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Abstract The gastrointestinal tract is continuously in
contact with commensal bacteria that are composed of
more than 500 different species, and has an important role
in human nutrition and health, by promoting nutrient
supply, preventing pathogen colonization and shaping and
maintaining normal mucosal immunity. The present review
demonstrates the distribution of the intestinal commensal
bacteria Enterococcus spp. and the prevalence of Esche-
richia coli phylogenetic groups in animals and humans in
Portugal. The enterococcal population described in this
review includes 1,909 enterococcal isolates recovered from
a series of fecal samples of different animals (horses, swine,
ostriches, partridges, mullet fish, garden dormice, seagulls,
pets, poultry, wild boars, birds of prey, and wild rabbits) and
healthy and clinical humans. We also compared the
phylogenetic groups of Escherichia coli isolates (n=203)
recovered from healthy humans and animals (poultry,

ostriches, seagulls, wild boars, birds of prey, and pigs).
Phenotypic and molecular analysis allowed the identifying
of Enterococcus faecium as the predominant species
followed by Enterococcus faecalis. In addition, the Esche-
richia coli data from different studies showed that isolates
of the A and B1 phylogenetic groups are predominant in the
gut flora of animal origin and the phylogenetic group B2
isolates were the most common in healthy human samples.
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Introduction

A large number of commensal bacteria colonize the
gastrointestinal tract of mammals. When the bacteria invade
the host, the intestine immune system recognizes commen-
sal bacteria from pathogenic ones, discriminates between
safe and dangerous, and attacks only those that are
hazardous to the host. Although the commensal bacteria
are identified as non-host antigens, these organisms are able
to reside in the gut without being eliminated, playing an
important role in human nutrition and health, by promoting
nutrient supply, preventing pathogen colonization and
shaping, and maintaining the homeostasis of the intestinal
immune system. Thus, the immune system and the
commensal bacteria form the symbiotic system in the
intestine (Takahashi 2010; Xu et al. 2003).

Enterococci are commonly found in the gastrointestinal
tract of healthy humans and animals (Vankerckhoven et al.
2004). They are Gram-positive facultative anaerobic bacte-
ria, spherical, which occur singly, in pairs or short chains
and fit within the general definition of lactic acid bacteria
(Ciftci et al. 2009). These bacteria can be brought into the
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environment by human and animal fecal material (Kühn et
al. 2000). Most enterococci are not virulent and are
considered relatively harmless, with little potential for
human infection. However, they have also been identified
as nosocomial opportunistic pathogens with increased
resistance to antimicrobial approved agents (Chenoweth
and Schaberg 1990). Enterococcus faecalis represent 80–
90% of human clinical enterococcal infections, while 5–
15% are caused by E. faecium. However, other species
including E. hirae, E. durans, E. gallinarum, or E.
casseliflavus are occasionally identified in clinical isolates
(Patterson et al. 1995; Ruoff et al. 1990). Common
enterococcal infections include those of the urinary tract,
bloodstream, endocardium and wounds (Shepard and
Gilmore 2002).

Enterococci species show significant differences in the
incidence of virulence factors. Generally, E. faecalis
appears to harbor more virulence traits while E. faecium
strains were generally free of virulence factors (Eaton and
Gasson 2001). In addition, considering the distribution of
the antibiotic resistance according to the species, the E.
faecium possessed a higher level of resistance than E.
faecalis (Franz et al. 2001; Gin and Zhanel 1996).

Accurate species identification of enterococci has
become important, in particular because some species
have been recognized as human pathogens following the
wide prevalence of acquired antibiotic resistance (Tyrrell
et al. 1997).

Escherichia coli is the head of the large bacterial family,
Enterobacteriaceae, the enteric bacteria, which are facul-
tatively anaerobic Gram-negative, and is commonly found
in the intestinal tract of a wide variety of animals and
humans (Sorum and Sunde 2001). This intestinal bacteri-
um can be easily disseminated in different ecosystems. For
this reason, fecal Escherichia coli is considered to be an
important indicator for the selective pressure exerted by
the use of antimicrobials on intestinal populations of
bacteria (van den Bogaard and Stobberingh 2000). The
emergence of multiresistant Escherichia coli has been
previously reported in humans and in different animal
species, increasing the public health concern (Saenz et al.
2004). On the other hand, the production of extended-
spectrum beta-lactamases (ESBLs) by Enterobacteriaceae,
specifically by Escherichia coli, has caused a major
concern in several countries, being frequently implicated
in human infections. Previous reports have described
ESBL-containing Escherichia coli strains in healthy
animals (Pinto et al. 2010; Poeta et al. 2009).

Escherichia coli can be classified into four main
phylogenetic groups (A, B1, B2 and D) that were initially
identified by the allelic variation of strains associated with
enzymes that could be detected by multilocus enzyme
electrophoresis (Herzer et al. 1990). Usually, the commen-

sal strains are placed into the phylogenetic groups A and
B1. On the other hand, the Escherichia coli strains causing
extraintestinal infections are known to mainly belong to
group B2 and, to a lesser extent, group D (Clermont et al.
2000). The intestinal pathogenic strains are usually
assigned to groups A, B1 and D (Pupo et al. 1997). More
recently, a rapid and simple method for the determination of
Escherichia coli phylogenetic groups, based on a triplex
PCR strategy, has been reported (Clermont et al. 2000).

The aim of the present review is to illustrate the
distribution of the gut enterococci species as well as the
prevalence of Escherichia coli phylogenetic groups in
animals and humans in Portugal, in order to evaluate our
knowledge about the diversity of enterococcal species and
Escherichia coli phylogenetic groups from different sour-
ces, and therefore compare this diversity in Portugal with
other countries.

Enterococci species distribution

In the last decade, several studies involving enterococci,
recovered from different animal and human origins, were
performed in Portugal. Using phenotypic and molecular
methods, a total of 1,909 enterococcal isolates were
identified to species level. The distribution of enterococcal
species in human and animal fecal samples is shown in
Fig. 1 and Table 1.

For the majority of the isolates, one fecal sample per
individual (human or animal) was collected, plated onto
Slanetz-Bartley agar and incubated at 37°C for 48 h.
Colonies with typical enterococcal morphology were
identified to the genus level by cultural characteristics,
Gram-staining, catalase test and the bile-aesculin reaction.
Species identification was performed using the BBL Crystal
Gram-Positive ID System® (Hamilton-Miller and Shah
1999) and was confirmed by polymerase chain reaction
(PCR) using primers and conditions for the different
enterococcal species with appropriate controls (Dutka-
Malen et al. 1995; Miele et al. 1995; Robredo et al. 1999).

Molecular and biochemical approaches allowed us to
identify the predominance of E. faecium (965 isolates),
followed by E. faecalis (679 isolates), E. hirae (187
isolates), E. avium (43 isolates) E. durans (18 isolates), E.
gallinarum (14 isolates), and E. casseliflavus (3 isolates).
Similar species distribution was identified among entero-
coccal population in different geographical regions from
different ecological habitats (Kühn et al. 2003). Although
E. faecium was detected in all samples, the same situation
does not occur with E. faecalis and E. hirae isolates. E.
gallinarum was present in four different origins, E.
casseliflavus was detected in two different sample origins
and E. avium was detected only in healthy pets. E. faecium
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and E. faecalis are predominant in healthy human samples
in different studies with an average of 54.9% of E. faecium
and 43.4% of E. faecalis (Barreto et al. 2009; Guimaraes et
al. 2009; Novais et al. 2003, 2006; Poeta et al. 2005a,
2006a). A different distribution of the enterococcal species
was observed in clinical human samples, where E. faecalis
was the predominant species (Novais et al. 2003, 2008).
This difference may be due to the fact that human patients
may have been subjected to treatment with antibiotics, and
also due to a much higher sampling in the cause of human
health compared with the clinical samples. The detection of
these enterococcal species in human clinical specimens is
common. Although E. faecalis is the most frequent
enterococcal species detected in human infections (Desai
et al. 2001; Murray 1990; Schouten et al. 1999), the results
found in Portugal isolates showed a relatively low
occurrence of E. faecalis compared with E. faecium in
human fecal isolates. Both species have long been known
to be significantly important as human pathogens that are
especially responsible for nosocomial infections (Murray
1990; Schaberg et al. 1991). E. hirae (0.9%) and E. durans
and E. gallinarum (0.6%) were also detected in human
fecal samples. These three enterococcal species were not
detected in clinical samples.

Isolates from fecal samples of healthy pets, in different
studies in Portugal (Poeta et al. 2005a, 2006a; Rodrigues et

al. 2002) presented the following species: E. faecium
(51.6%), E. faecalis (18.7%), E. avium (17.5%) and E.
hirae (12.2%). E. faecalis and E. hirae were predominant in
pet’s anal swabs in another study performed in Europe
(Devriese et al. 1992a). Enterococci isolates recovered from
clinical pets in Portugal showed a different species
distribution when compared with healthy pets, where most
of the enterococcal isolates belong to E. faecalis with
83.6% of the total of isolates (Delgado et al. 2007).

In the horse fecal samples, the species identified were E.
faecium (63.6%), E. faecalis (27.3%) and E. hirae (9.1%)
(Moura et al. 2010). Similar to the results found in Portugal,
E. faecium was identified as the predominant enterococcal
species in horse fecal samples in Slovakia farms (Laukova
et al. 2008). However, a study performed in Idaho (US)
found that E. casseliflavus was most predominant in fresh
and dry manure horse samples, and only 8–9% of the
isolates were identified as E. faecium (Graves et al. 2009).
No enterococcal isolates recovered from horse fecal
samples in Portugal were identified as E. casseliflavus.

Although E. faecium was the most prevalent species
found in the total fecal samples recovered from different
sources in Portugal, E. faecalis was dominant in poultry
(Poeta et al. 2005a, 2006a, b), in birds of prey (Poeta et al.
2005a, 2007b), and in wild rabbits (Silva et al. 2010), while
E. hirae was dominant in ostrich fecal samples (Gonçalves

Fig. 1 Distribution of enterococcal species in human and animal
recovery from fecal samples. Enterococci were isolated from the
following samples: HH healthy humans (n=574) (Barreto et al. 2009;
Guimaraes et al. 2009; Novais et al. 2003, 2006; Poeta et al. 2005a,
2006a), CH clinical humans (n=208) (Novais et al. 2003, 2008), HP
healthy pets (n=246) (Poeta et al. 2005a, 2006a; Rodrigues et al.
2002), CP clinical pets (n=55) (Delgado et al. 2007), horses (n=110)

(Moura et al. 2010), poultry (n=152) (Poeta et al. 2005a; 2006a, b),
wild boars (n=126) (Poeta et al. 2007a, b), birds of prey (n=63)
(Poeta et al. 2005b, 2007b), swine (n=50) (Novais et al. 2003, 2008),
ostriches (n=47) (Gonçalves et al. 2010a), mullet fish (n=104)
(Araújo et al. 2011), seagulls (n=31) (Radhouani et al. 2010b),
garden dormice (n=33), partridges (n=46) (Silva et al. 2011), wild
rabbits (n=64) (Silva et al. 2010)
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et al. 2010a). Isolates of poultry samples included: E.
faecalis (60.5%), E. faecium (35.5%), E. durans (2.6%),
and E. hirae (1.3%). E. faecalis was also found to be
predominant in fecal poultry samples in studies performed
in Spain and Denmark (Kühn et al. 2003). Another study
carried out by Klein, in food and in the gastro-intestinal
tract, showed the prevalence of E. faecalis and E. faecium
while E. durans and E. hirae were found with low
frequency (Klein 2003). It is interesting to note that the
gastro-intestinal tract of the birds of prey presented the
highest enterococcal species diversity detected: E. faecalis
(39.7%), E. faecium (34.9%), E. hirae (4.8%), E. durans
(6.3 %), and E. gallinarum (14.3%).

In swine fecal samples, the species identified were as
follows: E. faecium (50.0%), E. hirae (46.0%), E. durans
(2.0%), and E. gallinarum (2.0%) (Novais et al. 2003,
2008). This was similar to other studies carried out in
Sweden, UK and Spain, where E. faecium and E. hirae
were identified as the predominant enterococcal species in
fecal swine samples (Kühn et al. 2003). Enterococci from
ostriches included: E. hirae (65.9%), E. faecium (29.8%),
and E. casseliflavus (4.3%) (Gonçalves et al. 2010a). In
wild boars, the species detected were: E. faecium (54.0%),
E. hirae (42.9%), E. faecalis (1.6%) and E. durans (1.6%)
(Poeta et al. 2007a, b). A similar enterococcal species
distribution was detected in the swine fecal samples.
Mitochondrial DNA studies showed that the wild boar is
the ancestor of the domestic pig (Sus scrofa domesticus)
(Giuffra et al. 2000), and this relationship could explain the
similarities observed in the distribution of enterococcal
species in their intestinal microbial flora. Along with the
birds of prey, the partridges group showed the highest
diversity of enterococcal isolates. A total of six species
were identified: E. faecium (60.9%), E. faecalis (32.6%),
and E. hirae, E. durans, and E. casseliflavus, all with 2.2%
(Silva et al. 2011). Mullet fish and seagulls isolates
presented the same enterococcal species: E. faecium (77.9
and 71.0%, respectively), E. faecalis (1.0 and 16.1%,
respectively), E. hirae (20.2 and 9.7%, respectively), and
E. durans (1.0 and 3.2%, respectively) (Araújo et al. 2011;
Radhouani et al. 2010b).

Only two enterococcal species were identified in the
garden dormice fecal samples: E. faecium (97.0%) and E.
faecalis (3.0%). E. faecalis was the most prevalent detected
species (60.9%), in wild rabbits in Portugal, followed by E.
faecium (32.8%) and E. hirae (6.3%) (Silva et al. 2010).
The detection of E. faecalis and E. faecium as the
predominant enterococcal species in the fecal samples of
wild rabbits shows strong similarities with data previously
reported for fecal enterococci of farmed rabbits (Linaje et
al. 2004). Furthermore, the enterococcal isolates from
partridges, mullet fish, garden dormice, seagulls and wild
boars showed a higher prevalence of E. faecium species. It

is important to underline that these results diverge slightly
with the species distribution demonstrated in the entero-
coccal isolates from another study performed in wild
animals, where the frequency of E. faecium and E. faecalis
was more homogeneous (32.1 and 52.1%, respectively)
(Poeta et al. 2005b).

Escherichia coli phylogenetic groups

Different studies in commensal Escherichia coli from
animal and human origin were performed in Portugal
(Table 2).

Fecal samples from human and animals were plated
onto Levine agar and MacConkey agar and incubated at
37°C for 24 h. One colony per sample with typical
Escherichia coli morphology was selected and identified
by standard bacteriological tests (gram, catalase, oxidase,
indol, methyl red/Voges-Proskauer, citrate and urease), by
the API 20E system (BioMérieux, La Balme Les Grottes,
France) (Radhouani et al. 2010a), or by API ID 32GN
galleries (BioMérieux) and by the automated WIDER
system (Fco. Soria Melguizo, Madrid, Spain) (Machado et
al. 2008). Escherichia coli isolates were classified into one
of the four main phylogenetic groups, A, B1, B2 and D,
by PCR as described previously based on the presence or
absence of chuA, yjaA or tspE4.C2 genes (Clermont et al.
2000).

The molecular approach allowed the identification of
phylogenetic groups in 203 Escherichia coli isolates, 119 of
them ESBL-containing Escherichia coli. The non-ESBL-
containing Escherichia coli identified are isolates resistant
to at least one of the tested antibiotics. In general, most of
the isolates belonged to the phylogenetic group B1 (69
isolates) following by groups A (58) and B2 (57). Nineteen
of the isolates were identified in the phylogenetic group D.
It is interesting to note that most of the healthy human
Escherichia coli isolates belong to the phylogenetic groups
B2 and D (Barreto et al. 2009; Guimaraes et al. 2009), and
they are the main cause for the large percentage of strains
belonging to these two phylogenetic groups in the total
number of isolates from different origins. The phylogenetic
groups B2 and D have been reported to be associated with
virulent isolates (Clermont et al. 2000). The high ratio of
B2 isolates obtained from humans (65.5%) reveals great
concern as a public health problem. While commensal
isolates of phylogenetic groups A, B1 and D present a
smaller number of virulence determinants than in the
corresponding pathogenic strains, the strains of phyloge-
netic group B2 in the commensal flora appear to be
potentially virulent (Duriez et al. 2001). The results found
in healthy humans in Portugal diverges greatly from
previous studies in human commensal Escherichia coli
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isolated from stools, where isolates belonging to the
phylogenetic group B2 were only between 11 and 30% in
studies performed in different geographic regions (Duriez et
al. 2001; Lee et al. 2010). In fact, isolates of phylogenetic
group B2 are more frequent among extra-intestinal patho-
genic strains (40–72%) than among commensal strains (9–
30%) (Bingen et al. 1998; Duriez et al. 2001; Gonçalves et
al. 2010b; Hilali et al. 2000; Johnson et al. 1991; Picard et
al. 1999). These differences in the distribution of the
phylogenetic groups from human origin may be due to
geographical and climatic conditions, by dietary factors
and/or the use of antibiotics. About 80% of the ESBL-
containing Escherichia coli isolates recovered from poultry
in Portugal belonged to the B1 (47.2%) and A (33.3%)
phylogenetic groups and none of them were included in the
B2 group. The remaining isolates belonged to the phyloge-
netic group D (19.5%) (Costa et al. 2009; Machado et al.
2008). The prevalence of Escherichia coli of groups A
and B1 was also observed in pigs from a Portuguese
intensive swine farm with 87.5 and 12.5%, respectively
(Gonçalves et al. 2010b), while in captive ostrich, all the
three isolates belong to the phylogenetic group B1
(Carneiro et al. 2010). These results observed in Portugal
are in agreement with a study performed in poultry and
pig farms in Spain, where the phylogroup B1 (38.6%) was
predominant among isolates from poultry farms and the
phylogroup A (55.2%) was most frequently detected
among isolates from pig farms (Cortes et al. 2010). The
ESBL-containing Escherichia coli recovered from wild
animals, wild boars (Poeta et al. 2009), and birds of prey
(Pinto et al. 2010; Radhouani et al. 2010a), showed a
similar distribution between the phylo-groups A, B1 and
B2. Samples from seagulls showed that the isolates from
the phylogenetic A (37.5%) and B1 (47.5%) groups are
predominant (Poeta et al. 2008; Radhouani et al. 2009).
Furthermore, in contrast to the other wild animals in
which isolates from phylo-group D were not found, 7.5%
of the Escherichia coli recovered from seagulls belonged
to the phylogenetic group D.

Role of Enterococcus and Escherichia coli as commensal
bacteria

Although enterococci and Escherichia coli are the most
well-characterized bacteria and the most important indicator
organisms of fecal contamination of food and water,
relatively little is yet known about the structure of these
populations in their different hosts.

Concerning the enterococcal population, the predomi-
nant species found in fecal samples of human and animal
origin were E. faecium, followed by E. faecalis, and E.
hirae. Other species, as E. durans, E. gallinarum, and E.
casseliflavus were found with lower frequencies; however,
the enterococcal species distribution among isolates from
fecal samples varied between the different sources. More-
over, the origins of the differences in the enterococcal
species distribution, when compared with other studies. are
not clear, but may be a result of resistance and flexibility of
Enterococcus spp., to differences related to the geographical
regions, or to the diet (which may alter the composition of
the intestinal microbial flora), or by incorrect species
identification.

Enterococci may play a beneficial or a detrimental role
in foods. They may cause spoilage or they may contribute
to ripening and flavoring processes of certain foods. A
special application concerns their use as indicator strains to
detect fecal contamination of water. Enterococcus spp. also
produce a large number of bacteriocins, the so-called
enterocins (Franz et al. 2007), which are small peptides
with antimicrobial activity towards closely related Gram-
positive bacteria including spoilage or pathogenic bacteria,
such as Listeria (Foulquie Moreno et al. 2006). Some
enterococcal bacteriocins are also active against viruses.
Bacteriocin production helps enterococci to colonize the
gastrointestinal tract and this also contributes to the
inhibition of pathogenic organisms in the intestine (Todorov
et al. 2010; Wachsman et al. 1999).

Moreover, enterococci are nowadays used as probiotics
(Franz et al. 1999, 2003). Probiotic consumption is reported

Table 2 Phylogenetic group distribution among Escherichia coli isolates

Source Number (%) of isolates of the different Escherichia coli phylogenetic groups References

A B1 B2 D

Healthy human (n=58) 5 (8.6) 6 (10.4) 38 (65.5) 9 (15.5) (Barreto et al. 2009; Guimaraes et al. 2009)

Poultry (n=36) 12 (33.3) 17 (47.2) - 7 (19.5) (Costa et al. 2009; Machado et al. 2008)

Ostriches (n=3) - 3 - - (Carneiro et al. 2010)

Pigs (n=16) 14 (87.5) 2 (12.5) - - (Gonçalves et al. 2010b)

Seagulls (n = 40) 15 (37.5) 19 (47.5) 3 (7.5) 3 (7.5) (Poeta et al. 2008; Radhouani et al. 2010a)

Wild boars (n=8) 2 (25.0) 3 (37.5) 3 (37.5) - (Poeta et al. 2009)

Birds of prey (n=42) 10 (23.8) 19 (45.2) 13(31.0) - (Pinto et al. 2010; Radhouani et al. 2010a)

Total (n=203) 58 (27.9) 69 (34.3) 57 (28.4) 19 (9.5)
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to have beneficial effects, including enhanced immune
response, improving the intestinal microbial balance,
reduction of fecal enzymes implicated in cancer initiation,
vaccine adjuvant effects, treatment of diarrhea associated
with travel and antibiotic therapy, control of rotavirus and
Clostridium difficile-induced colitis, and prevention of
ulcers related to Helicobacter pylori. Probiotics are also
implicated in the reduction of serum cholesterol, the
antagonism against food-borne pathogens and tooth decay
organisms, as well as candidiasis and urinary tract infec-
tions (Saavedra 2001). However, at the same time,
enterococci have been associated with a number of human
infections. Several virulence factors have been described,
and the number of vancomycin-resistant enterococci is
increasing. The controversial nature of enterococci has
prompted an enormous increase in scientific papers and
reviews in recent years, in which researchers have been
divided into two groups, namely pro and contra enterococ-
ci. For this reason, further studies are essential to determine
the enterococci population not only in humans but also
from animals and even from other origins.

The Escherichia coli data suggest that isolates of the A
and B1 phylogenetic groups are predominant in the gut
flora of animal origin and that these isolates must probably
acquire virulence factors to become pathogenic. In contrast,
the phylogenetic group B2 isolates were the most common
in human samples and, because these are highly pathogenic
and frequently responsible for extraintestinal infections in
humans, may represent a major public health problem. The
structure of Escherichia coli populations influences several
aspects of public health. Pathogenic subtypes of Esche-
richia coli are known to cause illness around the world
(Leclerc et al. 2001), and an increased understanding of the
genetic variability of populations in animal reservoirs can
inform epidemiological studies. Although the population
structure of several pathogenic isolates has been extensively
studied, little is known about the structure of commensal
strain populations. It is therefore essential that there are
further studies to determine the phylogenetic relationships
of Escherichia coli isolates from the normal gut flora of
healthy humans and animals, to establish a relationship
between the commensal and pathogenic Escherichia coli
strains.

Despite the vast information about this bacterium, the
ecology of Escherichia coli in the intestine of humans is
poorly understood. Escherichia coli is the major facultative
anaerobic inhabitant of the human gut, and commensal
Escherichia coli strains can outcompete against gut patho-
gens and seem to have a beneficial effect on several types of
intestinal disorders. For example, the Escherichia coli strain
Nissle 1917 is a commensal strain that has been used as a
probiotic agent to treat gastrointestinal infections in humans
since the early 1920s (Sartor 2005). This strain has the

ability to compete with pathogenic strains during biofilm
formation, a complex and heterogeneous matrix associated
with bacterial infections (Hancock et al. 2010). Furthermore,
Escherichia coli strain Nissle 1917 has been used as a
probiotic in human inflammatory bowel disease (Kamada et
al. 2005) to maintaining remission of ulcerative colitis
(Kruis et al. 1997; Rembacken et al. 1999) and Crohn’s
disease (Malchow 1997). Moreover, the development of
Escherichia coli probiotic strains may serve as the first line
of defence in protecting humans against colonization by
Escherichia coli intestinal pathogens (Leatham et al. 2009).

Analysis, perspectives and conclusions

Although the analysis described in this review is a
comparison of Enterococcus spp. and Escherichia coli
populations of different studies performed over a 10-year
sampling period in Portugal, an identical methodological
approach was used in these investigations, for the isolation
and identification of Enterococcus species and also for
Escherichia coli isolation and phylotyping.

Direct comparisons of Enterococcus and Escherichia
coli population structure in different host animals are rare in
the literature, and most of the studies have focused on only
a few host species (Gordon 1997; Jenkins et al. 2003; Kühn
et al. 2003; Layton et al. 2010). The aim of the present
review was to generate knowledge about these bacterial
population structures from different human and animal
sources in Portugal, and to show the importance of them as
normal inhabitants of the intestinal tract. Moreover, this study
also presents a global overview of a possible link between the
bacteria found in healthy human and certain animal species,
and also if the enterococci and Escherichia coli from these
sources can be found in human and animal infections.

Although is not possible to determine precisely the
causes of the origin of the differences in the Enterococcus
and Escherichia coli population distribution, there are
several factors that may be related to these bacterial
distribution rates.

Host specificity Certain host-specific variations in the
occurrence of different species in different animal hosts
are known to exist. In humans as well as in many other
animal species, E. faecalis and E. faecium are found most
frequently. The first is more common and usually occurs in
larger numbers than the second (Murray 1990). E. colum-
bae is specific for pigeons (Devriese et al. 1990), and E.
asini for donkeys (de Vaux et al. 1998), whereas E. cecorum
is a prominent member of the enterococcal flora of poultry
and pigs (Devriese et al. 1991, 1994). E. hirae is a frequent
inhabitant of the swine gut and may occur in poultry, cattle
dogs and cats (Devriese et al. 1987).
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Age variation In certain hosts, variations in the enterococ-
cal flora according to age have been reported. Enterococci
are among the dominant flora of the intestine in the very
first days of life in many animals, but they decline to
markedly lower levels after a few weeks of life. Age-
dependent variations in species distribution have been
observed in the enterococcal flora of chickens. E. faecalis
and E. faecium have been found to constitute the dominant
bacterial flora of the intestinal tract in 1-day-old chicks.
However, with age, the dominant species is E. faecium
following by E. hirae and E. durans. The latter species are
gradually replaced by E. cecorum at the age of 12 weeks
(Devriese et al. 2006). In cattle, age-dependent colonization
has also been described (Devriese et al. 1992b). Also, in
humans, E. faecalis largely outnumbers the other species in
infants less than 1 week of age (Noble 1978).

Diet and the effects of environmental stress The composi-
tion of the diet or the exposure of animals to stressful
environments can result in marked changes in the
intestinal microflora (Tannock 1997). A well-known
example of the influence food ingestion may have is the
low enterococcal content of fecal samples from breastfed
infants compared with formula-fed infants (Stark and Lee
1982). Moreover, food products may contain Enterococcus
and Escherichia coli bacteria and influence the intestinal
microbiota composition. However, the consumption of
some dairy products such as the Camembert cheese, that
does not contain either enterococci or enterobacteria, leads
to a significant increase of the E. faecalis population in
healthy humans guts, while the Escherichia coli popula-
tion remains unaffected (Firmesse et al. 2007).

Variation in different compartments The enterococcal flora
may differ in different compartments of the intestine, as has
been documented in chickens. E. durans and E. hirae were
part of the small intestinal flora of 3- to 4-week-old chicks
but were not detected in the crop and the ceca of the same
animals (Devriese et al. 1991).

Number of isolates recovered in fecal samples Normally,
and particularly in epidemiological studies, a large number
of samples are collected and cultivated, and only one or two
isolates per sample are picked for further analysis. It is
expected that the diversity values would be higher when
only one isolate per sample is picked from many samples
than when the same number of isolates is picked from
fewer samples. However, a large number of isolates per
individual may be required to adequately sample the
bacteria populations (Anderson et al. 2006). Moreover, a
study comparing the enterococcal populations in animals,
humans, and the environment showed that using fewer
samples but analyzing several isolates per sample may yield

results that describe the total diversity of the bacterial
population to be studied, as well as using more samples and
only one isolate per sample (Kühn et al. 2003).

Temporal variability The diversity of bacterial populations
may differ according to the collection period of the
samples. Sampling of stream water for over a year at two
separate farms where cattle have direct access to the
streams, showed high proportions of E. casseliflavus and
E. faecalis dominated the enterococcal community during
spring and fall, respectively (Molina et al. 2007). On the
other hand, E. faecium seemed to increase during winter.
Moreover, a study of diversity suggest that the Escherichia
coli populations in feces of individual humans, horses, and
cows are not temporally stable and experience significant
turnover on a monthly time scale but also that these
population characteristics can differ among host individuals
of the same species (Anderson et al. 2006).

On the other hand, there is also evidence that some
enterococcal species are mainly associated with several
virulence determinants and Escherichia coli isolates
responsible for extraintestinal diseases belong mainly to
the B2 group and, to a lesser extent, to the D group.

These factors highlight the potential importance not only
on the differences between host species, but also differences
in the animals age, diet, environment, etc., in the coloni-
zation with these bacteria in humans and animals.

Although there were a large number of strains isolated
from different human and animals over a 10-year study
period that strongly support the enterococcal and Esche-
richia coli population distribution, further studies should
be conducted to corroborate with the findings of this
review, taking into consideration a more robust sampling
from a larger number of animals, the analysis of samples
from environment sources such as from hospital, urban
and farm sewage, and the analysis of several isolates per
sample since fecal samples can show the presence of more
than one enterococcal species or Escherichia coli phylo-
genetic group strains. Since this review only demonstrates
the distribution of enterococcal and Escherichia coli
populations from samples recovered in Portugal, a collab-
oration with other international groups, covering other
European countries and the USA, should be taken in
consideration to allow an overview of the distribution of
these bacteria population at a global level. In addition,
genotyping analysis through the use of multi-locus
sequence typing (MLST) and/or pulsed-field gel electro-
phoresis (PFGE) should be performed to verify the clonal
diversity among strains.

In conclusion, there is an urgent need to know more
about enterococcal and Escherichia coli populations in
humans, animals and in nature. Knowledge of the entero-
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coccal species diversity and Escherichia coli phylogenetic
groups in the gastro-intestinal tract of human and animals is
substantially important since it has been suggested that
Enterococcus spp. and Escherichia coli could act as a
source of antimicrobial resistance and virulence determi-
nants. The data presented in this review, collected over
recent years from human and animal origins, can perform a
basis for further research on an epidemiological approach.
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