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Abstract The introduction of rhizobacteria that tolerate
heavy metals is a promising approach to support plants
involved in phytoextraction and phytostabilisation. In this
study, soil of a metal-mine wasteland was analyzed for the
presence of metal-tolerant bacterial isolates, and the
tolerance patterns of the isolated strains for a number of
heavy metals and antibiotics were compared. Several of the
multimetal-tolerant strains were tagged with a broad host
range reporter plasmid (i.e. pPROBE-NT) bearing a green
fluorescent protein marker gene (gfp). Overall, the metal-
tolerant isolates were predominately Gram-negative bacte-
ria. Most of the strains showed a tolerance to five metals
(Zn, Cu, Ni, Pb and Cd), but with differing tolerance
patterns. From among the successfully tagged isolates, we
used the transconjugant Pseudomonas putida G25
(pPROBE-NT) to inoculate white mustard seedlings.

Despite a significant decrease in transconjugant abundance
in the rhizosphere, the gfp-tagged cells survived on the root
surfaces at a level previously reported for root colonisers.
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Introduction

The introduction of rhizosphere-competent bacteria that are
able to tolerate increased concentrations of heavy metals is
a promising approach for the improvement of phytoex-
traction and phytostabilisation carried out by some metal-
tolerant plants (Kuiper et al. 2004; Lebeau et al. 2008).
Plant inoculation with the released bacteria has to be
accompanied with the monitoring of their survival in the
rhizosphere. Therefore, inoculants should be tagged with a
marker that allows the introduced cells to be identified and
monitored among the populations of indigenous soil
microorganisms. One of the more useful methods to do
this relies on the gfp gene, which encodes the green
fluorescent protein (GFP) from the jellyfish Aequora
victoria (Errampalli et al. 1999). The unique feature of this
marker is its exclusive suitability for monitoring released
bacteria in soils because the gfp is absent in soil micro-
organisms, and the expression of green fluorescence does
not require any substrate or cofactor (Unge et al. 1998;
Cassidy et al. 2000; Kozdrój et al. 2004). In addition, the
gfp marker enables the researcher to study the introduced
strains in situ with a minimum of sample preparation, thus
avoiding possible disturbance of the natural cell colonisa-
tion pattern.

GFP-tagged bacteria have been used to inoculate the soil
and the seeds/seedlings of plants exposed to high levels of
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heavy metals (Liao et al. 2006; Braud et al. 2009; Ma et al.
2009). The major goal of such studies is to identify the
conditions affecting both the survival of the released
mutants and their activity in terms of the stabilisation of
metal concentrations in a habitat. Beneficial bacterial
inoculants are selected to support the growth of plants;
these generally show tolerance to heavy metals and have
phytoextraction or phytostabilisation activity (Wu et al.
2006a; Braud et al. 2009). This results in the establishment
of relevant plant–microorganism associations that are
highly compatible in removing metal from soil (Lebeau et
al. 2008). Metal-mine wastelands, which standardly contain
high concentrations of heavy metals, such as zinc (Zn),
copper (Cu), lead (Pb), nickel (Ni), and cadmium (Cd), can
be rich sources of metal-resistant bacteria and metal-
resistant plants (Barrutia et al. 2011) for bioaugmentation-
assisted phytoextraction and phytostabilisation. For example,
Ma et al. (2009) reported that the Cu-resistant strain of
Achromobacter xylosoxidans significantly improved Cu
uptake by metal-accumulating Indian mustard (Brassica
juncea) and promoted plant growth. However, before any
bacterial strain can be used for soil bioaugmentation-assisted
phytoremediation, its survival, persistence and habitat
colonisation, as well as its ability to interact with a plant
host must be assessed.

White mustard (Sinapis alba) belongs to a diverse group
of mustards that show an increased tolerance to heavy
metals. These plants have been suggested for application in
the phytoextraction or phytostabilisation of the metals in
contaminated soils (Wu et al. 2006b; Lebeau et al. 2008).
Reporter broad host range plasmids of the pPROBE series
containing GFP gene have been employed to construct
bacterial metal-biosensors (Liao et al. 2006) or inoculants
used for bioaugmentation of a metal-contaminated soil
(Braud et al. 2009). We report here the first trials to
introduce these plasmids into multimetal-tolerant bacterial
isolates from the soil of a metal-mine wasteland. The aim of
the research was to determine which of the gfp-marked
multimetal-tolerant bacterial strains were able to survive in
the rhizosphere and on the roots of white mustard. These
trials represent the first step to assess an application
potential of the plant–bacteria association in a metal-
contaminated environment.

Materials and methods

Source of metal-tolerant bacteria

A composite soil sample, prepared from eight different
subsamples taken from an area of 25 m2, was collected
from the top layer (0–10 cm) of a metal-mine wasteland in
Piekary Slaskie. The site is located in Upper Silesia, an

industrialised region of southern Poland. The soil (pH 7.04,
organic matter 2.6%) contained high total concentrations of
Zn, Pb, Cu, Cd and Ni (i.e. 30, 11, 2.8, 0.2 and 0.09 mg g-1

dry soil, respectively). The concentrations were determined
by atomic absorption spectrometry (UNICAM 939/959)
after wet-mineralisation in a mixture of HNO3 (4 ml) and
H2O2 (1 ml), using a microwave oven (Piotrowska-Seget et
al. 2005).

To isolate metal-tolerant bacteria, triplicate soil samples
(10 g) were placed in Erlenmeyer flasks, each containing
90 ml of 0.1% sterile sodium pyrophosphate (pH 7.0), and
shaken at 120 rpm for 30 min. Serial tenfold dilutions of
these soil suspensions were plated onto one-tenth strength
trypticase soy broth agar [0.1× TSBA: tryptic soy broth
(TSB; Difco, Detroit, MI) 3 g, agar 15 g l-1, pH 7.0] and
King’s B agar (Bacto peptone 20 g, K2HPO4 1.5 g,
MgSO4·7H2O 1.5 g, glycerol 10 ml, agar 15 g, deminer-
alised water 1 l, pH 7.2) amended with 3 mM Zn (as
chloride). The plates were incubated at 24°C for 5 days
(Rasmussen and Sørensen 2001) followed by subculturing
of representative colonies differing in morphology and
colour onto fresh agar plates. Bacterial isolates were
selected from the 10-3 and 10-4 dilutions. A total of 25
isolates were selected and used for identification, using
Gram staining and analysis of cellular fatty acid methyl
esters (FAMEs).

Identification of bacterial isolates and their tolerance
patterns

We extracted FAMEs (MIDI Inc, Newark, DE) from each
isolate, using the standard and recommended procedure that
included saponification, derivatisation, extraction and final
base washing (Microbial ID Inc. 1999). The organic phase,
containing cellular FAMEs, was separated using a HP 6890
gas chromatograph (GC; Hewlett Packard, Palo Alto, CA)
on a Ultra 2-HP capillary column with hydrogen as the
carrier gas and analysed by Sherlock 4.0 MIDI software,
using the aerobe TSBA40 method and TSBA40 library
(MIDI Inc). The MIDI system generated a similarity index
(SI) for each strain as a mark of the confidence with which
the isolate was identified. Strains with an SI level >0.3 were
considered to be identified (Germida and Siciliano 2001;
Piotrowska-Seget et al. 2005).

We determined the metal tolerance pattern of each metal-
tolerant strain by the minimum inhibitory concentration
(MIC) approach. To this end, 0.1× TSBA plates, amended
with increasing (from 1 to 10 mM) levels of Zn, Cu, Cd, Ni
or Pb, were inoculated with bacterial strains and incubated
at 24°C for 3 days. The MIC was defined as the lowest
metal concentration preventing the growth of the strains.

To establish an antibiotic tolerance of the isolated
bacteria, each strain was plated onto 0.1× TSBA supple-
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mented with ampicillin (Ap; 100 μg ml-1), tetracycline (Tc;
20 μg ml-1) or kanamycin (Km; 20 μg ml-1) followed by
incubation at 24°C for 3 days. The isolates growing on
respective plates were considered to be antibiotic tolerant.

Tagging with GFP of bacterial isolates

Two different strains of Escherichia coli were used in a
triparental conjugation to introduce gfp into selected metal-
tolerant bacterial isolates. The promoter-probe strain of E.
coli (pPROBE-NT), harbouring a PnptII::gfp fusion (Miller
et al. 2000), was used as the source of a mobilisable
plasmid, containing a red-shifted gfp gene associated with a
Km resistance gene. In addition, used E. coli (pRK2013)
resistant to Km (Figurski and Helinski 1979) as the donor
of a self-transmissible plasmid pRK2013 that mobilised
pPROBE-NT to the recipient isolates.

The procedure of triparental mating consisted of three
steps. First, 0.5-ml aliquots of E. coli (pPROBE-NT)
(optical density at 560 nm: 0.6) were mixed with 0.5 ml
of E. coli (pRK2013) (optical density at 560 nm: 0.8) and
concentrated by centrifugation for 5 min at 2,700 g. The
bacterial pellet was then suspended in 0.5 ml of sterile
saline followed by the centrifugation for 1 min at 2,700g.
Second, a 1-ml aliquot of a recipient isolate (optical density
at 560 nm: 0.9) was added to the pellet, mixed and
centrifuged for 1 min at 2,700 g. The bacterial pellet was
then suspended in 0.1 ml of sterile saline followed by
plating onto LB agar (Difco, pH 7.2). The inoculated plates
were incubated at 37°C for 24 h. Third, the transconjugant
cultures were thoroughly scraped from the plates and
suspended in 2 ml of sterile saline. The suspensions were
serially diluted up to 10-3 followed by plating (0.1 ml) onto
0.1× TSBA supplemented with Ap (100 μg ml-1), Km
(20 μg ml-1) and 3 mM Zn (as chloride). As transconjugant
controls, the cultures of donor or particular recipients
(optical density at 560 nm: 0.8) were also spread on a
similar medium amended with the antibiotics and the metal.
All plates were incubated at 27°C for 24–48 h until distinct
colonies were seen. Finally, we restreaked selected colonies
on the selection plates to ensure purity and the presence of
the markers. Putative transconjugant cells were checked for
GFP expression under an Olympus FluoView FV1000
confocal laser scanning microscope (Olympus, Tokyo,
Japan). The microscope was equipped with a multiline
argon laser (excitation 488 nm, emission range 500–
550 nm) and a water immersion (WI) planapochromatic
60×/1.20 objective.

Survival of GFP-transconjugants in the rhizosphere

For the survival studies, we chose GFP-tagged Pseudomo-
nas putida G25 (pPROBE-NT) isolates that showed the

best growth under the selection conditions as well strong
and persistent expression of the gfp. To this end, we
incubated the transconjugant culture overnight with shaking
at 28°C until late log phase (109 CFU ml-1), after which the
cells were harvested by centrifugation and washed three
times in sterile saline before being suspended in 10 ml of
the saline.

The soil of the metal-mine wasteland was air-dried to
about 15% (w/w) moisture content, sieved (mesh diameter
2 mm), placed in plastic containers (300 g) and wetted with
distilled water to about 35% (w/w) moisture content. This
moisture corresponded to about 50% (w/w) of the water
holding capacity of the soil. Prior to the trials, we seeded
triplicate soil portions with white mustard (Sinapis arven-
sis). These were left for 3 weeks to grow in a plant growth
cabinet under a light/dark regime (26°C, 16 h/21°C, 8 h) at
a relative air humidity of 75%. The tolerance of indigenous
culturable bacteria to Ap, Tc and Km was checked by
plating serial dilutions of triplicated soil samples (3 g,
shaken at 130 rpm for 30 min) onto 0.1× TSBA amended
with Ap (100 μg ml-1), Tc (20 μg ml-1) or Km (20 μg ml-1)
followed by incubation at 24°C for 6 days.

To inoculate mustard seedlings, we added a suspension
of transconjugant P. putida G25 (log 7.82 CFU ml-1) to the
soil surface, establishing a moisture content of about 35%.
All pots were placed in the plant growth cabinet under a
light/dark regime (26°C, 16 h/21°C, 8 h) at a relative air
humidity of 75%.

After 0, 7, 14, 28 and 54 days, white mustard seedlings
were carefully removed from the soil, and the roots with
adhering rhizosphere soil were placed in sterile 0.1% sodium
pyrophosphate (pH 7.0) for shaking (130 rev min-1, 30 min)
and preparing serial tenfold dilutions. Replicate aliquots
from the rhizosphere dilutions were spread-plated onto 0.1×
TSBA amended with either Ap (100 μg ml-1) or Km
(20 μg ml-1) for the counting of P. putida G25 (pPROBE-
NT). The medium without the antibiotics was used to
enumerate total indigenous heterotrophic bacteria. The
medium was also amended with cycloheximide (Ch;
100 μg ml-1) to inhibit the growth of fungi. In addition, to
avoid a possible masking effect of indigenous fluorescent
Pseudomonas spp., we supplemented the selective medium
with 0.45 mM FeSO4·7H2O, which represses siderophore
biosynthesis (Timms-Wilson and Bailey 2001). Plates inoc-
ulated with the transconjugant P. putida G25 were analysed
after incubation at 24°C for 2–4 days, whereas those for the
total heterotrophic bacteria were incubated for 6 days. We
enumerated fluorescent colonies containing GFP using a
hand-held UV light in a dark room.

Selected white mustard roots with adhering soil were
collected for microscopic observations. To this end, the
samples of roots and rhizosphere soil were separately
transferred to glass vials containing 8 ml of 0.1% sodium
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pyrophosphate (pH 7.0). The roots were gently washed for
30 s, while the rhizosphere soil samples (1 g) were
vigorously shaken for 5 min. After the large soil particles
had settled down (15 min, 18°C), a drop of the upper level
of the soil suspension was applied to a microscope slide.
The slide was then prepared for observation under a
confocal laser microscope (Unge et al. 1998). The root
samples were washed three times in saline, and the excised
fragments (maximum length: 10 mm) were placed on
microscope slides and prepared for observation under the
confocal microscope.

Statistics

The count data of culturable bacteria were subjected to the
analysis of variance (ANOVA) followed with post hoc
comparison of means using Fisher’s least significant
difference test (LSD, n=3, p<0.05). To compare the
patterns of tolerance to the metals and antibiotics among
the isolated bacterial strains, we used a joining method of
the cluster analysis (CA) module (Statistica ver 6.0;
StatSoft, Tulsa, OK) and Ward’s clustering algorithm. Thus,
a dendrogram showing clustering trends among all isolates
was created.

Results and discussion

Isolation of metal-tolerant strains from metalliferous soil

Soil of a metal-mine wasteland is a habitat rich in heavy
metals that exert a strong selecting pressure that enables the
growth of different metal-tolerant bacteria. Low concen-
trations of nutrients and the restricted availability of water
and oxygen are additional constraints on the growth of
microorganisms in this habitat. It has been reported that
Gram-positive bacterial species predominate among the
bacteria surviving in soils polluted with high concentrations
of heavy metals (Roane and Kellog 1996; Ellis et al. 2003;
Åkerblom et al. 2007; Sułowicz et al. 2011). By contrast,
other studies have indicated that it is Gram-negative
bacteria which predominate in sites rich in heavy metals
(Kunito et al. 1997; Brim et al. 1999; Piotrowska-Seget et
al. 2005). In total, we isolated 25 Cu-tolerant bacterial
strains from the soil collected at the metal-mine wasteland;
of these 16 isolates were Gram-negative and nine strains
were Gram-positive organisms. With the exception of two
isolates, IGB 2 and IGB 8, these metal-tolerant strains were
identified to the species level based on their MIDI-FAME
profiles, all with SI > 0.600 (Table 1). The highest number
(i.e. 10) of strains were identified as Pseudomonas putida.
This species and other fluorescent pseudomonads have
often been reported as organisms of great adaptability to

harsh conditions in soil contaminated with heavy metals
(Roane 1999; Duponnois et al. 2006; Wu et al. 2006a).

Most bacterial strains revealed tolerance to five metals;
however, the tolerance patterns differed among the isolates.
Three strains of Pantoea agglomerans expressed high
tolerance to all the metals. In turn, Citrobacter diversus
and Klebsiella pneumoniae were tolerant to 10 or 9 mM Zn,
and the latter strain was also resistant to 3 mM Cd. In
addition, the isolate IGB 8 tolerated up to 10 mM of Cu and
Ni (Table 1). Overall, most strains tolerated higher concen-
trations of Zn, Cu and Ni than of Pb and Cd. Similar results
were obtained by Piotrowska-Seget et al. (2005) for metal-
tolerant bacteria isolated from polluted arable soils and
barren spoil of a former silver mine. Multimetal tolerance is
a characteristic feature of different heterotrophic bacteria
isolated from highly polluted soils (Trojanovska et al. 1997;
Malik et al. 2002; Sułowicz et al. 2011). Ryan et al. (2005)
found that 82% of isolates from metal-polluted soil showed
resistance to five out of eight tested metals. Piotrowska-
Seget et al. (2005) also found that plasmid-containing
bacteria were tolerant of several metals. Multimetal-tolerant
bacterial strains have been found to be able to survive in
metalliferous soils planted with some plants showing an
increased tolerance to various metals (Epelde et al. 2010;
Sułowicz et al. 2011).

In terms of antibiotic tolerance, only five of the
identified species (i.e. Bacillus cereus GB1, Arthrobacter
oxydans, Citrobacter diversus, Brevibacterium acetylicum
and Pseudomonas putida G17) showed a tolerance to Tc,
Kn and/or Ap. A similar number of strains, however, all
belonging to one species, namely P. putida (i.e. G15, G16,
G18, G24 and G25), tolerated only Ap. By contrast, four
strains (i.e. Bacillus sphaericus GB3, B. cereus GB7, B.
amyloliquefaciens and the isolate IGB 8) were sensitive to
all three antibiotics (Table 1). Antibiotic tolerance often
accompanies an increased resistance to heavy metals among
different bacteria isolated from sites exposed to high
pollution and/or containing material rich in the metals
(Berg et al. 2005; Stepanauskas et al. 2005; Baker-Austin et
al. 2006). This situation results from the co-transfer of
antibiotic resistance genes and those of metal resistance on
the same plasmid under selective conditions (Foster 1983;
Baker-Austin et al. 2006). However, the ecological role of
this association for bacterial strains occupying a severe
habitat is not fully understood. Presumably, the extra feature
of antibiotic resistance increases their survival success
during the competition for available niches when in the
presence of compounds acting as antimicrobials and signal
molecules. As a result, respective strains of bacteria may
differ in their tolerance profiles, which may in turn affect
their survival (Alonso et al. 2001; Hibbing et al. 2010). Our
cluster analysis of the metal and antibiotic tolerance
patterns of all the bacterial strains showed that they grouped
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into two major clusters (Fig. 1). The first composite cluster
included only strains of Pseudomonas putida, with the one
exception being Comamonas acidovorans. However, the
second major cluster was composed of two subclusters,
with one comprising all of the Gram-positive strains, and
the second consisting of Gram-negative strains of Pantoea
agglomerans (clustering together) and Klebsiella pneumo-
niae grouping with Citrobacter diversus separately (Fig. 1).
This clustering pattern shows that the separation of the P.
putida group may have been associated with the possession
of a common mechanism(s) of metal tolerance that is
chromosomally encoded (Cánovas et al. 2003). In contrast,
the Gram-positive strains with their thicker cell envelopes
react to biocides differently. Their clustering might be, at
least in part, due to the presence of a common plasmid
carrying genes for multimetal and drug resistance (Kamala-
Kanan and Kui Jae 2008). Bacterial species such as P.
agglomerans, K. pneumoniae and C. diversus belong to the
same family of Enterobacteriaceae. Therefore, they formed
the separate cluster towards the other Gram-negative group
of P. putida in this study. In addition, their likeness supports
the fact the multidrug resistance (mar) operon is widespread

Strain MIC a (mM) Antibioticsb

Zn Cu Ni Pb Cd Ap Tc Km

Bacillus cereus GB1 7 5 6 2 1 r r r

Isolate GB2 7 6 5 2 1 r s r

Bacillus sphaericus GB3 4 6 3 2 0 s s s

Arthrobacter oxydans 6 6 4 2 1 r r r

Citrobacter diversus 10 7 7 1 2 r r r

Klebsiella pneumoniae 9 8 7 2 3 r r s

Bacillus cereus GB7 8 6 4 3 0 s s s

Isolate GB8 8 10 10 3 0 s s s

Brevibacterium acetylicum 5 5 6 3 2 r r r

Bacillus sphaericus GB10 5 7 6 2 1 s s r

Bacillus amyloliquefaciens 6 8 7 2 1 s s s

Pantoea agglomerans GP12 9 10 6 2 4 r s r

Pantoea agglomerans GP13 9 10 6 2 3 r s r

Pantoea agglomerans GP14 9 10 6 2 4 r s s

Pseudomonas putida G15 8 4 2 2 2 r s s

P. putida G16 7 4 4 2 2 r s s

P. putida G17 8 4 4 2 2 r r r

P. putida G18 0 2 2 1 2 r s s

P. putida G19 8 4 4 2 2 r s s

P. putida G20 8 4 4 2 2 r s r

P. putida G21 4 3 4 1 2 r s r

P. putida G22 7 3 4 3 2 r s r

Comamonas acidovorans 7 3 4 3 1 r s r

P. putida G24 4 2 2 0 1 r s s

P. putida G25 7 3 2 2 1 r s s

Table 1 Bacterial strains isolated
from a metalliferous soil and their
patterns of tolerance to selected
heavy metals and antibiotics

aMinimum inhibitory concen-
trations were determined on
0.1× tryptic soy broth (TSA)
amended with the metals
b The strains are tolerant (r) or
sensitive (s) to: ampicillin (Ap;
100 μg ml-1 ), tetracycline (Tc;
20 μg ml-1 ), kanamycin (Km;
20 μg ml-1 )

0 2 4 6 8 10 12

Euclidean distance

PpG21
PpG24
PpG18

Ca
PpG22
PpG20
PpG17
PpG19
PpG16
PpG25
PpG15

PaGP14
PaGP13
PaGP12

Kp
Cd

IGB8
BcGB7
BsGB3

Bam
BsGB10

Ba
Ao

IGB2
BcGB1

Fig. 1 Dendrogram representing similarities of metal and antibiotic
tolerance patterns of different bacterial strains isolated from soil of a
metal-mine wasteland. Ao Arthrobacter oxydans, Ba Brevibacterium
acetylicum, Bam Bacillus amyloliquefaciens, Bc Bacillus cereus, Bs
Bacillus sphaericus, Ca Comamonas acidovorans, Cd Citrobacter
diversus, IGB2, IGB8 isolates GB2 and GB8, Kp Klebsiella pneumo-
niae, Pa Pantoea agglomerans, Pp Pseudomonas putida
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among enteric bacteria (Cohen et al. 1993). However, closer
clustering of these bacteria with the Gram-positive group
may be explained by their similar ability for protection
against the biocides, due to the role of the cell envelopes (i.e.
glycocalyx and thick cell wall, respectively). Regarding the
cluster of K. pneumoniae and C. diversus, their likeness may
have resulted from the presence of the same phosphatase-
mediated metal accumulation process involved in the
detoxification of the bacteria (Macaskie et al. 1994).

gfp-tagged strains and its survival in the mustard
rhizosphere

The underlying rationale for isolating metal-tolerant bacteria
from metalliferous soils is their potential application for
bioaugmentation-assisted phytoremediation of these habitats.
Various markers, often with different detection frequencies,
have been used to track the fates of these metal-tolerant
bacterial isolates following their reintroduction into the soil
(Zaidi et al. 2006; Ma et al. 2009). In our study, we
successfully introduced the plasmid pPROBE-NT by tripar-
ental conjugation into four strains: Pseudomonas putida
G16, P. putida G20, P. putida G25 and Comamonas
acidovorans. The growth of these strains on selective agar
medium containing Ap (100 μg ml-1), Km (20 μg ml-1) and
3 mM Zn was used to select for the pPROBE-NT trans-
conjugants as neither donor strains nor recipients were able
to grow on the medium amended with these markers. We
also checked the putative transconjugants for GFP produc-
tion under the confocal microscope. All transconjugants
gave positive results, with P. putida G25 (pPROBE-NT)
showing the strongest green colour, indicating intensive
synthesis of the protein (Fig. 2). Therefore, we used
transconjugant strain G25 for further survival experiments.
An approach that involves the tagging of bacterial strains
with gfp genes by plasmid transfer or recombination into the
chromosome has been recommended by various authors
because of the efficient detectability of the tag and the low
energetic burden placed on the cells. (Kendall and Badminton
1998; Errampalli et al. 1999; Kozdrój et al. 2004).

The introduction of metal-tolerant bacterial strains into
soil seeded with plants that tolerate increased concentra-
tions of heavy metals has been reported as a promising
approach that facilitates the survival and development of
these plants in contaminated habitats (Abou-Shanab et al.
2003; Sheng and Xia 2006; Ma et al. 2009). However, the
success of this approach is dependent on the potential of the
inoculant to colonise plant roots efficiently, which in turn is
related to its own survival in the rhizosphere. To estimate
the level of adaptation between the released inoculant cells
and white mustard, we inoculated plant seedlings growing
in a sandy soil. The numbers of gfp-tagged Pseudomonas
putida G25 colonising the roots of white mustard decreased

from the initial log 7.48±0.28 to log 4.95±0.25 and log
3.62±0.18 CFU g-1 dry soil on days 14 and 54 post-
inoculation, respectively. The average counts of the total
indigenous heterotrophic bacteria were about log 7.95±
0.24 CFU g-1 dry soil in the rhizosphere. However, the
natural resistance to Ap, Tc and Km among the indigenous
bacteria was below the detection limit of log 1.47±
0.15 CFU g-1dry soil. The microscopic observation of root
and rhizosphere preparations confirmed the successful
survival of the transconjugant in the rhizosphere and the
colonisation of the roots of white mustard seedlings on day
7 (Fig. 3). Although the presence of the gfp-tagged
transconjugants on the roots was still visible on day 54,
only a few bacterial cells were noticeable in the rhizosphere
specimen (Fig. 4). A decrease in counts of introduced
bacteria over a few days is often observed due to
competition for nutrients and space with other rhizosphere
microorganisms. They are grazed on by protozoa and
exposed to abiotic stress; some cells die or lose culturability
following release (van Veen et al. 1997). As a result, the
inoculant population ultimately reaches a level reflecting its
ability to adapt to conditions prevailing in the rhizosphere
of the appropriate plant species (de Weger et al. 1995;
Kozdrój et al. 2004). Errampalli et al. (1998) indicated that
gfp-marked Pseudomonas sp., introduced into a creosote-
contaminated soil, declined over a 26-day period, although
the low numbers recovered up to 13 months after
inoculation. It can also not be excluded that the decreased
numbers of P. putida G25 (pPROBE-NT) may have resulted
from the loss of the plasmid over time. However, this vector
has been reported to be a stable one in a broad range of
bacterial hosts (Miller et al. 2000). Belimov et al. (2004)
reported a slight decrease in the numbers of inoculant

Fig. 2 Photograph of microscopic image of fluorescent green
fluorescent protein (gfp)-tagged transconjugant Pseudomonas putida
G25. The photograph was obtained using a confocal laser scanning
microscope
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rhizobacteria between days 10 and 25 during their
colonisation of barley roots. By contrast, an introduced
population of Bacillus sp. that was resistant to Cd was still
detectable at the same density in the rhizosphere of rape 2
weeks after inoculation (Sheng and Xia 2006). In addition,
the survival of inoculants associated with a plant host
depends on changes in the physiological state of the plant
(Lebeau et al. 2008). Wu et al. (2006b) reported that young
mustard seedlings are more favourable to an introduced
metal-tolerant strain than flowering plants, possibly due to
differences in the composition of the root exudates. We
obtained similar results for the survival of gfp-tagged P.
putida G25. Immobilisation of bacterial inoculants into
carriers, such as alginate, clay, peat or methyl cellulose,
which protects them against biotic and abiotic environmen-
tal stress, can increase both their survival in soil as well as
their colonisation of soil (van Veen et al. 1997; Kozdrój et
al. 2004; Braud et al. 2009). However, to facilitate
colonisation of the entire rhizosphere and roots of growing
seedlings by the released bacterial strains, the application of
free-cell suspensions, instead of immobilised cells, appears
to be useful (Ciccillo et al. 2002; Mazolla et al. 1995).

In conclusion, the soil of the metal-mine wasteland is a
habitat favouring the selection of multimetal-tolerant
heterotrophic bacteria, mostly represented by Gram-
negative species, which can be differentiated according to
their metal and antibiotic tolerance patterns. Although these
bacteria are characterised by their high metal tolerance,
only a few strains can be recipients of the gfp-bearing
reporter plasmid and subsequently express the green
fluorescent protein. Indeed, one recipient strain, Pseudo-
monas putida G25, yielded a transconjugant that distinctly
expressed GFP and was able to colonise the rhizosphere
and roots of white mustard seedlings. Despite a significant
decrease in the counts of the transconjugant in the
rhizosphere, the gfp-tagged cells persist at the level reported
for root colonisers (Scher et al. 1994). This result is a
promising indicator of plant–transconjugant interdepen-
dence that can favour both partners. Further studies are
needed to determine whether P. putida G25 (pPROBE-NT)
can promote the growth of white mustard in soil containing
high concentrations of heavy metals, bearing in mind that
the ultimate goal is the potential application of both
organisms in bioaugmentation-assisted phytoremediation
of polluted habitats.

Fig. 4 Photographs of microscopic images of fluorescent gfp-tagged
transconjugant P. putida G25 colonising the root surface of a 54-day-
old seedling of white mustard (a) and those surviving in the
rhizosphere (b). The photographs were obtained with a confocal laser
scanning microscope

Fig. 3 Photographs of microscopic images of fluorescent gfp-tagged
transconjugant Pseudomonas putida G25 colonising the root surface
of a 7-day-old seedling of white mustard (a) and those surviving in the
rhizosphere (b). The photographs were obtained with a confocal laser
scanning microscope
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