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Abstract In order to qualify the germicidal efficacy of
ultraviolet (UV) disinfection system, we generally determine
the reduction of viable bacteria after UV-C irradiation.
However, the simple count of viable and cultivable bacteria
in usual media cannot reflect whether or not the UV dose
applied to disinfect water is sufficient to inactivate bacteria.
Indeed, there is a bacterial mix in the UV-treated water: dead
bacteria, viable and cultivable bacteria and viable but
noncultivable bacteria (VBNC). The third type of bacteria
can constitute a potential risk for public health. In fact, VBNC
bacteria can be active and cause diseases. Consequently, the
combination of a conventional method used to measure
colony-forming ability after UV disinfection and the determi-
nation of adsorption constants of a lytic Qβ phage in relation
to irradiated host cells by an increased UV dose (Escherichia
coli ATCC 13965) allows the detection of active bacteria,
which lose their cultivability in usual growth media, but
keep the phage susceptibility.

Keywords UV-inactivation . VBNC bacteria . Lytic phage .

Active bacteria

Introduction

Ultraviolet-C (UV-C) radiation has been suggested as one
of the successful disinfection practices for water treatment.
Therefore, UV-sterilization has become a practical solution
for safe disinfection of water. The effectiveness of UV light
in biological inactivation arises primarily from the fact that
DNA molecules absorb UV photons between 200 and
300 nm, with peak absorption at 254 nm (Jeffrey et al.
1990). This absorption creates damage in the DNA by
altering the nucleotide base pairing, thereby creating new
linkages between adjacent nucleotides on the same DNA
strand. This damage occurs particularly between pyrimidine
bases. Two types of mutagenic lesions in DNA were
determined: cyclobutane pyrimidine dimers (CPD) formed
between the C-4 and C-5 positions of adjacent thymidine or
cytosine residues, and pyrimidine (6-4) pyrimidone (6-4)
photoproducts formed between the C6 and C4 position of
adjacent pyrimidine residues, most often between T-C and
C-C residues (Zimmer and Slawson 2002). If the damage
goes unrepaired, the accumulation of DNA photoproducts
can be lethal to cells through the blockage of DNA
replication and RNA transcription, which ultimately result
in reproductive cell death. However, UV disinfection is
known to have some problems, one of them being
reactivation. Biological systems have evolved mechanisms
to appropriately respond to environmental stresses that can
damage proteins and DNA (Arrieta et al. 2000). In this
case, to respond to nonlethal or moderate germicidal dose,
bacteria generally possess molecular mechanisms to restore
DNA lesions (Lindauer and Darby 1994).

Most bacteria repair these lesions in two ways: light-
dependent photoreactivation catalyzed by an enzyme name
photolyase, and light-independent restore mechanisms such as
nucleotide excision repair (Liltved and Landfald 1996). The
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goal is the production of safe water; thus, after disinfection of
water, health protection programs require to estimate the
level of contamination of treated water (Jeffrey et al. 1990).

The enumeration of various indicator bacteria is usually
used to evaluate the fecal contamination of water and the
sanitary risk associated with various water utilizations
(bathing water, production of drinking water, etc.) (Armisen
and Servais 2004). Among a variety of indicator bacteria,
Escherichia coli, a type of fecal coliform bacteria, is
commonly found in the intestines of animals and humans
(Pommepuy et al. 1996). The abundance of E. coli was
shown to be more related to the presence of pathogenic
bacteria. Thus, accurate enumeration of E. coli is important
to assess microbiological water quality (Armisen and
Servais 2004; Sharifi-Yazdi and Darghahi 2006). Classical
methods for enumerating E. coli are based on culture in
liquid (most probable number, MPN) or solid (plate count)
media (Byrd and Colwell 1991). Nevertheless, it is well
known that the bacteria and especially the fecal ones lose
their cultivability in culture media while preserving their
viability (Chedad and Assobhei 2007). It should be noted
that viable but nonculturable (VBNC) bacteria in the treated
water could maintain their virulence; consequently, the simple
estimation of viable bacteria, before and after water treatment,
is not enough to limit the sanitary risk related to maintained
virulence (Colwell et al. 1996; Besnard et al. 2002).

The aim of the present study was to determine the
relationship between bacteria (E. coli ATCC 13965) and
lytic bacteriophage (Qβ phage), in order to detect the
presence of active UV-irradiated bacteria undetected in
usual culture media.

Materials and methods

Bacterial strain and bacteriophage

The RNA F-specific coliphage Qβ phage and its host, E. coli,
were obtained from the American Type Culture Collection
(23631-B1 and 13965, respectively). Qβ phage has been
commonly recommended for modeling viral behavior in
water (Espinosa et al. 2009) and has also been used in
biological actinometry (Biodosimetry) (Fallon et al. 2007).
This bio-assay was based on the dose–response relationship
of an indicator microorganism to back-calculate UV dose
based on inactivation data.

In this study, we used Qβ phage as an indicator of active
VBNC bacteria after UV irradiation.

Continuous UV-C irradiation

A continuous low pressure (LP) system containing mono-
chromatic output lamp at 254 nm was used. The irradiance

of the LP lamp was measured using potassium iodide/iodate
actinometry (KI/KIO3) according to Rahn et al. (2003).

Using KI actinometry, the molar absorption coefficient
was ε=27.7 M−1 cm−1 in a 0.6 M KI/0.1 M KIO3 solution,
quantum yield at 254 nm was 0.72 for the LP lamp, sample
volume 20 ml, and the area of the Petri dish used for
irradiation was 19.6 cm2. The experience was performed in
triplicate. The UV dose measured by chemical actinometry
was equal to 0.5 mJ/cm2.

UV-irradiated bacteria

For dose/survival and reactivation experiments, the strain of
E. coli was cultured in Luria-Bertani broth (LB). Bacterial
suspension was diluted in saline Phosphate Buffer (PBS) in
order to obtain a concentration ranged from 1×105 to 1×
106 bacteria per ml, and the resulting preparations were
used for irradiation experiments. A volume of 20 ml of the
suspended culture was transferred into a standard Petri dish
for exposure to the continuous UV-light treatment. The
samples were exposed to the UV-light for chosen increasing
UV dose (0, 45, 60, 90, and 120 mJ/cm2). Following
exposure, treated and control samples were enumerated on
LB agar plates.

Viable cell counts

Viable cell counts were taken before and immediately after
UV exposure. A 100-µl portion of each cell suspension was
removed in order to prepare serial dilutions in PBS buffer.
Portions (100 µl) of the appropriate serial dilutions were
spread in duplicate onto LB agar before scoring for
survivors. The number of colony-forming units (CFU/ml)
were determined after 24 h of incubation at 37°C. The
fraction of viable and cultivable bacteria was calculated by
dividing the number of CFU in the UV-treated sample (N)
by the number of CFU in the unirradiated sample at time
zero (N0).

Qβ phage replication experiments

To investigate the presence of active bacteria in the
UV-irradiated sample, Qβ phage adsorption experiments
were performed with a modification of the procedure of
Woody and Cliver (1995). UV-irradiated suspensions of
host cells were infected with Qβ phage. After infection,
and at the indicated time intervals (every 5 min after
infection), 0.1 ml was removed from different suspensions,
and after a cumulative dilution, 0.1 ml samples of each
dilution of samples was periodically assayed to determine
the kinetic of phage adsorption to the host cell. The
phage titration was determined using the double-layer
agar plate method.
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Qβ phage replication experiments were determined at
time zero, before UV irradiation, using initial cell and
phage densities to know the optimal timing of phage
adsorption.

In this work, we repeated all experiments more than 3
times, and we have chosen to work with average values.
This choice was based on the use of different mathematical
models to simulate the Qβ phage’s replication and to
determine the phage growth’s kinetic parameters.

Simulating Qβ phage’s growth

Our purpose in employing simulations is to obtain predictions
of phage population growth rates and to determine the impact
of irradiation condition of host bacteria on phage population
growth rates.

Our approach to modeling phage adsorption is equivalent
to the model employed by Levin et al. (1977) and reported by
Abedon et al. (2001). The modeling of Qβ phage adsorption
was applied to investigate the impact of host cell irradiation
condition in the phage adsorption rates. The adsorption
constant (k), and the density of uninfected host cells (N′)
were determined and compared to a control test determined
at time zero using initial cell and phage densities. In
addition, the adsorption time (tA) was determined according
to Wang et al. (1996).

Using the mathematical models adopted by Wang et al.
(1996) and Abedon et al. (2001), we can quantify the
adsorption rates of Qβ phage in relationship to the different
UV treatment dose of host cell. Consequently, the compar-
ison and the analysis of different adsorption kinetics
constants determined after infection of irradiated host cells
by Qβ phage allow the detection of active bacteria that lose
the viability and cultivability in usual media.

Titration of Qβ phage

Irradiated cell–phage suspensions were incubated at 37°C.
After 18 h, the cell-phage mixtures were filter sterilized
using a 0.45-µm syringe filter to obtain free phage in the
filtrate, and the supernatants were diluted in order to
determine the titration of phage. The phage titer was
determined by using a standard double-layer agar plate.
After appropriate dilution with PBS buffer, 0.1 ml of phage
sample and 0.1 ml of actively growing culture of E. coli
(106 CFU/ml) were added to 3 ml of soft agar (maintained
at 48°C). The mixture was overlaid on TSA agar plates and
incubated for 18 h at 37°C to enumerate plaques. The phage
titration experiment was determined at time zero using
initial unirradiated cells and phage densities. All phage
adsorption experiments were done more than three times,
to verify the sensibility and the reproducibility of this
method.

Results and discussion

The inactivation kinetic of Escherichia coli:
UV Dose-Response

The intrinsic kinetics of bacterial inactivation as a result of
exposure to UV radiation are a function of UV-C dose,
expressed as the product of germicidal radiation intensity (I )
and exposure time (t).

Several mathematical relationships have been developed
to describe bacterial responses to UV irradiation. UV dose
plays an important role in all bacterial inactivation models
for UV irradiation (Qualls et al. 1997). An inactivation
graph was constructed by plotting the logarithm of the
fraction of surviving bacteria versus UV dose (Fig. 1.).

To determine the graph parameters, the model of Chick–
Watson was used:

N=N0 ¼ A exp �kIntð Þ
where N0 is the number of viable cultivable bacteria before
exposure to UV light, N is the number of viable cultivable
bacteria after exposure to UV light at time t, A is the event
corresponding to microorganism retaining viability following
UV irradiation, k is the coefficient of lethality, I is the the
UV-C intensity expressed in mW/cm2, t is exposure time (s),
n is the threshold level of series-event model, and
n=1 for the first order Chick–Watson model. The constants
k and A were determined by linear regression.

The inactivation kinetic (dose/response) according to
the Chick–Watson model shows that a UV dose equal to
45 mJ/cm2 corresponds to approximately 4 U-log10 units of
inactivation, or 99.99% of inactivation of colony-forming
ability. This value is equal of the UV dose usually used
in Europe and the USA for the disinfection of drinking
water. According to the literature, 40 mJ/cm2 is sufficient

Fig. 1 Kinetics of Escherichia coli ATCC 13965 inactivation
following exposure to UV-C irradiation according to Chick-Watson
model. y axis: reduction = N/N0 where N is the number of viable and
cultivable cell after exposure to UV-C irradiation and N0is the number
of viable and cultivable cell before exposure to UV light; x axis = Int
where I is UV intensity (mW/cm2), t is exposition time (s), n is
threshold level of series-event model, and n=1 for the first order
Chick–Watson model where error bars are not shown; differences
between duplicates were not detected
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to inactivate 4 U-log10 of pathogenic bacteria such as
Legionella, enteric viruses, Cryptosporidium oocysts, and
Giardia cysts (US-EPA 2003).

Exploitation of VBNC bacteria after UV irradiation

According to the result from the inactivation kinetic, E. coli
lose the colony-forming ability after exposure to 45 mJ/cm2

of UV light (nondetected CFU/ml; ND). Thus, we can
conclude that UV irradiation was effective in reducing the
number of indicator bacteria. But it is known that the loss
of bacterial cultivability is not synonymous with death of
bacteria. The question is: how can we test the presence of
active but noncultivable bacteria in irradiated samples?

Detection of active Escherichia coli ATCC 13965
after UV-C irradiation: study of Qβ phage adsorption
in presence of VBNC host cell

The aim of this study was to examine the potential
replication of the phage infecting E. coli irradiated by
increasing UV doses. Each UV dose allows a growth state
of host bacteria in culture media.

Based on UV-inactivation’s kinetic curve of E. coli, the
exposition of bacteria to UV dose equal to 45 mJ/cm2 can
allow the inactivation of 99.99% of bacteria. However, the
irradiation of host bacteria by a UV doses equal to 60 and
90 mJ/cm2 can allow the loss of cultivability of E. coli and
the entry in the viable but noncultivable (VBNC) state with
and without subsequent reactivation, respectively. Finally, the
exposure of host bacteria by a higher UV dose (120 mJ/cm2),
a sub-lethal UV irradiation, can indicate the ability of lytic
phage to detect active bacteria persisting in the irradiated
suspension.

Series of experiments were conducted to determine, in
part, the detection of active bacteria present in the irradiated
suspension, and on the another hand, to reveal the
capability of VBNC bacteria to support phage replication.
Furthermore, we examined how the phage replication was
influenced by the physiological state of bacterial host cells.

Study of Qβ phage adsorption to the host cells:
irradiated and unirradiated host cells

Data presented in Fig. 2 indicate the presence of bacteria in
good phage susceptibility conditions. We can note that
there are no inhibitory effects on the first step of phage
replication (the adsorption phase), despite the irradiation of
host cells by an increased UV-C dose.

�Fig. 2 Qβ phage adsorption kinetics dependence on host UV
irradiation state (UV irradiation by 0, 45, 60, 90, and 120 mJ/cm2).
P(t) = the free-phage concentration at time (t), P0 = the initiated
free-phage concentration at time zero (t0)
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The modelling of phage adsorption was determined
according to the model employed by Levin et al. (1977):

PðtÞ ¼ P0e
�k 0 �N 0 �t ¼ P0 1� k 0 � N 0 � tð Þ

where P0 is the initiated free-phage concentration at t0,
P(t) is the free-phage concentration at time t, k′ is the phage
adsorption constant, and N′ is the density of uninfected host
cells.

The adsorption constant k′, determined via analysis of the
adsorption curves (Fig. 2), showed that the level of phage
adsorption to host cells decrease with the increase of UV
dose (Table 1). The changes in the phage growth parameters
(decline of adsorption phage, elongation of latent period)
were probably due to the changes of host quality (Woody
and Cliver 1996).

For example, after inactivation of 99.99% of host bacteria,
the Qβ phage replication’s kinetic parameters, are not
affected. Although the phage adsorption rate, determined
after exposure of host cell to UV dose equal to 120 mJ/cm2, is
lower than 6.5-fold compared to the adsorption constant
determined at time zero before UV irradiation. In this case,
the decrease of phage adsorption rate can be explained by
the fact that the exposure of host bacteria to a sublethal dose
can contribute to the disintegration or modification of
bacteria cell caused by the bactericidal effect of UV light
(Makarova et al. 2000).

Furthermore, it is well known that the phage adsorption
rates are proportional to host cell surface area (Woody and
Cliver 1996); thereby, bacteria can change the morphological
shape as a strategy of bio-protection against stress and for
survival in a hostile environment (Langer and Hengge-
Aronis 1991). In our case, to escape or to minimize the
germicidal effect of UV irradiation, bacteria have consequently
changed their shape ; this change can have an effect on the
phage adsorption by stopping or prolonging the timing of
phage adsorption to the host cell.

Determination of uninfected bacteria

After fixing the timing of optimal phage adsorption at
45 min based on the interaction of initial cell and phage

densities (at time zero before UV radiation), it was possible
to achieve reasonable simulation of the number of
uninfected host cells after each was irradiated by increased
UV dose samples according to the model of Levin et al.
(1977).

The presumed density of uninfected cells can directly
reflect the number of UV-inactivated bacteria compared
with time zero before UV irradiation (maximum level of
phage infectivity). The results had shown that the uninfected
cells (N′) increase in alliance with the irradiation condition of
host bacteria (Table 1). In fact, when we increase the UV
exposure dose, the density of uninfected bacteria increases.
The decrease of phage infectivity is related to the
engagement of bacteria in different strategies of survival
and mechanisms of repair (photo-reactivation and or dark
repair).

According to Wang et al. (1996), in these explicit
calculations, we define the time adsorption (tA) as the
mean free time (MFT), tA=(k′N′)

−1. The MFT represents the
average length of time a cohort of free phages requires to
adsorb to host cells expressed by min/host cell. Note that
we have chosen the time 15 min to determine the initial
uninfected host cells density, and we fixed this host cells
density as an initial density of viable but noncultivable
bacteria (VBNC) infected by a constant amount of phage
("Titration of Qβ phage").

The results in Table 1 show a difference in the timing
required for the Qβ phage to be attached in the host cell.
The extension of adsorption time (tA) is directly related to
the quality of host cells. This result supports previous
observations related to the decrease of adsorption kinetic
constant (k′) and the increase of uninfected hosts cells. In
fact, the fluctuations of phage growth parameters were
directly caused by the change in host quality and, therefore,
by the pressure of selection of good quality of host cells by
the phage (Wang et al. 1996; Abedon et al. 2003).

Table 1 Determination of different parameters related to Qβ phage
growth kinetic

Parametera UV dose (mJ/cm2)

0 45 60 90 120

K′ 1.12 0.9 0.3 0.19 0.17

N′ 0.019 0.024 0.066 0.0818 0.081

tA 0.06 0.07 0.22 0.35 0.92

aK′ Phage adsorption constant (ml/min), N′ number of uninfected cells
at time 15 min (cell/ml), tA adsorption time (min/host cell)

Fig. 3 Qβ phage titers dependence on host UV irradiation state after
18 h of incubation at 37°C. P0 is the initiated free-phage concentration
at time zero (t0), P′ is the Qβ phage titers after 18 h of incubation at
37°C in the presence of irradiated Escherichia coli by increased UV
dose (0, 45, 60, 90, and 120 mJ/cm2)
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Under UV exposure conditions, stressed bacteria has been
converted in the viable but noncultivable state as a strategy of
protection against the germicide effect of ultraviolet light (to
economize on energy, induction of repair mechanisms, inhibit
the generation of mutant bacteria, etc.).

The titration of Qβ phage took place after 18 h of
incubation at 37°C in the presence of susceptible host cells
after irradiation by increasing UV dose. The titer of
bacteriophage-infected host cells after UV irradiation by a
dose equal to 45, 60, 90, and 120 mJ/cm2 is compared to the
control suspension (Fig. 3).

The infection of different irradiated suspensions by Qβ
phage allowed the detection of the presence or absence of
active bacteria. In fact, despite the loss of the bacteria’s
cultivability in usual growth media after UV irradiation, and
the change of the phage replication cycle (extension of
latent period, decrease in the adsorption constant, etc.), a
fraction of VBNC bacteria can allow a replication of phage
with an enhancement in the phage titers after 18 h of
incubation at 37°C.

Compared to the control test (unirradiated host cell and
the initial amount of Qβ phage), we noted different levels
of progeny phage release in relation to bacterial UV-C
irradiation conditions (Fig. 3). The amount of phages
released by irradiated host cells by 45 mJ/cm2 UV dose is
higher than the amount of phages released by E. coli
irradiated by 60, 90, and 120 mJ/cm2 UV doses. The
decrease in the level of phage infectivity and release of
maturated Qβ progeny phage is directly related to the
decrease of active bacteria’s density caused by the
bactericidal effect of UV irradiation.

We can conclude that a fraction of VBNC bacteria was
able to allow the replication cycle of Qβ phage despite their
loss of cultivability in usual media. We can classify this part
of the bacteria in the category of active but noncultivable
(ABNC) bacteria.

Conclusion

We can conclude that phage growth kinetic parameters
defining phage–host cell relationships accommodates changes
in host cell quality (damaged cells by UV light, host-
morphological change, accumulation of photoproduct, etc).

Based on the phage replication proprieties, the obligatory
intracellular phage replication, we can use phage as a
biological materiel, easy to detect and to manipulate, for the
estimation of water quality after disinfection and the detection
of active indicator bacteria such as E. coli noncultivable in
usual media.

The perspective of this study is to select polyspecific
phages of a large bacterial infectivity spectrum, especially
for pathogenic bacteria, and to standardize the technique

developed in this study to control the bacteriological quality
of water to guarantee the production of safe water.
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