-polluted samples.

Predicted functional profile of the distinct
environments

In order to determine the effect of the long-term crude oil spill
on soil microbiome functional potential, the obtained taxo-
nomic profile data were subjected to PICRUSt analysis for
functional predictions. Predicted proteins were further classi-
fied by KEGG orthologs (KOs) and this resulted in the iden-
tification of 6909 KOs which were collapsed to 302 metabolic
pathways. The collapsed pathways were analyzed using
LEfSe for differentially abundant pathways. Twenty-six path-
ways were found to be differentially abundant (Fig. 5). Fifteen
of the biomarker pathways were associated with the crude oil-
polluted environment, while the remaining 11 differentially
represented pathways were biomarkers for the pristine envi-
ronment Fig. 6. The biomarker pathways for the distinct en-
vironments and their p values are shown in Table 3. The core
biomarkers detected in the crude oil-polluted environments
were mostly pathways for degradation and metabolism pro-
cesses which included naphthalene degradation (KO00626),

Table 2 Complete profile of PAHs distribution in polluted and pristine
soil samples

No. of rings Polluted soil sample (IES) Pristine soil sample (ICES)

2 Naphthalene –

2 Acenaphthylene –

2 Acenaphthene –

3 Fluorene –

3 Anthracene Anthracene

3 Phenanthrene Phenanthrene

4 Fluoranthene –

4 Pyrene –

4 Chrysene –

4 or 5 Benz(a)anthracene –

5 Benzo(b)fluoranthene –

5 Benzo(k)fluoranthene –

5 Benzo(a)pyrene –

5 Dibenz(g,h,i)anthracene –

6 Indeno(1,2,3-c,d)perylene –

6 Benzo(ghi)perylene –
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fatty acid metabolism (ko00071), lysine degradation
(ko00310), metabolism of xenobiotics by cytochrome P450
(ko00980), C5 branched dibasic acid metabolism (ko00660),
beta alanine metabolism (ko00410), tryptophan metabolism
(ko00380), propanoate metabolism (ko00640), limonene and

pinene degradation (ko00903), geraniol degradation
(ko00281), caprolactam degradation (ko00930), toluene deg-
radation (ko00623) and drugmetabolism enzymes (ko00983),
whereas the core biomarkers for the pristine environment in-
cluded biosynthesis of vancomycin group antibiotics
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structure

A: Subgroup 10
B: Subgroup 23
C: Sva0996 marine group
D: Chryseolinea
E: Maritimimonas
F: Muricauda
G: Winogradskyella
H: Schleiferia
I: Truepera
J: Urania 1B 19 marine sediment group
K: Blastopirellula
L: Pir4 lineage
M: Rhodopirellula
N: Rubripirellula
O: Oceanicaulis
P: Parvibaculum
Q: Methyloceanibacter
R: Thalassospira
S: Sneathiella
T: Sphingobium
U: SEEP SRB1
V: Sva0081 sediment group
W: Haliangium
X: KCM B 112
Y: Arenicella
Z: C1 B045
a: Thioalkalispira
b: Fontimonas
c: Solimonas
d: Woeseia
e: Spirochaeta 2
f: Roseibacillus

POLLUTED SOIL
PRISTINE SOIL

Fig. 4 Phyletic representation of taxonomic biomarkers detected for the
pristine and crude oil-polluted samples. The external legend represent the
detected biomarker taxa, while the innermost ring represent levels 3 to 6

taxonomic hierarchy of the detected biomarker taxa. Differentially abun-
dant taxa are colored according to oil pollution history of the distinct
environments
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(ko01055), seleno-compound metabolism (ko00450), panto-
thenate and CoA biosynthesis (ko00770), bacterial chemotax-
is (ko02030), and valine leucine and isoleucine biosynthesis
(ko00290). Detailed biomarkers obtained for all environments
are shown in Table 3.

Permutation-based multivariate analysis was carried out
on the gene abundance using Bray–Curtis similarity scores
to determine significant differences in KEGG pathways
for the distinct environments. The p value (p = 0.004) ob-
tained indicated significant differences exist in gene abun-
dance between the pristine and oil-polluted environments.
The collapsed pathway biomarkers (Fig. 5) showed that
pathways for toluene degradation, glyoxylate and
dicarboxylate metabolism, naphthalene degradation and
benzoate degradation were major pathways for the crude
oil-polluted environment.

Discussion

Physicochemical analyses

The physicochemical characteristics of the soil samples obtained
from Bodo West community, Ogoniland spill site, showed a

high concentration of residual total petroleum hydrocarbon
and exceeded the permissible (50 mg/kg) and intervention
(5000 mg/kg) limits as set out in the Environmental
Guidelines and Standards for the Petroleum Industry in
Nigeria (DPR 2002). The electrical conductivity of the polluted
soil was found to be higher than that of the pristine soil (Table 1).
A previous study at the Cason City site, USA, revealed an in-
crease in the proportion of hydrocarbon-degrading microbes
with an increase in electrical conductivity (Allen et al. 2007).
Also, pH has been found to contribute significantly to explaining
the observed variation in community composition (Sutton et al.
2012). The pH values of the crude oil-polluted soil was 7.8
while that of the pristine soil was slightly acidic (6.5), a
finding that is in line with the report of Lindén and Pålsson
(2013) that carried out an extensive chemical analyses of
over 40 sites in Ogoniland. They reported the average pH
to be within 6.1. The nitrate and phosphate contents in the
pristine soil sample were significantly higher when com-
pared to the polluted soil sample; this could be as a result
of an abundance of organic matter in the pristine soil en-
vironments. Additionally, microbial community composi-
tion is highly correlated to physicochemical parameters, as
described by previous investigations (Kostka et al. 2011;
Kadali et al. 2012; Keshri et al. 2015).

POLLUTED SOIL
PRISTINE SOIL

A: Bacterial chemotaxis
B: Chromosome
C: Transcription machinery
D: Lysine biosynthesis
E: Tyrosine metabolism
F: Glyoxylate and dicarboxylate metabolism
G: Methane metabolism
H: Protein kinases
I: Pantothenate and CoA biosynthesis
J: Riboflavin metabolism
K: Vitamin B6 metabolism
L: Prenyltransferases
M: Benzoate degradation
N: Naphthalene degradation
O: Toluene degradation
P: Membrane and intracellular structural molecules
Q: Pores ion channels
R: Amino acid metabolism
S: Energy metabolism

Fig. 5 Collapsed metagenomes prediction at the functional level. The
external legend represents level III KEGG functional pathways.
Differentially abundant KEGG pathways are colored corresponding to
study environment (crude oil-polluted and pristine soils). KEGG

functional pathways not differentially represented in any of the study sites
are colorless. The size of each circle corresponds with the abundance of
that particular biomarker
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Fig. 6 a Differentially abundant bacterial families and the odds ratio and
significant p values for Bodo West spill site (IES) and Barhola refinery
(Barhola), India. Extended bar plots are arranged according to significant
p values. b Differentially abundant bacterial families and the odds ratio
and significant p values for Bodo West spill site (IES) and Noonmati
refinery (Noonmati), India. Extended bar plots are arranged according
to significant p values. c Differentially abundant bacterial families and
the odds ratio and significant p values for Bodo West spill site (IES) and
Pensacola beach sample (PB1), USA. Extended bar plots are arranged
according to significant p values. dDifferentially abundant bacterial fam-
ilies and the odds ratio and significant p values for Bodo West spill site

(IES) and Pensacola beach sample (PB2), USA. Extended bar plots are
arranged according to significant p values. e Differentially abundant bac-
terial families and the odds ratio and significant p values for Bodo West
spill site (IES) and Pensacola beach sample (PB3), USA. Extended bar
plots are arranged according to significant p values. fDifferentially abun-
dant bacterial families and the odds ratio and significant p values for Bodo
West spill site (IES) and Pensacola beach sample (PB4), USA. Extended
bar plots are arranged according to significant p values. g Differentially
abundant bacterial families and the odds ratio and significant p values for
Bodo West spill site (IES) and Pensacola beach sample (PB5), USA.
Extended bar plots are arranged according to significant p values
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Microbial community structure and biomarker taxa

Comparison of microbial community structure among the
studied environments revealed distinct taxa were differentially
abundant depending on environmental stress exerted on the
microbial community. Proteobacteria was predominant in all
the samples analyzed and has been identified in many studies
as the predominant phylum in soil samples (Roesch et al.
2007; Militon et al. 2010; dos Santos et al. 2011; Nacke
et al. 2011; Fahrenfeld et al. 2014). Within this phylum,
Gammaproteobacter ia and to a lesser extent the
Epsi lonproteobacter ia , Alphaproteobacter ia, and
Deltaproteobacteria predominated the bacterial communities

of the oil-polluted environment. Several researchers have
made similar findings in oil-polluted soils (Head et al. 2006;
Yakimov et al. 2007; Berthe-Corti and Nachtkamp 2010;
Greer 2010; Sutton et al. 2012)

The dominant Gammaproteobacteria in the oil-impacted
Bodo West community were Alcanivorax and Marinobacter
(Fig. 8 in the Appendix). These groups of bacteria are well-
known hydrocarbon degraders that usually increase in re-
sponse to oil contamination in marine and brackish water en-
vironments (Yakimov et al. 2007; dos Santos et al. 2010;
Kostka et al. 2011; Huettel et al. 2018). They are also known
to be excellent degraders of alkane and their presence usually
suggests alkane degradation occurring naturally.

Fig. 6 (continued)
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As expected, all of the pristine soil samples had higher bac-
terial diversity compared to the oil-impacted soils where the
presence of hydrocarbon pollutant had triggered a shift in bac-
teria composition. The phyla Planctomycetes, Actinobacteria,
and Acidobacteria were most predominant in the pristine soil
samples and they have been reported in earlier works that ex-
amined uncontaminated soil samples (Roesch et al. 2007;
Nacke et al. 2011; Sutton et al. 2012). Alpha diversity analysis
(Fig. 2) showed the oil-polluted environment had the least di-
versity of bacterial and archaeal species. This observation is in
line with the results of several researchers (Lamendella et al.
2014; Chikere and Obieze 2018; Huettel et al. 2018) that stud-
ied the effect of hydrocarbon stress on microbial diversity.

All the taxonomic biomarkers detected in the oil-polluted
environment are established degraders of various fractions of
hydrocarbon (Wang et al. 2010; Kimes et al. 2013; Newton
et al. 2013; Kappell et al. 2014). Kappell et al. (2014) reported
that the genus Sneathiella played a key role in the degradation
of naphthalene and fluorene following the DWH oil spill of
2010. In addition, Thalassospira is also an established degrad-
er of naphthalene and fluorene as it was reported to be asso-
ciated with oil on the water surface during the DWH oil spill
(Liu and Liu 2013). In another study of the DWH spill by
Looper et al. (2013), Parvibaculum was detected as the
dominant oil degrader and they are known to be very im-
portant degraders of both alkane and aromatics in oil-

Fig. 6 (continued)
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polluted environments (Joye et al. 2016). The TPH analy-
sis of the oil-polluted soil obtained from Bodo West
Community showed the presence of mostly C17–C20 hy-
drocarbons and the presence of a high number of polycy-
clic aromatic hydrocarbons. Other datasets used in this
study also had a high hydrocarbon concentration of both
saturated and aromatic hydrocarbons which resulted in the
abundance of these key hydrocarbon degraders. Having
knowledge of these important biomarker taxa in oil-
polluted environments will impact heavily on engineered
bioremediation of oil spills.

The presence of Acidithiobacillaceae in significantly
differential abundance in the site of study could be related
to the relatively low pH predominant in most oil-polluted
soils in the Niger Delta of Nigeria and particularly in
Ogoniland. Lindén and Pålsson (2013) in an extensive
study of over 40 sites as part of the United Nations
Environmental Programme (UNEP) assessment of crude
oil-polluted soils, sediments and water in Ogoniland, re-
ported a pH range of between 4.7 and 7.3 with an average
of 6.1 for all the sites investigated. The bacterial family
Acidithiobacillaceae is usually present in soils with high

sulfate concentration and low pH. Hamamura et al. (2005)
detected the presence of iron- and sulfur-oxidizing
chemolithotroph Acidithiobacillus spp. in an environment
associated with natural hydrocarbon seeps. Valdés et al.
(2008) reported the genome of Acidithiobacil lus
ferrooxidans to contain toluene tolerance protein TtgD
(AFE1830) as well as xylene and related aromatic hydro-
carbon compounds.

Another differentially abundant bacterial family in our
s tudy s i t e i s Desu l fobac te raceae . Members o f
Desulfobacteraceae have been shown to play important
roles in the degradation of aromatic compounds, particu-
larly under sulfate-reducing conditions. Kümmel et al.
(2015) investigated the role of the bacterial family
Desulfobacteraceae in the degradation of naphthalene.
They demonstrated the mineralization of naphthalene by
monitoring sulfide formation which is usually concomitant
with naphthalene depletion. Further investigation will be
required to determine the exact role of these two important
differentially abundant bacterial families in the study site
and in Ogoniland in general since the soil chemistry
around this area will support their proliferation.

Table 3 Differentially abundant
KEGG pathways detected in the
studied environments

KEGG pathway Sample history p value

ko01055: Biosynthesis of vancomycin group antibiotics Pristine soil 0.04378

ko00941: Flavonoid biosynthesis Pristine soil 0.014298

ko00300: Lysine biosynthesis Pristine soil 0.010951

ko03020: RNA polymerase Pristine soil 0.044453

ko00450: Seleno-compound metabolism Pristine soil 0.005517

ko00633: Nitrotoluene degradation Pristine soil 0.025295

ko00770: Pantothenate and CoA biosynthesis Pristine soil 0.010704

ko02030: Bacterial chemotaxis Pristine soil 0.024373

ko00270: Cysteine and methioninemetabolism Pristine soil 0.011109

ko03420: Nucleotide excision repair Pristine soil 0.011109

ko00290: Valine leucine and isoleucine biosynthesis Pristine soil 0.023262

ko00983: Drug metabolism other enzymes Polluted soil 0.004732

ko04210: Apoptosis Polluted soil 0.002693

ko00623: Toluene degradation Polluted soil 0.022332

ko00830: Retinol metabolism Polluted soil 0.00923

ko00281: Geraniol degradation Polluted soil 0.015082

ko00903: Limonene and pinene degradation Polluted soil 0.031318

ko00640: Propanoate metabolism Polluted soil 0.016014

ko00312: Beta lactam resistance Polluted soil 0.003855

ko04310: Wnt signaling pathway Polluted soil 0.006108

ko00410: Beta alanine metabolism Polluted soil 0.016864

ko00660: C5 branched dibasic acid metabolism Polluted soil 0.047972

ko00980: Metabolism of xenobiotics by cytochrome P450 Polluted soil 0.007518

ko00071: Fatty acid metabolism Polluted soil 0.007773

ko00626: Naphthalene degradation Polluted soil 0.010674

ko00910: Nitrogen metabolism Polluted soil 0.046532
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Comparison of the functional profiles of the pristine
and oil-impacted soils

Predicted metabolic profiles for the oil-polluted and pris-
tine environments showed distinct functional capabilities.
Results of this study showed that the differentially abun-
dant metagenomes in the oil-polluted environment were
majorly the pathways for metabolism and biodegradation,
while the differentially represented pathways for the pris-
tine soil were mostly pathways for sugar and nucleotide
biosynthesis apart from the pathway for nitrotoluene deg-
radation. The detection of nitrotoluene degradation path-
way in the pristine soil is not surprising, as pathways for
the degradation of alkanes, poly-aromatics, and xenobi-
otics are known to be ubiquitous with the only difference
being that environments under hydrocarbons stress will
have a higher abundance of the degradative genes respon-
sible for hydrocarbons breakdown (Looper et al. 2013).

The predicted metabolic profile of the oil-polluted envi-
ronment suggests heavy reliance of the microbial commu-
nity on hydrocarbon as the sole source of carbon. In total
contrast to the pristine environment, several metabolic
pathways for the degradation of alkanes and polycyclic
aromatic hydrocarbons were shown to be differentially
abundant in the oil-polluted samples. Pathways for naph-
thalene degradation, lysine degradation, metabolism of xe-
nobiotics by cytochrome P450, and toluene degradation
were among the core KEGG pathways discovered as bio-
markers for the oil-polluted environment. This observation
suggests that this increase is as a result of the environmen-
tal stress triggered by the presence of petroleum hydrocar-
bons in the environment. The study of Kappell et al. (2014)
showed that the majority of differentially detected func-
tional genes responsible for both saturated and aromatic
hydrocarbon degradation in their study were associated
with oil-polluted soils. Similar observations were made
by Bao et al. (2017) and Mukherjee et al. (2017) who
successfully used predictive metagenomics to determine
bacterial response to hydrocarbon contamination. Their
findings revealed that petroleum hydrocarbon contaminat-
ed sites had a significant differential functional profile and
particularly higher functional KEGG pathways for hydro-
carbons degradation.

The limitation of macro-nutrients such as nitrogen is
not uncommon in oil-contaminated environments (Leahy
and Colwell 1990). A study by Hazen et al. (2010) showed
that an increased abundance of genes associated with ni-
trogen assimilation led to an increase in biomass in the
water column during the DWH spill; hence, the differen-
tial abundance of KEGG pathway for nitrogen metabolism
in the oil-polluted environment could suggest that the mi-
crobial community is responding to nitrate limitation in
the oil-polluted environment. Similarly, Kappell et al.

(2014) demonstrated that microorganisms respond to ni-
trate limitation by either fixing nitrogen or through some
yet to be detected mechanisms. Our findings indicate that
several factors including availability of different organic
and inorganic compounds and environmental stress can
heavily influence the evolution of the microbiome. The
hydrocarbon stress led to an increase in bacteria harboring
genes responsible for the degradation of various hydrocar-
bon fractions.

Conclusions

In conclusion, high-throughput sequencing and predictive
metagenomics revealed a significant difference in biomark-
er pathways and taxa for the studied environments. The
presence of petroleum hydrocarbons influenced microbial
diversity and its functions in the oil-polluted environments.
Furthermore, the predictive metagenomic analysis revealed
that members of the microbial community in the hydrocar-
bon polluted environment relied mostly on hydrocarbons
as their source of carbon due to the high abundance of
pathways for hydrocarbons degradation as well as a corre-
sponding increase of established oil-degrading bacterial
taxa detected as biomarkers in this environment.
However, further investigations are required to gather in-
formation on possible distinctive roles played by these bac-
terial species in these habitats. The taxonomic and func-
tional profile of Bodo West Community oil spill site indi-
cated the presence of versatile and well-established hydro-
carbon-degrading bacterial species and a significantly
higher abundance of acid-tolerant bacteria families that
can be exploited for the recovery of oil-polluted soils in
Ogoniland and other hydrocarbon-impacted soils with
acidic pH.
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Appendix
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A
c
id

o
b
a
c
te

ri
a

A
c
ti
n
o
b
a
c
te

ri
a

B
a
c
te

ro
id

e
te

s

P
la

n
c
to

m
y
c
e
te

s

P
ro

te
o
b
a
c
te

ri
a

A
c
id

o
b
a
c
te

ri
a

A
c
ti
n
o
b
a
c
te

ri
a

B
a
c
te

ro
id

e
te

s

P
la

n
c
to

m
y
c
e
te

s

P
ro

te
o
b
a
c
te

ri
a

A
c
id

o
b
a
c
te

ri
a

A
c
ti
n
o
b
a
c
te

ri
a

B
a
c
te

ro
id

e
te

s

P
la

n
c
to

m
y
c
e
te

s

P
ro

te
o
b
a
c
te

ri
a

0.0

0.2

0.4

0.6

0.8

Phylum

R
e

la
ti
v
e

 A
b
u

n
d

a
n

c
e

Fig. 7 Abundance and distribution of the fivemost abundant phyla across the samples. *USA (Pensacola beach oil-polluted and pristine soils). India (oil-
polluted soils from Noonmati and Barhola oil refineries India). Bodo West (oil-polluted soils, Bodo West, Ogoniland, Nigeria)

Fig. 8 Comparison of microbial community structure and its abundance in the crude oil-polluted and the pristine soil samples obtained from BodoWest,
Ogoniland, Nigeria. *IES (polluted soil). *ICES (pristine soil)
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