Skip to main content
  • Applied Microbiology
  • Original Articles
  • Published:

In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains

Abstract

Biofilm production is an important step in the pathogenesis ofStaphylococcus epidermidis associated biomaterial infections.Staphylococcus epidermidis strains isolated from dialysis fluid (n=9) and needle cultures (n=14) were phenotyped and genotyped for extracellular polysaccharide production and were examined for their ability to produce slime in a medium at various pH levels (3, 5, 7, 9 and 12) and with ethanol supplementation (0, 2, 5, 10 and 15%) using a semi-quantitative adherence assay. A total of 23 clinicalicaADBC positiveS. epidermidis, one reference strain (S. epidermidis CIP 106510) used as positive control, and oneicaADBC negative strain (E21) were investigated. Qualitative biofilm production analysis revealed that 15 of the 23icaADBC positive strains (65.21%) produced slime on Congo Red agar plates. Quantitative biofilm was determined by measuring the optical density at 570 nm (OD570). The results show that the slime production depended on the pH value of the medium and the ethanol concentration. At highly acidic (pH 3) and alkaline (pH 12) levels, the OD570 was lower, while at pH 7 the adhesion was moderate. In addition the cells adhered strongly with 2% ethanol than with the other concentrations. Our results suggest that pH and ethanol were stress factors that led toS. epidermidis biofilm formation and also play a possible role in the pathogenesis of biomaterial-related infections.

References

  • Arciola C.R., Campoccia D., Gamberini S., Cervellati M., Donati E., Montanaro L. (2002). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale inStaphylococcus epidermidis clinical isolates genotyped forica locus. Biomaterials, 23: 4233–4239.

    Article  CAS  PubMed  Google Scholar 

  • Bayer M.E., Sloyer J.L.J. (1990). The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis. J. Gen. Microbiol., 136: 867–874.

    CAS  PubMed  Google Scholar 

  • Cerca N., Pier G.B., Vilanova M., Oliveira R., Azeredo J. (2005). Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates ofStaphylococcus epidermidis. Res. Microbiol., 156: 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol., 22: 996–1006.

    CAS  PubMed  Google Scholar 

  • Conlon K.M., Humphreys H., O’Gara J.P. (2002).icaR encodes a transcriptional repressor involvedin environmental regulation ofica operon expression and biofilm formation inStaphylococcus epidermidis. J. Bacteriol., 184: 4400–4408.

    Article  CAS  PubMed  Google Scholar 

  • Costerton J.W., Stewart P.S., Greenberg E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284: 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  • Doyle R. (2000). Contribution of the hydrophobic effect to microbial infection, Microb. Infect. 2: 39–400.

    Google Scholar 

  • Elliott T.S., Faroqui M.H., Armstrong R.F., Hanson G.C. (1994). Guidelines for good practice in central venous catheterization. J. Hosp. Infect., 28: 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick F., Humphreys H., Smyth E., Kennedy C.A., O’Gara J.P. (2002). Environmental regulation of biofilm formation in intensive care unit isolates ofStaphylococcus epidermidis. J. Hosp. Infect., 42: 212–218.

    Article  Google Scholar 

  • Freeman D.J., Falkiner F.R., Keane C.T. (1989). New method for detecting slime production by coagulase-negative staphylococci. J. Clin. Pathol., 42: 872–874.

    Article  CAS  PubMed  Google Scholar 

  • Götz F. (2002).Staphylococcus and biofilms. Mol. Microbiol., 43: 1367–1378.

    Article  PubMed  Google Scholar 

  • Knobloch J.K., Bartscht K., Sabottke A., Rohde H., Feucht H.H., Mack D. (2001). Biofilm formation byStaphylococcus epidermidis depends on functionalRsbU, an activator of thesigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol., 183: 2624–2633.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence E.L., Turner I.G. (2005). Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys., 27: 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Mack D., Bartscht K., Fischer C., Rohde H., de Grahl C., Dobinsky S., Horstkotte M.A., Kiel K., Knobloch J.K. (2001). Genetic and biochemical analysis ofStaphylococcus epidermidis biofilm accumulation. Method. Enzymol., 336: 215–239.

    Article  CAS  Google Scholar 

  • Mack D., Rohde H., Dobinsky S., Riedewald J., Nedelmann M., Knobloch J.K., Elsner H.A., Feucht H.H. (2000). Identification of three essential regulatory gene loci governing expression of theStaphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect. Immun., 68: 3799–807.

    Article  CAS  PubMed  Google Scholar 

  • McKenney D., Pouliot K.L., Wang Y., Murthy V., Ulrich M., Döring G., Lee J.C., Goldmann D.A., Pier G.B. (1999). Broadly protective vaccine forStaphylococcus aureus based on anin vivo expressed antigen. Science, 284: 1523–1527.

    Article  CAS  PubMed  Google Scholar 

  • Meinders J.M., van der Mei H.C., Busscher H.J. (1994). Physicochemical aspects of deposition ofStreptococcus thermophilus B to hydrophobic and hydrophilic substrata in a parallel plate flow chamber. J. Colloid. Interf. Sci., 164: 355–363.

    Article  CAS  Google Scholar 

  • Memple M., Schmidt T., Weidinger S., Weidinger S., Schnopp Ch., Foster T., Ring J., Abeck D. (1998). Role ofStaphylococcus aureus surface-associated proteins in the attachment to cultured HaCa T keratinocytes in a new adhesion assay. J. Invest. Dermatol., 111: 452–456.

    Article  Google Scholar 

  • Mermel L.A. (2000). Prevention of intravascular catheter-related infections. Ann. Intern. Med., 132: 391–402.

    CAS  PubMed  Google Scholar 

  • Patrick C.C., Plaunt M.R., Hetherington S.V., May S.M. (1992). Role ofStaphylococcus epidermidis slime layer in experimental tunnel tract infections. Infect. Immun., 60: 1363.

    CAS  PubMed  Google Scholar 

  • Pearson M.L. (1996). Guideline for prevention of intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Infect. Cont. Hosp. Ep., 17: 438–473.

    Article  CAS  Google Scholar 

  • Peters G., Locci R., Pulverer G. (1982). Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J. Infect. Dis., 146: 479–482.

    CAS  PubMed  Google Scholar 

  • Rachid S., Ohlsen K., Witte W., Hacker J., Ziebuhr W. (2000a). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-formingStaphylococcus epidermidis. Antimicrob. Agents Chemother., 44: 3357–3363.

    Article  CAS  PubMed  Google Scholar 

  • Rachid S., Cho S., Ohlsen K., Hacker J., Ziebuhr W. (2000b). Induction ofStaphylococus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor SigB.In L. Emody, G. Blum-Oehler, J. Hacker, Pal T., Eds, Genes and Proteins Underlying Microbial Urinary Tract Virulence. Plenum Press, New York, N.Y., pp. 159–166.

    Google Scholar 

  • Rupp M.E., Archer G.L. (1994). Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis., 19: 231–243.

    CAS  PubMed  Google Scholar 

  • Shapiro J.A. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol., 52: 81–104.

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan P., Nair M.K., Annamalai T., Venkitanarayanan K.S. (2003). Phenotypic and genotypic characterization of bovine mastitis isolates ofStaphylococcus aureus for biofilm formation. Vet. Microbiol., 92: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Von Eiff C., Heilmann C., Peters G. (1999). New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur. J. Clin. Microbiol. Infect. Dis., 18: 843–846.

    Article  Google Scholar 

  • White A., Handler P., Smith E.L. (1978). Enzymes I, nature, classification, kinetics, metabolic inhibitors: control of enzymatic activity. In: White A., Ed., Principles of Biochemistry, McGraw-Hill, Tokyo, pp. 196–230.

    Google Scholar 

  • Zmantar T., Chaieb K., Miladi H., Mahdouani K., Bakhrouf A. (2006). Detection of the intercellular adhesion loci (ica) in clinicalStaphylococcus aureus strains responsible for hospital acquired auricular infection. Ann. Microbiol., 56: 349–352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Chaieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaieb, K., Chehab, O., Zmantar, T. et al. In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains. Ann. Microbiol. 57, 431–437 (2007). https://doi.org/10.1007/BF03175085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175085

Key words