Skip to main content
  • Cultural Heritage Microbiology
  • Original Articles
  • Published:

The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms

Abstract

The influence of open porosity, water absorption capillarity, water vapour permeability, surface roughness, stone pH and chemical composition on stone bioreceptivity to phototrophic microorganisms was assessed by means of a thorough stone characterisation with subsequent artificially inoculation of limestone samples with a multi-species phototrophic culture and placing them inside a growth chamber for 90 days. A principal component analysis and an analysis of variance (ANOVA) were carried out in order to evaluate the direct relationships between stone bioreceptivity and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical/photosynthetic biomass meaning. Stone bioreceptivity, quantified by the amount of chlorophyll a and intensity of chlorophyll a fluorescence present on the stone samples after 90 days-incubation, was included in both principal components. The first component was linked to the amount of chlorophyll a and was highly and linearly associated to capillarity and roughness, and less associated with open porosity and water vapour permeability. The second component, linked to the intensity of chlorophyll a fluorescence measured on the stone surfaces, was not linearly associated with the petrophysycal properties, showing the fallibility of this in vivo chlorophyll quantification technique on the estimation of photosynthetic biomass growing on stone materials, particularly when endolithic growth occurs.

References

  • ASTM E96/E96M — 05 (2005). Standard Test Methods for Water Vapour Transmission of Materials, ASTM.

  • Bellinzoni A.M., Caneva G., Ricci S. (2003). Ecological trends in travertine colonisation by pioneer algae and plant communities. Int. Biodeter. Biodegr., 51: 203–210.

    Article  Google Scholar 

  • Burnison B.K. (1980). Modified Dimethyl Sulfoxide (DMSO) extraction for chlorophyll analysis of phytoplankton. Can. J. Fish. Aquat. Sci., 37: 729–733.

    Article  CAS  Google Scholar 

  • Cecchi G., Pantani L., Raimondi V., Tomaselli L., Lamenti G., Tiano P., Chiari R. (2000). Fluorescence lidar technique for remote sensing of stone monuments. J. Cult. Herit., 1: 29–36.

    Article  Google Scholar 

  • Chilingar G.V., Bissei H.J., Fairbridge R.W. (1967). Carbonate Rocks. Physical and Chemical Aspects. Developments in Sedimentology 9B. Elsevier, New York.

    Google Scholar 

  • Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. (1995). Microbial biofilms. Ann. Rev. Microbiol., 49: 711–745.

    Article  CAS  Google Scholar 

  • EN 1925:1999 (1999). Natural Stone Test Methods — Determination of Water Absorption Coefficient by Capillarity. European Committee for Standardization (CEN), Belgian.

  • EN 1936:1999 (1999). Natural Stone Test Method — Determination of Real Density and Apparent Density, and of Total and Open Porosity. European Committee for Standardization (CEN), Belgian.

  • Gorbushina A.A. (2007). Life on the rocks. Environ. Microbiol., 9: 1613–1631.

    Article  CAS  PubMed  Google Scholar 

  • Guillitte O. (1995). Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ., 167: 215–220.

    Article  CAS  Google Scholar 

  • Guillitte O., Dreesen R. (1995). Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials. Sci. Total Environ., 167: 365–74.

    Article  CAS  Google Scholar 

  • Koestler R., Warscheid T., Nieto F. (1996). Biodeterioration: Risk factors and their management. In: Baer N.S., Snethlage R., Eds, Saving Our Architectural Heritage — The Conservation of Historic Stone Structures. John Wiley & Sons, pp. 25–35.

  • Lorenzen C.J. (1967). Determination of chlorophyll and pheopigments: spectra photo metric equations. Limnol. Oceanogr., 12: 343–346.

    CAS  Google Scholar 

  • Miller A., Dionisio A., Macedo M.F. (2006). Primary bioreceptivity: A comparative study of different Portuguese lithotypes. Int, Biodeter. Biodegr., 57: 136–142.

    Article  CAS  Google Scholar 

  • Miller A.Z., Laiz L., Dionísio A., Macedo M.F., Saiz-Jimenez C. (2009). Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int. Biodeterior. Biodegrad, 63: 860–867

    Article  CAS  Google Scholar 

  • Miller A.Z., Leal N., Laiz L., Rogerio-Candelera M.A., Gonzalez J.M., Silva R.J.C., Dionísio A., Macedo M.F., Saiz-Jimenez C. (2010). Primary bioreceptivity of limestones used in Southern Europe monuments. In: Gomez-Heras M., Ed., Limestone in the Built Environment: Present Day Challenges for the Preservation of the Past. Geological Society, London (in press).

    Google Scholar 

  • Morton L.H.G., Greenway D.L.A., Gaylarde C.C., Surman S.B. (1998). Consideration of some implications of the resistance of biofilms to biocides. Int. Biodeter. Biodegr., 41: 247–259.

    Article  CAS  Google Scholar 

  • Normal 21/85. (1985). Permeabilità al vapor d’acqua. Commissione Normal, CNR/ICR, Roma.

  • Prakash B., Veeregowda B.M., Krishnappa G. (2003). Biofilms: A survival strategy of bacteria. Curr. Sci., 85: 1299–1307.

    Google Scholar 

  • Prieto B., Silva B. (2005). Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeter. Biodegr., 56: 206–215.

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C., Sebastian E. (1996). Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci. Total Environ., 187: 79–91.

    Article  CAS  Google Scholar 

  • Shirakawa M.A., Beech I.B., Tapper R., Cincotto M.A., Gambale W. (2003). The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. Int. Biodeter. Biodegr., 51: 83–92.

    Article  Google Scholar 

  • Shoaf W.T., Lium B.W. (1976). Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr., 21: 926–928.

    Article  CAS  Google Scholar 

  • Stal L.J., Gemerden H., Krumbein W.E. (1984). The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Meth., 2: 295–306.

    Article  CAS  Google Scholar 

  • Tailing J.F., Driver D. (1963). Some problems in the estimation of chlorophyll a in phytoplankton. In: Doty M.S., Ed., Conference of Primary Productivity Measurement, Marine and Freshwater. Atomic Energy Comm., pp. 142–146.

  • Tiano P., Accolla P., Tomaselli L. (1995). Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb. Ecol., 29: 299–309.

    Article  Google Scholar 

  • Tomaselli L., Lamenti G., Bosco M., Tiano P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int. Biodeter. Biodegr., 46: 251–258.

    Article  Google Scholar 

  • Tomaselli L., Lamenti G., Tiano P. (2002). Chlorophyll fluorescence for evaluating biocide treatments against phototrophic biodeteriogens. Ann. Microbiol., 52: 197–206.

    CAS  Google Scholar 

  • Vollenweider R., Tailing J., Westlake D., Eds (1974). A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Zélia Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A.Z., Dionísio, A., Laiz, L. et al. The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59, 705–713 (2009). https://doi.org/10.1007/BF03179212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179212

Keywords