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Abstract Nisin is a promising alternative to chemical
preservatives for use as a natural biopreservative in
foods. This bacteriocin has also potential biomedical
applications. Lactic acid bacteria are commonly cultivat-
ed in expensive standard complex media. We have
evaluated the cell growth and nisin production of
Lactococcus lactis in a low-cost natural medium consist-
ing of diluted skimmed milk in a 2-L bioreactor. The
assays were performed at 30°C for 56 h, at varying
agitation speeds and airflow rates: (1) 200 rpm (no airflow,
and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no
airflow, and airflow at 0.5 L/min). Nisin activity was
evaluated using agar diffusion assays. The highest nisin
concentration, 49.88 mg/L (3.3 log AU/mL or
1,995.29 AU/mL), was obtained at 16 h of culture,
200 rpm and no airflow (kLa=5.29×10

−3). These results
show that a cultivation medium composed of diluted

skimmed milk supports cell growth to facilitate nisin
biosynthesis.
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Introduction

The bacteriocin nisin, first identified in 1928, is produced
by certain strains of Lactococcus lactis subsp. lactis (Bhatti
et al. 2004). Nisin has an antimicrobial activity spectrum
against Gram-positive microorganisms, including bacterial
spores, but shows little or no activity against Gram-negative
bacteria, yeasts and fungi (Millette et al. 2004). However,
Gram-negative cells can be sensitized with a chelating
agent that alters the permeability of the outer membrane of
these cells. Due to its antimicrobial properties, nisin was the
first natural peptide granted a “generally recognized as safe
(GRAS)” status in the USA, for use in processed cheese,
and its application in various food products is allowed in
several countries (Von Staszewski and Jagus 2008). The
GRAS status of lactic acid bacteria (LAB) underlines their
increasing use in traditional foods and in an expanding
range of novel foods and products designed to have specific
nutritional or other health-enhancing benefits (nutraceuti-
cals, prebiotics, probiotics, etc) (Panesar et al. 2007).
Important advances in this field include the use of nisin in
the development of antimicrobial packaging (Guiga et al.
2009) and liposome encapsulation (Colas et al. 2007).
Research has also revealed the potential of nisin as a
therapeutic agent, such as in cattle mastitis (Cao et al.
2007), human ulcer caused by Helicobacter pylori (Flôres
and Alegre 2001) and topical skin infections (Guerra and
Castro 2002). It is also used for treating staphylococcal
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mastitis in women (Fernández et al. 2008) and in cosmetic
products (Liu et al. 2004) and as a vaginal contraceptive
(Gupta et al. 2008). It worth noting that L. lactis has a
promising application as an antigen delivery vehicle for the
development of live mucosal vaccines as well as a cell
factory for heterologous protein production with important
biotechnological uses (Margolles et al. 2009; Nouaille et al.
2003).

The production of LAB and, more specifically, bacterio-
cin production is a very fastidious process due to the need
for rich growth media containing nutrients, such as
carbohydrates, nucleic acids, minerals, vitamins and,
mainly, amino acids, proteins or protein hydrolysates
(Vásquez and Murado 2008). In bench-scale studies, LAB
are commonly cultivated in standard laboratory media [e.g.
(de Man, Rogosa, Sharpe) MRS and M17 broth], but the
use of these media is prohibitively expensive in large-scale
production systems. In this latter case, high-cost complex
culture media should be replaced by low-cost media to
improve the commercial use of the biomolecule (Bernárdez
et al. 2008; Guerra et al. 2007). Trinetta et al. (2008)
formulated a culture media that was more economical than
MRS broth, increasing sakacin A production from 180 to
480 AU/mL. Ostlie et al. (2005) evaluated the effect of
temperature (20, 30, 37 and 45°C) on the growth and
metabolism of six probiotic strains in an ultrahigh
temperature (UHT) semi-skimmed milk medium supple-
mented with nutrients for 48 h. Their results showed that
the stability of the number of viable cells was best at 30
and 37°C. Other researchers have focused on the use of
industrial waste, such as milk whey (Arauz et al. 2008),
fermented barley extract (Furuta et al. 2008) and mussel-
processing wastes (Guerra et al. 2005), as substrates to
generate high-valued bioproducts and also to contribute to
decreasing environment pollution.

The development of applications for nisin in food and
pharmaceutical industries is limited by the need for high-
cost culture media, which eventually results in a high-cost
product. Commercially available media are expensive,
which has led researchers to search for cheaper formula-
tions for bacteriocin production (Arauz et al. 2009; Vásquez
et al. 2006). Bovine milk is a naturally complex medium
with a high nutritive content, providing an excellent
substrate for L. lactis growth and extracellular nisin release
into the medium.

The objectives of our study were to evaluate the
growth and nisin production of L. lactis subsp. lactis
ATCC 11454 cells in a bioreactor containing UHT diluted
skimmed milk as a low-cost alternative medium. The
assays were performed at varying agitation and airflow
rates in batch cultivations, namely, 100 rpm (no airflow
rate, 0.5 L/min) and 200 rpm (no airflow rate, 0.5, 1.0 and
2.0 L/min).

Material and methods

Bacterial strains and media

The nisin-producing strain of L. lactis subsp. lactis ATCC
11454 and the nisin-bioindicator organism strain of Lacto-
bacillus sakei ATCC 15521 were used in this study. Both
microorganisms were maintained as frozen stock at −80°C
in MRS broth (Difco, Detroit, MI) with 40% (v/v) glycerol.
Distilled water was sterilized in bioreactor at 121°C for 15
min. UHT skimmed milk (Parmalat, São Paulo, Brazil) was
heated at 111°C for 5 min in an autoclave. This medium was
aseptically added to the distilled water inside the bioreactor
[skimmed milk at 25% of its standard concentration (2.27
gtotal solids)] . All chemicals were of analytical grade.

Batch cultures

The batch cultures were initiated by inoculating 160 mL of
MRS broth with 300 μL (107 CFU/mL) of L. lactis cells in
a 500-mL Erlenmeyer flask. The flask was then agitated on
a rotary shaker at 100 rpm and 30±0.5°C for 36 h. A 10-
mL aliquot of inoculum was removed for analysis, and
remaining flask contents (150 mL) were used to inoculate a
2-L bioreactor (Bioflo 110; New Brunswick Co, NJ)
containing 1.5 L diluted skimmed milk (pH 6.7).

Foams were controlled by adding 0.3 mL dimethylpoly-
siloxane (Sigma-Aldrich, Saint Louis, MO). The operating
conditions were: (1) agitation at 100 rpm (airflow rate
0.5 L/min and no airflow) and (2) agitation at 200 rpm
(airflow rate 0.5, 1.0 and 2.0 L/min, respectively, and no
airflow), with the pH uncontrolled. The total cultivation
time was 52 h at 30±0.5°C in order to observe variations in
nisin activity associated with the various growth conditions.
Samples were withdrawn at regular intervals to perform the
analytical determinations. In order to verify possible
contaminations, microscopic examinations were carried
out using the Gram technique.

Analytical methods

Colony-forming units

Colony-forming units were determined by counting the
number of colonies grown in MRS agar (Difco) at 30±
0.5°C for 24 h, relative to a sample previously diluted
(10−1–10−7) sample in 0.85% saline solution (w/v).

Dissolved oxygen

Dissolved oxygen concentration was detected by an online
polarographic probe (model InPro 6110/220; Mettler-
Toledo, Alphaville-Barueri, Brazil) installed and sterilized
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together with the vessel. The oxygen probe was calibrated
by sparging the medium with air (dissolved oxygen tension
100%) and nitrogen (dissolved oxygen tension 0%); the
100% saturation value was based on air. The saturation
point (100%) was calibrated 1 h before inoculation under
established conditions (30±0.5°C, 200 rpm, 1.5 L/min
airflow rate).

Mass transfer coefficient determination

The static gassing out method (Pirt 1975) was used to
determine the mass transfer coefficient (kLa). The oxygen
concentration of the solution was lowered by gassing the
liquid out with nitrogen gas (oxygen free). Afterwards,
aeration was initiated at a constant airflow rate, and the
increase in dissolved oxygen tension was monitored using a
polarographic probe.

pH monitoring

The pH of the medium during cultivations was measured by
an online sterilizable electrode (model 405-DPAS-SC-K8S/
225; Mettler-Toledo) and confirmed by using an external
pH meter (Mettler Toledo model MPC0227).

Nisin activity determination

The activity of expressed nisin was evaluated using the
agar diffusion method (Pongtharangkul and Demirci
2004). The cell suspension was first centrifuged at
13,200 g for 10 min at 10°C. The titer of nisin expressed
and released in the culture media under the different
conditions was then quantified and expressed in arbitrary
units (AU/mL of medium) by agar diffusion (Penna et al.
2005) using L. sakei as the sensitive microorganism. L.
sakei was grown in MRS broth with shaking (100 rpm at
30°C for 24 h).

The L. sakei bioassay agar plates consisted of 0.8%
Bacto agar (Difco) and MRS broth. After autoclaving, the
agar medium (100 mL) was cooled to 40°C and inoculated
with 600 μL (OD660=0.4) of the 24-h culture (50 mL) of
the corresponding nisin-sensitive microorganism. A 20-mL
aliquot of agar was aseptically poured into sterile petri
dishes (100×15 mm) and, once the agar had solidified, 3-
mm wells were cut out using a sterile pipe (total diameter 5
mm). From every sample, 50 μL of culture supernatant
from the centrifuged L. lactis suspension was transferred
into the wells on the surface of L. sakei-inoculated agar.
The plates, not inverted, were incubated at 30°C for 24 h.
The diameter of the growth inhibition zone was then
measured in four directions, and the average diameter
(±5 mm) of the halos was linked to the arbitrary activities
(AU/mL) of nisin formed by the respective cultures. The

results were compared to a commercial nisin standard
curve.

For the standard curve, a stock solution of nisin was
prepared by adding 1 g of commercial nisin (Nisin, Sigma,
St. Louis, MO; standard at an activity of 106 AU,
containing 25,000 μg nisin/g) to 10 mL of 0.02 M HCl.
The relation between arbitrary units (AU/mL) and halo
diameter (H, mm) was determined by concentrations of
standard nisin (101–105 AU/mL) and the activity of nisin
from the grown cells. Based on the calibration curves
between arbitrary units per milliliter and international units
per milliliter, 1.1±0.2 AU corresponded to 1.0 IU (40 IU=
1 μg of pure nisin A). The activity of nisin expressed in
arbitrary units per milliliter was converted to milligrams per
liters through the relation: nisin (mg/L)=(z × 0.025), where
z = AU/mL and 0.025 is a conversion value related to 2.5%
pure nisin.

Protein analysis

Residual protein levels were determinated using a bovine
serum albumin standard according to the method of Lowry
et al. (1951).

Lactose concentration

Lactose concentration of the cultivations was estimated
enzymatically using β-galactosidase (Lactozym 3000L HP-
G; Novozymes, Bagsvaerd, Denmark), and a glucose
oxidase–peroxidase mixture (Laborlab, São Paulo, Brazil)
(Sánchez-Manzanares et al. 1993).

Lactic acid quantification

Lactic acid production in batch cultures was determined by
acid–base titration, using NaOH 0.01 M and an alcohol
solution of 1% phenolphthalein (w/v) as indicator (Pereira
et al. 2001).

Results and discussion

The main results of the batch cultures are summarized in
Table 1. The cell growth profile, pH, nisin activity and
lactic acid formation of six batch cultures are shown in
Fig. 1.

Cell growth

All typical growth curves (Fig. 1) showed that nisin
production in our system was closely related to growth (i.
e. growth-associated), since its biosynthesis occurred
during the exponential growth phase, showing primary
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metabolite kinetics. Therefore, the highest nisin titer was
reached at the end of the exponential growth phase or at the
beginning of the early-stationary phase and was related to

the maximal biomass. This behavior has been observed by
the authors in previous studies (Cabo et al. 2001; De Vuyst
and Vandamme 1992; Lv et al. 2005). The absence of a
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Fig. 1 Time profile of pH (X), nisin activity (log AU/mL; solid
circle), microbial growth in colony-forming units (log CFU/mL; solid
square), lactic acid (mg/mL; solid triangle) in batch cultivations of
Lactococcus lactis in diluted skimmed milk in which the pH is

uncontrolled, with varied agitation and airflow rates. Culture con-
ditions were: a 100 rpm, no airflow rate; b 100 rpm, 0.5 L/min; c
200 rpm, no airflow rate; d 200 rpm, 0.5 L/min; e 200 rpm, 1 L/min; f
200 rpm, 2 L/min

Table 1 Summary of experimental results obtained in the batch cultures

Assay
number

Agitation
(rpm)

Air flow
(L/min)

Beginning of
stationary
phase (h)

μmax

(h−1)
Xmax

(CFU/mL)
P Nisin

(mg/L)
Prodx
(CFU/mL/h)

ProdNisin
(mg/L/h)

Y kLa (h−1)

1 100 – 14 0.12 5.75.107 12.43 4.11.106 0.89 4.88 6.45.10−3

2 100 0.5 16 0.14 1.45.108 9.95 9.06.106 0.62 2.07 3.61

3 200 – 16 0.12 9.55.107 49.88 5.97.106 3.12 5.64 5.29.10−3

5 200 0.5 16 0.13 2.00.108 15.77 1.25.107 0.99 3.16 5.96

6 200 1.0 16 0.17 1.66.108 17.70 1.04.107 1.11 2.88 9.82

7 200 2.0 16 0.16 1.58.108 17.70 9.91.106 1.11 2.33 4.33

μmax, Maximum specific growth rate; Xmax, maximum cell concentration; PNisin, maximum nisin concentration; Prodx, cell productivity; ProdNisin,
nisin productivity; Y, correlation between nisin activity (log AU/mL) and cell concentration (log CFU/mL); kLa, volumetric oxygen transfer
coefficient. All of these parameters were determined at the beginning of stationary phase
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“lag” phase suggests that inoculum cells were adapted to
the medium. The results clearly indicate a short exponential
growth phase time of approximately 16 h. Thereafter, all
assays performed in the stationary phase obtained a
maximum viable cell number of around 107–108 CFU/mL
(Xmax).

Nisin maximum concentration

As shown in Table 1 and Fig. 1c, the highest nisin activity
was observed in assay 3 (200 rpm, no airflow) at 16 h,
reaching a titer of 49.88 mg/L (1995.26 AU/mL), and it
decreased after 32 h of culture. The best relation between
cell growth and nisin production (5.64) was also observed
in assay 3, indicating that the cells had adapted well to the
medium and process conditions (Table 1). In contrast, the
lowest maximum specific growth rate (0.12 h−1) was
obtained in assay 3. In this case, under microaerophilic
conditions, the cells had only the residual oxygen contained
inside of bioreactor at their disposal. López et al. (2007)
studied enterocin EJ97 bacteriocin production in bovine
milk (whole, half-skimmed, and skimmed) and obtained the
highest titers (18 AU/mL or 11.25 mg/L) after 8 h of
incubation in half-skimmed milk; this level is fourfold
lower than that obtained in assay 3 (Table 1). These authors
also verified that bacteriocin activity was much lower in
whole milk than in half-skimmed or skimmed milk,
suggesting that Ej97 may interact with milk fat. Jozala et
al. (2007) reported a nisin concentration of 31.38 mg/L
(1255.16 AU/mL) during an interval of 20–30 hours in
batch culture using diluted skimmed milk with 2.27 gtotal
solids. Therefore, the levels obtained in our study (Table 1)
are approximately 60% higher than those obtained by these
authors. The same authors utilized MRS broth (Difco) as a
preculture in L. lactis cultures at 36 h and obtained nisin
concentrations of 48 mg/L or 1,920.7 AU/mL, which is
similar to the levels obtained in our study at 16 h of
cultivation on the low-cost medium.

The lowest value of produced nisin was obtained in
assays with low agitation (100 rpm) and aeration of 0.5 L/
min (KLa=3.61 h−1) and without airflow (KLa=6.45×
10−3 h−1), corresponding to maximum nisin concentration
of 9.95 mg/L (398.11 AU/mL) and 12.53 mg/L
(501.19 AU/mL), respectively. This fact can be related to
low medium homogenization.

The purposes of aeration and agitation in bioreactors are
(1) to supply microorganisms with oxygen and (2) to mix
the fermentation broth in such a way that a uniform
suspension of microbes is achieved and the mass-transfer
rate of the metabolic product accelerated (Aiba et al. 1973).
Oxygen transfer is often the rate-limiting step in the aerobic
bioprocess due to the low solubility of oxygen in the
medium. The dissolved oxygen concentration in a suspen-

sion of aerobic microorganisms depends on the rate of gas–
liquid oxygen transfer at which oxygen is transported into
the cells (where it is consumed) and on the microorganism
oxygen uptake rate for growth, maintenance and produc-
tion. The correct measurement and/or prediction of the
volumetric mass transfer coefficient (kLa) is a crucial step
in the design, operation and scale-up of bioreactors (Garcia-
Ochoa and Gomez 2009).

LAB species are classified in the literature as either
anaerobic or microaerophilic (Jensen et al. 2001) because
these species do not have catalase, which is widely
distributed among aerobic bacteria. Oxygen toxicity in a
cell is attributed to the activity of reactive oxygen species
(hydrogen peroxide and hydroxyl radicals) that attack
proteins, lipids and nucleic acids. However, a cell’s
aerotolerance is related to its ability to induce superoxide
dismutase and NADH oxidase (Jiang and Bommarius
2004). The effects of oxygen on L. lactis, which has a
fermentative metabolism that can use different sugars to
produce mainly L-(+)-lactic acid, have been examined.
Oxygenation of cultivations results in an altered redox state
and greater NADH oxidase activity; as a consequence,
sugar fermentation is shifted toward mixed fermentation,
and acetic acid, formic acid, CO2 ethanol and lactic acid are
produced (Duwat et al. 2001). Despite these changes, L.
lactis has been studied under both anaerobic (Lv et al.
2005) and aerobic conditions (Cabo et al. 2001; Liu et al.
2006). Under aerobic conditions, the addition of exogenous
catalase (Duwat et al. 1995) or hemin (Berlec et al. 2008)
was found to improve the survival of L. lactis cells exposed
to oxygen. Additionally, aeration conditions for the maxi-
mum production of both biomass and bacteriocins—not
always coincident events—can differ between species
(Vásquez et al. 2004). It should be mentioned that, in
terms of biopharmaceutical and vaccine production, aerobic
processes usually are safer and more economical than
anaerobic processes.

In order to extend our knowledge of the aerobic behavior
of L. lactis cell growth and its concomitant nisin release
into the media, we designed two assays in which the cells
were shaken at 200 rpm but the airflow rates were different,
namely, 1 and 2 L/min, respectively. Figure 1e and f shows
that nisin production was strongly affected by the high
airflow rate. In these cultivations, peak values of maximum
cell growth and nisin activity were reached at around 16 h,
following which the nisin levels dropped sharply, disap-
pearing completely by around 48 h. The maximum cell
concentration (Xmax) reached was 107–108 CFU/mL until
the end of process. The same profile was observed under
other culture conditions of this study. Despite the different
airflow rate conditions [200 rpm, 1 L/min (kLa=9.72 h−1)
and 200 rpm, 2 L/min (kLa=4.32 h−1)], the maximum nisin
concentration (PNisin) of 17.70 mg/L (707.95 AU/mL)
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reached was equal in both assays. Similar results in terms of
maximum nisin productivity (15.77 mg/L, 630.96 AU/mL)
were attained with the same agitation (assay 4), but at an
aeration rate of 0.5 L/min (kLa=5.96 h−1).

kLa values

kLa values increased with increasing airflow rate and
agitation. The maximum value of the concentration gradient
reached approximately 1 L/min. Above this value, namely,
at an airflow rate of 2 L/min (kLa=4.33 h−1), there was
excess gas inside the bioreactor. It is likely that the high
airflow rate had a negative effect on oxygen mass transfer.
However, the condition without aeration (nearest to micro-
aerophily) suggests higher that the nisin titers are higher
and more stable than those ones under the high airflow rate
condition.

These considerations suggest that the cells adapted to
nisin biosynthesis; however, based on our results, we do not
recommend the addition of air during the whole duration of
the process. In our study, airflow in the medium appeared to
affect nisin production more than biomass production.

pH effect

The decrease in nisin titers may have been caused by cell
adsorption or proteolytic degradation. Although nisin-
specific protease (nisinase) has been reported in several
bacterial strains, including Streptococcus thermophilus and
Bacillus cereus, a conclusive study indicating the presence
of nisinase in L. lactis has not yet been published.
Conversely, adsorption of nisin onto producer cells is a
well-established concept and has been reported to be
dependent on the pH of the culture broth (Pongtharangku
and Demirci 2007). Yang et al. (1992) reported that
bacteriocins, in general, have a high adsorption onto cells
at pH 6.0 and maximum release from cells at pH 2.0.

Cells convert sugars into lactic acid, thereby acidifying
the medium and enhancing the release of nisin from the
cells into the medium. In our study, the pH was usually
below 5.0 at 12 h into the cultivation process, reaching
values from 4.7 upwards at 52 h. Several studies have
reported that the optimum pH for bacteriocin production is
usually 5.5–6.0 (Cabo et al. 2001; Parente et al. 1994).
However, the optimum pH of some bacteriocins has been
reported to be lower than 5.0 (Yang and Ray 1994). The
optimum pH for bacteriocin production has also been
shown to be affected by culture media and species (Cheigh
et al. 2002). The influence of milk components on nisin
activity was studied by Penna et al. (2005), who found that
normal bovine milk at a standard concentration contains
about 3.5% protein, which can be fractionated into two
main groups. During milk acidification up to pH 4.6 at 20°

C, about 80% of the total protein, called casein, precipitates
out of solution. Proteins that remains soluble under these
conditions are referred to as whey proteins or serum
proteins (Robinson 2002). In our study, this phenomenon
was observed at the end of the cultivation period or in
samples with a pH of <5 (data not shown).

Lactic acid, sugar and proteins

Lactic acid bacteria have complex nutrient requirements
because of their limited ability to synthesize B-vitamins and
amino acids (Hofvendahl and Hahn-Hägerdal 2000). The
amounts of free amino acids required for growth are small,
and it is not only assimilated but occasionally decomposed
(Carr et al. 1975). Some researchers (Cleveland et al. 2002;
Scott and Taylor 1981) have speculated that milk proteins
in commercial preparations (Nisaplin and pure nisin) bind
nisin, limiting antimicrobial activity. In our study, controls
of milk samples revealed no bacteriocin activity (data not
shown).

We did not observe any variations in sugar and protein
residual consumption by the cells (results not shown). The
amount of lactic acid produced using milk sugar (lactose)
reached maximum values of approximately 2 mg/mL or
0.2% (Fig. 1a–f), indicating that the lactic acid production
was low. Conversely, these results also demonstrate that the
dilution factor in skimmed milk was able to reduce the level
of surplus nutrients in the medium, promoting cell
adaptation and nisin production. This latter finding is
extremely important because a substantial proportion of
the nutrients seem to remain unconsumed, especially the
proteins and peptides, involving superfluous cost. In
addition, this could promote difficulties in bacteriocin
purification (downstream process).

Conclusions

The results of our study demonstrate that UHT diluted
skimmed milk supported both the growth of L. lactis cells
and the production of bacteriocin by L. lactis in batch
process. Despite possible variations in the composition of
bovine milk due to seasonal and geographical factors, this
cultivation medium would appear to have a great potential
as a replacement of standard laboratory media, such as
MRS or M17 broth, which are expensive and substantially
increase the cost of bench- and large-scale nisin production.
Low oxygen transfer during the cultivations (microaero-
philic condition) and an agitation rate of 200 rpm had a
positive effect on nisin release by the microorganism. The
dilution factor in skimmed milk was able to diminish the
nutrient surplus in the medium, promoting cell adaptation
and nisin production. All of these findings are extremely
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important in terms of reducing costs and facilitating the
downstream process.
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