Skip to main content
  • Industrial Microbiology
  • Original Articles
  • Published:

Optimisation of rhamnolipids produced byPseudomonas aeruginosa 181 using Response Surface Modeling

Abstract

This work investigated the optimisation of the fermented culture medium for maximisation of rhamnolipids production produced byPseudomonas aeruginosa 181 using Response Surface Modeling (RSM). A two full factorial central composite experimental design was used in the design of experiments and in the analysis of results. This procedure limited the number of actual experiments performed while allowing for possible interactions between the parameters (pH, stirring rate, casamino acid concentration and incubation period) on the production of biosurfactants. Production carried out at larger volumes of one litre using Bioreactor under RSM-optimised conditions yielded 3.61 g l−1 of products after purification by acid precipitation.

Reference

  • Abalos A., Maximo F., Manresa M.A., Bastida J. (2002). Utilization of response surface methodology to optimize the culture media for production of rhamnolipids byPseudomonas aeruginosa AT10. J. Chem. Technol. Biotechnol., 77: 777–784.

    Article  CAS  Google Scholar 

  • Ali F.M. (1998). Crude Oil Degrading Bacteria: Isolation, Growth and Biodegradation Studies, MSc thesis, Universiti Putra Malaysia.

  • Babu P.S., Vaidya A.N., Bal A.S., Kapur R., Juwarkar A. Khanna P. (1996). Kinetics of biosurfactant production byPseudomonas aeruginosa BS2 from industrial wastes. Biotechnol. Lett., 18: 263–268.

    CAS  Google Scholar 

  • Garcia-Junco M., De Olmedo E., Ortego-Calvo J.J. (2001). Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant producing bacteriumPseudomonas aeruginosa 19SJ. Environ. Microbiol., 3: 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Haba E., Espuny M.J., Busquets M., Manresa A. (2000). Screening and production of rhamnolipids byPseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol., 88: 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Hamsaveni D.R., Prapulla S.G., Divakar S. (2001). Response surface methodological approach for the synthesis of isobutyl isobutyrate. Process Biochem., 36: 1103–1109.

    Article  CAS  Google Scholar 

  • Jarvis F.G., Johnson M.J. (1949). A glyco-lipid produced byPseudomonas aeruginosa. J. Am. Chem. Soc., 71: 4124–4126.

    Article  CAS  Google Scholar 

  • Kuiper I., Lagendijk E.L., Pickford R., Derrick J.P., Lamers G.E.M., Thomas-Oates J.E., Lugtenberg B.J.J., Bloemberg G.V. (2004): Characterization of twoPseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol., 51 (1): 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Mercade M.E., Manresa M.A., Robert M., Espuny M.J, de Andes C., Guinea J. (1993). Olive oil mill effluents (OOME). New substrate for biosurfactant production. Biores. Technol., 43: 1–6.

    Article  CAS  Google Scholar 

  • Gunther N.W., Nuñez A., Fett W., Solaiman D.K.Y. (2005). Production of rhamnolipids byPseudomonas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol., 71 (5): 2288–2293.

    Article  CAS  PubMed  Google Scholar 

  • Patel R.M. Desai A.J. (1997). Biosurfactants production byPseudomonas aeruginosa GS3 from molasses. Lett. Appl. Microbiol., 25: 91–94.

    Article  CAS  Google Scholar 

  • Rahman K.S.M., Rahman T.J., McClean S., Marchant R., Banat I.M. (2002). Rhamnolipid biosurfactant production by strains ofPseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog., 18: 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  • Raza Z.A., Asma R., Muhammad S.K., Zafar M.K. (2007). Improved production of biosurfactant by aPseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation, 18: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L., Teixeira J., Oliveira R., Mei H. (2006). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Proc. Biochem., 41: 1–10.

    Article  CAS  Google Scholar 

  • Robert M., Mercade M.E., Bosch M.P., Parra J.L., Espuny M.J., Manresa M.A., Guinea J. (1989). Effect of carbon source on biosurfactant production byPseudomonas aeruginosa 44T1. Biotechnol. Lett., 11: 871–874.

    Article  CAS  Google Scholar 

  • Sim L., Ward O.P., Li Z.-Y. (1997). Production and characterization of a biosurfactant isolated fromPseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol., 19: 232–238.

    Article  CAS  PubMed  Google Scholar 

  • Stanghellini M.E., Miller R.M. (1997). Biosurfactants. Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant. Dis., 81: 4–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith Issa Yassin Al-Araji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Araji, L.I.Y., Rahman, R.N.Z.R.A., Basri, M. et al. Optimisation of rhamnolipids produced byPseudomonas aeruginosa 181 using Response Surface Modeling. Ann. Microbiol. 57, 571–575 (2007). https://doi.org/10.1007/BF03175357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175357

Key words