
INTRODUCTION

Glycosidically-bound monoterpenes are important 
precursors of the varietal aroma of wine, particularly from 
Muscat-type varieties of Vitis vinifera and their genetic 
crosses. These conjugate glycosides are not volatile 
but soluble in grape must and wine. Several studies 
have shown that enzymatic hydrolysis occurs in two 
stages. In the first stage, the intersugar bond is cleaved 
by an -L-rhamnosidase, an -L-arabinofuranosidase, 
or a β-D-apiofuranosidase cleaving the (1‡6) glycosidic 
linkage, and in a second stage, the aroma compounds 
are liberated from the resulting monoglucosides by the 
action of β-glucosidases (Günata et al., 1988). Although 
-L-rhamnosidase, -L-arabinofuranosidase and β-D-

apiofuranosidase carry out the first step of the enzymatic 
process involved in the monoterpenes release, most 
studies have mainly focused on β-glucosidase (Günata et 
al., 1985; Hernandez et al., 2002; Arevalo Villena et al., 
2006). They concluded that by releasing a volatile and 
thus aromatic aglycon from its monoglucosidic complex, 
glucosidase activity plays the key role for enhancing the 
varietal aroma of wine (Rodriguez et al., 2007).

 β-Glucosidases constitute a group of well studied 
hydrolases that have been isolated from plants, bacteria, 
molds and yeasts (Lecas et al., 1991; Riou et al., 1998; 
Ugliano et al., 2003; Barbagallo et al., 2004; Ducret et al., 
2006; Rodriguez et al., 2007). However, β-glucosidases 
from grapes and other fruits as well as moulds generally 
appear to have low stability under winemaking conditions, 
i.e. they are not active between pH 3.0 to 4.0 and 
inhibited by sugars (Lecas et al., 1991; Riou et al., 1998; 
Barbagallo et al., 2004). The β-glucosidases produced from 
yeasts can be effective volatile aroma liberators. Several 
authors have reported β-glucosidase activity in wine yeast 
(Saccharomyces cerevisiae) strains that could release wine 
grape’s monoterpenyl glycosides (Fernandez-Gonzalez et 
al., 2003; Palomo et al., 2005; Van Rensburg et al., 2005). 
The β-glucosidases from other yeasts such as Candida 
molischiana and Candida wickerhamii are less sensitive to 
glucose and have higher specificity for glycosides (Günata 
et al., 1990). However, the need for a more suitable 
commercial β-glucosidase for wine processing (low pH, 
low temperature, high sugar and/or ethanol) has led us to 
search for novel β-glucosidases.
 Exogenous enzyme production is very attractive 
because it is easy and relatively inexpensive to recover and 
to purify the enzyme without major side activities. Thus, 
the discovery of highly active and robust extracellular 
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Abstract - The production and characterisation of β-glucosidase from an isolated yeast strain classified as a Pichia anomala MDD24 
were studied. The result shows that cellobiose is a good inducer for extracellular β-glucosidase production and optimum concentration 
is 1.5 percent cellobiose in yeast peptone dextrose medium. The purified β-glucosidase from Pichia anomala MDD24 exhibited a specific 
activity of 614 ± 14 U mg-1 of protein and a molecular mass of 42 kDa. This enzyme was slightly inhibited by fructose and sucrose 
in the range of 4 to 20% (w/v). An ethanol concentration between 4 and 20% (v/v) activated β-glucosidase activity, at presence 
16% (v/v) ethanol, β-glucosidases obtained maximum relative activity around 150%. The optimum pH and optimum temperature for 
β-glucosidase activity were 4.5 and 40 °C, respectively. Although the activity under the pH and temperature of wine production (pH 
3.5-4.0 and 15-20 °C) was quite low, the enzyme was stable and the relative activities were higher than commercial enzyme under 
those conditions. The extracellular β-glucosidase from Pichia anomala MDD24 makes it possible to release glucosidically-bound monot-
erpenes, which are the major contributors to floral and fruity aromas in wines from Muscat-type varieties, at final stage of alcoholic 
fermentation.
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β-glucosidases was the focus of this study. Yeasts 
producing β-glucosidases were isolated in our laboratory 
from local grapes and native fruits such as pineapple, 
star gooseberry and tamarind (Swangkeaw et al., 2006). 
Strain Pichia anomala MDD24, isolated from table grape 
(Cardinal), expressed the high β-glucosidase activity 
was selected for this study. The production, purification 
and characterisation of extracellular β-glucosidase from 
Pichia anomala MDD24 was investigated with focus on its 
potential use in commercial wine production.

MATERIALS AND METHODS

Yeast strain. A yeast strain isolated from table grapes 
grown locally in Thailand, Pichia anomala MDD24, which 
exhibits high β-glucosidase activity was used in this study 
(Swangkeaw et al., 2006). For enzyme activity and stability 
comparisons, a commercially available β-glucosidase 
preparation was used (Lallzyme BETA™ by Lallemand, 
Montreal, Canada).

Effect of cellobiose on cellular growth and 
β-glucosidase production. Pichia anomala MDD24 was 
grown on yeast malt (YM) agar (malt extract 3 g, yeast 
extract 3 g, peptone 5 g, glucose 10 g, agar 20 g, in 
1 L of distilled water), pH 5.0 and incubated at 30 °C 
for 24 h. Yeast cells were inoculated into yeast peptone 
dextrose (YPD) broth (yeast extract 10 g, peptone 20 g 
and glucose 20 g in 1 L of distilled water), pH 5.0 and 
incubated at 150 rpm and 30 °C for 15 h. One percent of 
the inoculum (approximately 106 cells. mL-1) was added to 
the YP media containing different amount of glucose and 
cellobiose in percent weight by volume which are: YPD 
(2% yeast extract, 1% peptone, 2% glucose), YPC (2% 
yeast extract, 1% peptone, 2% cellobiose), YPD + 1.5% 
C (2% yeast extract, 1% peptone, 0.5% glucose, 1.5% 
cellobiose), YPD + 1% C (2% yeast extract, 1% peptone, 
1% glucose, 1% cellobiose), YPD + 0.5% C (2% yeast 
extract, 1% peptone, 1.5% glucose, 0.5% cellobiose), 
YPD + 0.1% C (2% yeast extract, 1% peptone, 2% 
glucose, 0.1% cellobiose).Yeast cells were grown for 72 
h in incubator shaker at 150 rpm, 30 °C. Samples were 
taken for study cell growth and enzyme activity every 12 
h. Microbial cell growth was determined by using counter 
chamber under microscope. The yeast cells were collected 
by centrifugation (5000 rpm, 4 ° C, 10 min) and the 
supernatant (containing extracellular components) was 
assayed for enzyme activity.

β-Glucosidase assay. β-Glucosidase activity assay was 
performed by measuring the amount of p-nitrophenol 
(pNP) released from an artificial substrate, p-nitrophenyl-
β-D-glucopyranoside (pNPG, Sigma) (Rodriguez et al., 
2004). The 0.1 mL of enzyme solution was mixed with 
0.2 mL of 0.002 M pNPG solution in a 0.1 M citrate 
phosphate buffer at pH 5.0. The reaction mixture was 
incubated at 30 °C for 30 min and the enzymatic reaction 
was subsequently stopped by adding 2.0 mL of 0.25 M 
Na2CO3 (Merck).  The pNP released from this mixture 
was measured spectrophotometrically at 405 nm. One 
unit (U) of enzyme activity was defined as the amount of 
enzyme that released 1 nmol of pNP per min under the 
experimental conditions.

Purification of β-glucosidase. Supernatant containing 
extracellular β-glucosidase was subjected to purification in 
three steps, as follows:

Step 1: Precipitation with acetone. Refrigerated acetone 
was added to the supernatant to give a final concentration 
of 50% (v/v). The mixed solution was stored at 4 °C 
overnight. The precipitate was collected by centrifugation 
(12000 rpm, 15 min, 4 °C) and resuspended in 0.1 M citrate 
phosphate buffer (pH 5.0).

Step 2: Anion-exchange chromatography. Partial purified 
β-glucosidase (from Step 1) was loaded onto an anion-
exchanger column (1.8 cm x 9.0 cm), DEAE-cellulose 
(Sigma), equilibrated with phosphate buffer (0.05 M, pH 
7.0) at a flow rate of 0.5 mL. min-1. The unbound proteins 
were removed from the column by washing with two 
column volumes of 0.05 M citrate phosphate buffer, pH 7.0. 
A continuous gradient ranging from 0 to 1.0 M of sodium 
chloride in 0.05 M citrate phosphate buffer (pH 7.0) with 
a flow rate of 0.5 mL. min-1 was used to elute the bound 
proteins. Proteins in the column effluents were monitored 
spectrophotometrically at 280 nm.

Step 3: Ultrafiltration. The fractions from Step 2 exhibiting 
enzyme activity were pooled and concentrated by Vivaspin 
500 ultra-filtration (with a 100 kDa cut-off).
 The protein concentration was measured by the Lowry’s 
method using bovine serum albumin (BSA) as a standard 
protein (Lowry et al., 1951).

Gel electrophoresis. 
SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
(Laemmli, 1970) was used to estimate enzyme purity and 
to determine their molecular mass. The 20 μL of sample and 
5 μL of molecular mass markers (RPN800, GE Healthcare 
Amersham) ranging from 10 to 250 kDa were applied to 
a 12% (w/v) SDS-PAGE at 30 mA. The gels were stained 
using Coomassie Brilliant Blue R-250 followed by destaining 
in a methanol-acetic acid-water mix. The distance moved 
was measured and the corresponding molecular size of 
the enzymes calculated from a calibration curve of log 
molecular mass versus distance migrated.

Zymograms analysis. SDS-PAGE was carried out using 
12% (w/v) of acrylamide gel. After electrophoresis, the gel 
was washed by soaking in distilled water for 30 min then 
rinsed with citrate phosphate buffer (pH 5.0) for 30 min. 
The β-glucosidase activity was determined by overlaying 
the gel (0.5% (w/v) agar) with 1 mM 4-methylumbelliferyl-
β-D-glucoside (MUG) in citrate phosphate buffer (pH 5.0) 
for 30 min at 30 °C and visualized under UV light.

Effect of sugars and ethanol on β-glucosidase 
activity. Effects of glucose, fructose, sucrose and ethanol 
concentrations on enzyme activities were studied by using 
sugars and alcohol concentrations over a range of 0 to 20% 
(w/v). 

Effect of pH on β-glucosidase activity and stability. 
The optimum pH for β-glucosidase activity was examined 
at pH range 3.0 to 8.0 under standard assay condition 
using various buffers at 0.1 M concentrations, viz. citrate-
phosphate buffer for pH range 3.0 to 6.0 and phosphate 
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buffer for pH range 6.0 to 8.0. The enzyme activity at each 
pH was normalized as a percentage of maximum enzyme 
activity. The effect of pH on the enzyme stability was 
determined using the buffers described above. The enzyme 
solution was incubated at each pH value at 30 ° C for 1 h.

Effect of temperature on β-glucosidase activity. The 
temperature profile for β-glucosidase activity in the purified 
enzyme preparation was assessed between 20 and 70 °C in 
0.1 M citrate-phosphate buffer, pH 5.0. The enzyme activity 
at each temperature was normalized as a percentage of 
maximum enzyme activity. The temperature stability was 
investigated by incubating the purified enzyme in 0.1 M 
citrate-phosphate buffer, pH 5.0, for 1 h over a temperature 
range of 20 to 70 °C.

Kinetic parameters and substrate specificity of 
β-glucosidase enzyme. Kinetic parameters, Km and Vmax, 
were determined from a Lineweaver-Burk plot of β-glucosidase 
activity using p-nitrophenyl-β-D-glucopyranoside as substrate 
in a range of 0.2 to 2.0 mM (at pH 5.0 and 30 ° C). To assess 
glucose substrate inhibition, Ki value was calculated at glucose 
concentrations from 0 to 0.1 M.
 The p-nitrophenyl-β-D-glucopyranoside, p-nitrophenyl-β-
D-fucopyranoside, p-nitrophenyl-β-D-galactopyranoside and 
p-nitrophenyl-β-L-arabinopyranoside (all Sigma) containing 
glucosidic bonds were employed as substrates instead of 
pNPG in β-glucosidase activity assay. The pNP products 
were spectrophotometrically determined at 405 nm. The 
cellobiose (Sigma) and arbutin (Sigma) as substrates were 
determined by assaying the amount of glucose hydrolyzed 
from the reaction. Glucose concentration was measured by 
the 3,5-dinitrosalicylic acid method (Miller, 1959).
 One unit (U) of enzyme activity was defined as the 
amount of enzyme that produced 1 nmol of pNP or glucose 
per minute under the conditions of the assay.

RESULTS

Effect of cellobiose on cellular growth and 
β-glucosidase production
The effect of cellobiose concentrations on cellular growth 
and β-glucosidase production were studied when yeast 
cells were cultured in YPD, YPC, YPD + 1.5% C, YPD + 1% 
C, YPD + 0.5% C and YPD + 0.1% C, pH 5.0 at 30 °C, 150 
rpm. The results showed that Pichia anomala MDD24 grew 
well on all experimental medium (Fig. 1A). The maximum 
enzyme production from Pichia anomala MDD24 occurs 
after 36 h of cultivation and YPD + 1.5% C and YPD + 1% 
C were suitable medium for extracellular production. The 
enzyme production was increased around 3.58-3.88 times, 
compared with cultured yeast cells in YPD (no cellobiose) 
after 36 h of cultivation (Fig. 1B). The results indicated 

that maximum β-glucosidase production in supernatant 
was obtained when yeast cells were cultured in YPD plus 
cellobiose. It is probably yeast cells likely to use glucose as 
a carbon source for cellular growth and cellobiose acts as a 
carbon source for inducing β-glucosidase synthesis.

Purification of β-glucosidase
Table 1 summarizes the purification results of the 
extracellular β-glucosidase from Pichia anomala MDD24. 
The chromatogram of protein, β-glucosidases activity and 
sodium chloride gradient concentration on a DEAE-cellulose 
column are shown in Fig. 2. One main peak of unbound 
proteins was found in fraction 5 to 22. Fractions 23 to 
28 exhibited high β-glucosidase activity but low protein 
concentration. This result implies the discovery of a high 
efficiency β-glucosidase. The β-glucosidase-active fractions 
were pooled and concentrated by ultrafiltration with a 100 
kDa cut-off. The enzyme was purified to 439-fold with an 
overall yield of 15% and a high specific activity (614 ± 14 
U·mg-1 of protein). 

TABLE 1 - Purification of extracellular β-glucosidase from Pichia anomala MDD24

Step Total protein 
(mg)

Total activity 
(U)

Specific activity 
(U mg-1 of protein)

Yield 
(%)

Purification factor

Crude enzyme 6670.0 9193 1.4 100 1

50% Acetone precipitation 128.0 7912 62.0 86 44

DEAE-cellulose 5.5 2031 369.0 22 264

Ultra filtration (100 KDa) 2.2 1351 614.0 15 439
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FIG. 1 - Effect of cellobiose on cellular growth (A) and 
extracellular β-glucosidase production of Pichia 
anomala MDD24 (B) when cultured on YPD (Ø), 
YPC (Œ), YPD + 1.5% C (p), YPD + 1% C (<), 
YPD + 0.5% C (€) and YPD + 0.1% C (ò).
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Molecular mass of β-glucosidase from Pichia anomala 
MDD24
A denaturing SDS-PAGE of purified extracellular 
β-glucosidase from Pichia anomala MDD24 was 
performed. The zymogram was developed on a gel with 
4-methylumbelliferyl-β-D-glucoside as substrate and the 
methylumbelliferone released was detected via fluorescence 
under UV light. A single active protein band was shown 
and the molecular mass of this enzyme was 42 kDa when 
compared to molecular mass markers (Fig. 3).

Effect of sugars on β-glucosidase activity
The effects of sugar concentration (glucose, fructose and 
sucrose at 0 to 20%, w/v) on both β-glucosidases from 
Pichia anomala MDD24 and a commercial enzyme (Lallzyme 
BETA™) were also studied. The results are shown in Fig. 4-7. 
Increasing the glucose concentrations dramatically reduced 
the β-glucosidase activity from Pichia anomala MDD24 and 
the activity decreased around 80% in the presence of 2% 
(w/v) glucose. However, the β-glucosidase activity of the 
commercial enzyme was even more sensitive to glucose 
inhibition and the activity decreased 95% in the presence 
of 2% (w/v) glucose (Fig. 4). No activity of enzyme was 

detected when 20% (w/v) glucose was added. 
 Subsequently, the kinetics of the inhibition of pNPG 
hydrolysis by glucose was studied. A competitive inhibition 
at the intersection of the inhibition lines on the X-axis of the 
Lineweaver-Burk plot is shown in the Fig. 5. The calculated 
Ki value of glucose inhibition was 2.7 + 0.1 mM.
 The effect of fructose on β-glucosidase from Pichia 
anomala MDD24 and commercial enzyme is shown in 
Fig. 6. The β-glucosidase activity from Pichia anomala 
MDD24 was slightly decreased by fructose in the range of 
0 to 20% (w/v) and the relative activity reduced around 
15% in presence of 20% (w/v) fructose. In case of the 
commercial enzyme, the enzyme activity was dramatically 
inhibited when fructose concentrations were increased and 
the relative activity decreased around 75% in presence of 
20% (w/v) fructose.
 Figure 7 shows the effect of 0 to 20% sucrose on 
β-glucosidase activity from Pichia anomala MDD24 and 
commercial enzyme. Both β-glucosidases were inhibited by 
sucrose. However, the β-glucosidase from Pichia anomala 
MDD24 exhibited more sensitivity (55% activity remaining) 
to sucrose than the commercial enzyme (80% activity 
remaining) in presence of 20% (w/v) sucrose.
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FIG. 2 - Ion-exchange chromatography of extracellu-
lar β-glucosidase from Pichia anomala MDD24 
on DEAE-cellulose column. <: protein A280, 
ô: β-glucosidase activity, r: NaCl concentration.
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FIG. 3 - SDS-PAGE of molecular mass standard (A) and 
SDS-PAGE zymogram gel analysis of purified 
β-glucosidase from Pichia anomala MDD24 devel-
oped with the fluorogenic substrate MUG (B).
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FIG. 4 - Effect of glucose on β-glucosidase activity from 
purified extracellular β-glucosidase from Pichia 
anomala MDD24 (£) and commercial enzyme 
(p).
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FIG. 5 - Lineweaver-Burk plot of inhibitory effect of glucose on 
pNPG hydrolysis by purified extracellular β-glucosidase 
from Pichia anomala MDD24. Glucose concentrations 
used were 0.0000 M (ø), 0.0125 M (ô), 0.0250 M 
(Œ), 0.0500 M (p) and 0.1000 M (¢).
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Effect of ethanol on β-glucosidase activity
The effect of ethanol (concentration range 0 to 20%, v/v) 
on β-glucosidase activity is shown in Fig. 8. The Pichia 
anomala  MDD24 β-glucosidase activity was enhanced by 
ethanol concentrations at 4 to 20% (v/v) which is significant 
for its application in winemaking. In the presence of 
16% ethanol, β-glucosidase from Pichia anomala MDD24 
exhibited maximum relative activity (around 150% of 
relative activity). In the presence of 20% ethanol, the 
relative activity was still 140%. In contrast, the commercial 
enzyme was inhibited by ethanol and the relative activity 
was around 55% in the presence of 20% ethanol. The 
alcohol tolerance of the Pichia anomala MDD24 enzyme 
is especially advantageous if it is added during the final 
stages of alcoholic fermentation or into dry, finished wine 
(ethanol < 16%, v/v).

Effect of pH on β-glucosidase activity
The results of pH and pH stability on β-glucosidase activity 
from Pichia anomala MDD24 and commercial enzyme 
were shown in Fig. 9. Normal bell-shaped pH-activity 
profiles were seen for both enzymes. The optimum pH 
of the Pichia anomala MDD24 β-glucosidase was 4.5 and 
the pH with 50% relative activity on the acidic side and 
basic side were 3.7 and 6.0, respectively. The optimum pH 

of the commercial enzyme was 4.5 as well. The pH with 
50% relative activity on the acidic side and basic side were 
3.7 and 5.5, respectively. The β-glucosidase from Pichia 
anomala MDD24 was stable in the entire experimental pH 
range with relative activities greater than 85%. Although 
the activity of β-glucosidase from Pichia anomala MDD24 in 
wine pH was relatively low, the enzyme was stable within this 
pH range. The β-glucosidase from Pichia anomala MDD24 
appears to be rugged enough for use under commercial 
winemaking conditions.

Effect of temperature on β-glucosidase activity
The results of temperature on the enzyme activity 
and enzyme stability on the β-glucosidase from Pichia 
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FIG. 6 - Effect of fructose on β-glucosidase activity of puri-
fied extracellular β-glucosidase from Pichia anom-
ala MDD24 (£) and commercial enzyme (p).
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FIG. 7 - Effect of sucrose on β-glucosidase activity of puri-
fied extracellular β-glucosidase from Pichia anom-
ala MDD24 (£) and commercial enzyme (p).
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FIG. 8 - Effect of ethanol on β-glucosidase activity of puri-
fied extracellular β-glucosidase from Pichia anom-
ala MDD24 (£) and commercial enzyme (p).

FIG. 9 - Effect of pH on purified extracellular β-glucosidase 
activity (£) and pH stability (¢) from Pichia anom-
ala MDD24 (A) and commercial enzyme (B).
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anomala MDD24 and commercial enzyme were shown in 
Fig. 10. The maximum β-glucosidase activity from Pichia 
anomala MDD24 was obtained at temperatures between 
40 and 45 °C whereas the commercial enzyme exhibited 
maximum β-glucosidase activity at 60 to 70 °C.  After 1 
h of incubation at various temperatures, 100% relative 
activity of β-glucosidase from Pichia anomala MDD24 and 
the commercial enzyme were obtained at 20 to 35 °C and 
20 to 55 °C, respectively. At the winemaking temperature 
(20 °C), the relative activity of β-glucosidase activity from 
Pichia anomala MDD24 was around 40% whereas the 
commercial enzyme was only around 10%. 

Kinetic parameters and substrate specificity of 
β-glucosidase enzyme from Pichia anomala MDD24 
Kinetic parameters (Km and Vmax) were determined from 
Lineweaver-Burk plots. Vmax and Km of β-glucosidase from 
Pichia anomala MDD24 were 614 ± 14 U∙ mg-1 of protein 
and 0.157 ± 0.002 M, respectively.
 The substrate specificity of β-glucosidase from Pichia 
anomala MDD24 was determined for various artificial 
and natural substrates. The results showed that this 
enzyme exhibited different levels of activity against aryl-
glycopyranosides and other β-linked disaccharides (Table 
2). Highest specificity (100% relative activity) was observed 
for aryl-glucopyranoside (glucose contained glycosides) 
which is p-nitrophenyl-β-D-glucopyranoside. However 
very low activities (5 to 6%) were observed when using 
aryl-glycopyranosides (fructose, galactose or arabinose 

contained glycosides) as substrates such as p-nitrophenyl-
β-D-fucopyranoside, p-nitrophenyl-β-D-galactopyranoside, 
and p-nitrophenyl-β-L-arabinopyranoside. These results 
indicate that β-glucosidase from Pichia anomala MDD24 
is highly specific to glucose in aryl-glucopyranoside. 
Moreover, natural substrate such as arbutin, a derivative 
of hydroquinone bound to glucose, was hydrolyzed as 
efficiently as a β-linked disaccharide, cellobiose (13 to 14% 
relative activity). These results demonstrate a specificity of 
this enzyme to phenyl-glucopyranoside containing aromatic 
rings (aglycon part) and glucose.

DISCUSSION

Volatile compounds derived from grape glycosidic complexes 
make an important contribution to the varietal aroma of 
certain wine styles. The role of β-glucosidase activity in 
wine yeasts has been extensively researched. Ferreira et 
al. (2001) reported intracellular β-glucosidase-producing 
species such as Metschnikowia pulcherrima, Pichia anomala 
and Saccharomyces cerevisiae. In other studies, Candida 
entomophila (Gueguen et al., 1994), Pichia guillermondii 
(McMahond et al., 1999), Saccharomyces cerevisiae AL41 
(Restuccia et al., 2002; Quatrini et al., 2008), Candida 
pulcherrima V6 (Rodriguez et al., 2004) and Hanseniaspora 
osmophila (Arevalo Villena et al., 2005) did not show 
extracellular β-glucosidase activity in the culture medium. 
Our results show that Pichia anomala MDD24 can produce 
high extracellular β-glucosidase when it is cultured in a 
medium containing cellobiose as an inducer. Arevalo Villena et 
al. (2006) previously reported that cellobiose can induce the 
extracellular β-glucosidase production from Debaryomyces 
pseudopolymorphus which supports our findings.
 A purified extracellular β-glucosidase from Pichia 
anomala MDD24 had a specific activity of 614 ± 14 U· 
mg-1 of protein and the molecular mass of this enzyme was 
42 kDa. The similar size of β-glucosidases from Candida 
entomophila (43 kDa) and Aspergillus oryzae (40 kDa) has 
been reported by Saha and Bothast (1996) and Riou et al. 
(1998), respectively. In comparison, the molecular mass 
of β-glucosidases from other yeast species and others 
plants sources varied from 40 to 350 kDa (Gueguen et al., 
1994, 1995; Saha and Bothast, 1996; Riou et al., 1998; 
Belancic et al., 2003; Wallecha and Mishra, 2003; Arevalo 
Villena et al., 2006). Several genes are responsible for 
producing β-glucosidases in different types of organisms 
(Quatrini et al., 2008) and multiple subunits of a particular 
β-glucosidase may cause the broad range molecular mass 
observed.

TABLE 2 - Relative activity of β-glucosidase from Pichia anomala 
MDD24 on various substrates

Substrate (0.002 M) Relative activity 
(%)

p-nitrophenyl-β-D-glucopyranoside
p-nitrophenyl-β-D-fucopyranoside
p-nitrophenyl-β-D-galactopyranoside
p-nitrophenyl-β-L-arabinopyranoside
Cellobiose
Arbutin

100.0 ± 1.0
5.8 ± 1.5
5.1 ± 1.0
5.5 ± 0.7

14.0 ± 2.0
13.0 ± 2.0
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FIG. 10 - Effect of temperature on purified extracellular 
β-glucosidase activity (£) and temperature stabil-
ity (¢) from Pichia anomala MDD24 (A) and com-
mercial enzyme (B).
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 The β-glucosidase from Pichia anomala MDD24 was 
slightly inhibited by fructose and sucrose. However, 
the β-glucosidase from Pichia anomala MDD24 was 
a competitive inhibited by glucose. The tolerance of 
β-glucosidase activity from Pichia anomala MDD24 towards 
fructose may provide a major advantage over existing 
commercial enzyme preparations. 
 β-Glucosidase from the grape itself and commercial 
β-glucosidase prepared from Aspergillus niger are 
inhibited by ethanol (Mateo and Di Stefano, 1997; Aryan 
et al., 1987; Barbagallo et al., 2004). Ethanol also inhibits 
β-glucosidase activities produced from other yeasts 
species such as Hanseniaspora uvarum (Barbagallo et 
al., 2004), Zygosaccharomyces bailii (Gueguen et al., 
1995), Debaryomyces vanrijiae (Belancic et al., 2003), 
Brettanomyces spp., Candida oleophila, Debaryomyces 
polymorphus and Debaryomyces pseudopolymorphus 
(Cordero Otero et al., 2003), Candida guilliermondii, 
Candida pulcherrima and Kloeckera apiculata (Rodriguez 
et al., 2007). Conversely, it has been reported that alcohol 
stimulates β-glucosidase activity in some yeast strains such 
as Saccharomyces cerevisiae (Spagna et al., 2002a) and 
Pichia anomala (Spagna et al., 2002b). This phenomenon 
is similar to our observation that β-glucosidase from 
Pichia anomala MDD24 was actually stimulated by 
ethanol. According to our result, this may be due to the 
glycosyl transferase activity of the enzyme (Pemberton et 
al., 1980). The authors showed that ethanol acts as an 
acceptor for an intermediary “glycosyl” cation and it is 
more efficient than water because of stronger nucleophillic 
properties. This result suggests that the Pichia anomala 
MDD24 β-glucosidase would be an advantage when it is 
added in the final states of alcoholic fermentation (at the 
highest concentration of ethanol).
 The optimum pH of β-glucosidase activity from Pichia 
anomala MDD24 as well as the commercial enzyme was 
4.5 which was similar to enzymes from Aspergillus niger, 
Hanseniaspora uvarum Y8 (Barbagallo et al., 2004) and 
Saccharomyces cerevisiae AL41 (Spagna et al., 2002a). 
At pH 3.5, the average pH found in grape juices and 
wines, most β-glucosidases from Zygosaccharomyces 
bailii (Gueguen et al., 1995), Candida peltata Y-6888 
(Saha and Bothast, 1996), Pichia anomala AL112 (Spagna 
et al., 2002b), Hanseniaspora uvarum Y8 and CBS314 
(Barbagallo et al., 2004), Candida guilliermondii V2 and 
V5 (Rodriguez et al., 2007), Aspergillus oryzae CBS12559 
(Riou et al., 1998) exhibited less than 30% of their 
activities. Alternatively, at this pH, the β-glucosidase 
activity from Pichia anomala MDD24 was still at 35% of 
maximum activity and the enzyme was physiologically 
stable at this pH.
 The optimum temperature of β-glucosidase activity 
produced from other microorganisms has been reported 
between 20  and 40 °C (Rosi et al., 1994; Belancic et 
al., 2003). At optimal temperature of winemaking (15 to 
20 ° C), the β-glucosidase from Pichia anomala MDD24 
was observed at up to 40% of maximum activity and was 
stable at this temperature. In comparison, the commercial 
enzyme had maximal activity at 60 ° C and kept less 
than 10% of maximum activity at typical fermentation 
temperature.
 β-Glucosidases have been divided into three groups 
on the basis of substrate-specificity: aryl-β-glucosidases 
(which hydrolyze aryl-β-glucosides exclusively), 

cellobiases (oligosaccharides only) and broad-specificity 
β-glucosidases (showing activity towards both substrate 
types), the most commonly observed group in cellulolytic 
microorganisms (Gueguen et al., 1994, 1997). Many 
β-glucosidases from fungal sources, e.g. Aspergillus oryzae 
(Riou et al., 1998), Melanocarpus sp. (Kaur et al., 2007) 
and yeast sources, e.g. Candida entomophila (Gueguen et 
al., 1994), Pichia etchellsii (Wallecha and Mishra, 2003) 
have been categorized in the broad-specificity glucosidase 
group. However, the β-glucosidase from Pichia anomala 
MDD24 revealed a specificity on phenyl-glucopyranoside 
that is aryl-β-glucoside group.
 In conclusion, we report the discovery and 
characterization of an extracellular β-glucosidase from 
Pichia anomala MDD24. Its application in commercial wine 
production could lead to a more efficient and specific release 
of aromatic monoterpenes in Muscat-type grape juices and 
wines. While the inhibitory effect of glucose precludes its 
use in fruit juices, its unique tolerances towards fructose, 
the main sugar left at the end of the fermentation, as 
well as ethanol, may make this β-glucosidase superior to 
currently available technical enzymes.
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