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Abstract Pseudomonas community structures were inves-
tigated by analyzing 16S rRNA clone libraries derived
from fertilized and unfertilized soil plots under corn—
alfalfa rotation in a long-term experiment. Amplified 16S
rRNA fragments derived by polymerase chain reaction (PCR)
were cloned and sequenced. A total of 729 clone sequences
were analyzed, of which 51 were possible chimeras and dis-
carded. The remaining clone sequences (678) belonged to y-
proteobacteria with 61.8 % (419) classified to the genus
Pseudomonas. Unclassified Gammaproteobacteria accounted
for 23.4 % of total clones sequences. Rarefaction analyses
showed a more diverse community structure of both Gam-
maproteobacteria and Pseudomonas in unfertilized than fer-
tilized field soils irrespective of plant types under cultivation.
Bacterial or Pseudomonas community structures differed sig-
nificantly between fertilized and unfertilized soil plots. Clone
sequences that are affiliated to Pseudomonas putida and P,
oryzihabitans were more prominent in libraries from fertilized
plots, while those that clustered with Pseudomonas frederiks-
bergensis were more often retrieved from unfertilized soil
plots. A strong influence of fertilizer applications on commu-
nity structure was supported by principal component analysis.
We conclude that long-term use of mineral fertilizers could
influence Pseudomonas community structure.
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Introduction

Mineral and organic fertilizer applications are used primar-
ily to enhance nutrient availability to plants, but they can
also affect soil microbial community structure and diversity.
Interest in environmentally sound agricultural practices has
resulted in an increase in studies that assess how different
cropping regimes affect microbial diversity in soil (Garbeva
et al. 2004; Lemanceau et al. 1995; O'Donnell et al. 2001).
However, due to the complexity of agricultural soil ecosys-
tems, and the vast diversity and the enormity of the popula-
tion inhabiting the environment, it is a challenging task
(McCaig et al. 1999; O'Donnell and Gorres 1999; Smit et
al. 2001; Torsvik et al. 1990). Perturbation of bacterial
community equilibrium populations by changes in environ-
mental conditions and soil management practices due to
seasonal and temporal variations have been extensively
reported (Peacock et al. 2001; Smit et al. 2001; van Elsas
et al. 2002), but data interpretation is not always conclusive
and reliable (Amann et al. 1995; Smit et al. 2001). This
could be predicted, since variations of microbial com-
munity structure and diversity due to seasonal and tem-
poral changes in nutrients and physical factors are slow
and gradual (Sun et al. 2004). Long-term (>10 years)
studies on bacterial community structure shifts in various
land use might provide a more reliable dataset required to
identify sustainable agricultural management practices
(Cruz-Martinez et al. 2009; Sun et al. 2004). We had a
unique opportunity to examine soil bacterial communities
following a long-term monoculture corn—alfalfa rotation ex-
periment with regular mineral fertilizer applications for over
40 years. The long-term experiment was started in 1959 in
southwestern Ontario, Canada, to study the effects of fertil-
ization, crop rotation, and climatic factors on yields (Drury
and Tan 1995).

One of the most important bacterial communities in soil,
which have recently been considered potential agricultural
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soil health bio-indicatorss, belongs to the genus Pseudomo-
nas (Garbeva et al. 2004). Members of this genus belong to
several distinct functional groups of environmental interest,
such as plant pathogens (Endert and Ritchie 1984; Ferrante
and Scortichini 2010; Sarkar and Guttman 2004), plant
growth promoters (Patten and Glick 2002; Raaijmakers
and Weller 2001), and xenobiotic degraders (Clausen et al.
2002; Park et al. 2004). Moreover, Pseudomonas species
can also play important roles as biological control agents
against soil-borne plant pathogens (Bolwerk et al. 2003;
Mazurier et al. 2009; Tambong and Hofte 2001).

Various culture-independent molecular methodologies
have become the preferred approach to study population dy-
namics and genetic diversity of soil microbial communities
(Torsvik et al. 1996). Analysis of the PCR-based cloned16S
rRNA gene libraries is routinely used to assess microbial
diversity in complex systems, as well as estimate effects of
disturbance on diversity (Duineveld et al. 2001; Dunn and
Stabb 2005; Lin et al. 2010; Sun et al. 2004). Also, PCR-
denaturing gradient gel electrophoresis (PCR-DGGE) of 16S
rRNA fragments is a highly sensitive culture-independent tool
for investigating changes in the bacterial community structure
(Ibekwe et al. 2001; Muyzer et al. 1993; Torsvik et al. 1996).
In preliminary studies, we used PCR-DGGE to assess changes
in the gross bacterial community structure. PCR-DGGE band
patterns from soils of different treatments were consistent and
indicated that bacterial community structure could have been
influenced by long-term mineral fertilizer applications in sam-
ples collected in 2007 and 2008. Sequencing and BLAST
search of some unique PCR-DGGE bands showed high sim-
ilarity to members of the genus Pseudomonas. Based on these
PCR-DGGE results, it was hypothesized that long-term min-
eral fertilizations could influence Pseudomonas community
structure and diversity.

The objective of this study was to analyze the community
structures of Pseudomonas in soils under long-term
(>40 years) applications of inorganic fertilizers (NPK) in a
corn—alfalfa rotation in comparison to control plots by clon-
ing and sequencing PCR-amplified 16S rRNA gene frag-
ments using soil microbial community DNA as the template.
The 16S rRNA clone sequences obtained were used to
perform rarefaction, phylogenetic, and principal component
analyses to assess the effects of fertilizer applications on
Pseudomonas community composition.

Materials and methods
Experimental site description and management
The land at the Eugene Whelan Experimental Farm site was

cleared of deciduous trees in the late 1800s or early 1900s and
the long-term study started in 1959. Detailed descriptions of
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the experimental site and soils have been reported
(Drury and Tan 1995; Drury et al. 2004). Briefly, the
soil at the experimental site, located at Woodslee, Ontario (42°
13'N, 82°44'W), was a Brookston clay loam (Humic Gleysol)
with mean particle distribution of 28.0 % sand, 35 % silt, and
37 % clay (Drury and Tan 1995). Based on climate data over
the period 20062008, the average annual temperature of this
site was 10.6 °C; an average maximum temperature during
sampling (September 2007) of 24.9 °C and an average mini-
mum temperature of 14.4 °C were recorded with average
monthly precipitation of 139.6 mm (Environment Canada
2008: http://climate.weatheroffice.ec.gc.ca/climateData/
monthlydata_e.hml). In 1959, 12 large unreplicated plots
(76.2 m long by 12.2 m wide) were established and consisted
of different cropping treatments with or without fertilizer
applications. Fertilized plots received annual applications of
16.8 kg Nha ', 29.3 kg P ha ', and 27.9 kg Kha ', applied to
all crops. Fertilized maize received an additional application
of 112 kg Nha ' per year of side-dressed incorporated ammo-
nium nitrate. A permanent grass treatment (S11) was mowed
to a height of 13—15 cm four to five times each year, when the
grass reached a height of 25 cm, and the residues were left on
the plots after mowing. Planting densities and management
including herbicides to control weeds have been reported
(Drury and Tan 1995).

Two fertilized plots (S2 and S5) and two unfertilized
plots (S8 and S7) were sampled for the study. Five replicate
cores of soil samples (0—-10 cm depth) were collected in
September 2007 from fertilized and unfertilized plots under
corn or alfalfa cultivation. The field-moist soil samples were
passed through a 2-mm sieve and stored at 4°C.

PCR, cloning and sequencing of partial 16S rRNA gene
sequence

Total soil DNA was extracted from 10-g samples using the
PowerMax™ Soil DNA Isolation Kit (MO Bio Laborato-
ries, Carlsbad, CA, USA). The quality of the DNA was
verified by agarose gel electrophoresis and the concentration
determined using the NanoDrop” ND-1000 spectrophotom-
eter (NanoDrop Technologist, Wilmington, DE, USA. Ali-
quots of the DNA were stored at —80°C.

Total soil community DNA was used as template for
PCR amplification of 16S rRNA gene using F311-Ps
(CTGGTCTGAGAGGATGATCAGT; Widmer et al. 1998)
and R1459Ps (AATCACTCCGTGGTAACCGT; Milling et
al. 2004). PCR mixture and conditions were as previously
reported (Tambong et al. 2006). PCR amplifications (40
cycles) were performed in a reaction mixture that included
1x buffer, 200 umol I"' dNTP, 400 nmol "' of each primer
and 0.75 U Titanium Taqg DNA polymerase (Clontech, Palo
Alto, CA, USA). PCR primers were synthesized by Invitro-
gen (Invitrogen, Carlsbad, CA, USA). PCR amplicons were
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cloned using TA PCR2.1-TOPO plasmid kit (Invitrogen). A
total of 800 clones were screened by PCR for the correct
inserts (approximately 1.1 kb) using M13 primers and the
resulting PCR amplicons sequenced with T7 and SP6 primer
pair (Invitrogen) following the manufacturer’s instructions.
Sequencing was done as previously described (Tambong
et al. 2006) using ABI BigDye Terminator chemistry v.3.0
(Applied Biosystems, Foster City, CA, USA) and run on an
ABI 3100-Avant automated sequencer (Applied Biosys-
tems/Hitachi). DNA sequences were edited in SeqMan soft-
ware (DNASTAR, Lasergene 8.1.5, Madison, USA) and
sequences were checked for chimeras using Mallard computer
program (Ashelford et al. 2006) with a cut-off of 99.9 %
deviation from expectation statistics using 16S rRNA of
Escherichia coli (GenBank entry U00096) as reference.

Taxonomic, rarefaction and phylogenetic analyses

16S rRNA sequences were assigned to taxonomic classes
using the Classifier, Ribosomal Database Project 10 (RDP
Classifier; Wang et al. 2007), a naive Bayesian tool based
upon taxonomic classifications in Bergey’s Taxonomic Out-
line of the Prokaryotes (Garrity et al. 2004). The sequences
were assigned to operational taxonomic units (OTUs) and
used to perform rarefaction analysis as implememented in
Distance-Based OTU and Richness Determination (DOTUR)
software with the furthest-neighbor clustering algorithm
(Schloss and Handelsman 2005). Sequences with more than
97 % homology were considered to belong to the same OTU.
Pair-wise collector’s curves were established to compare the
relative diversity and coverage of each library by plotting the
number of OTUs against the number of clones retrieved.

Initial phylogenetic analysis was performed using clone
sequences classified to the genus Pseudomonas and 107
type strains reported by Mulet et al. (2010). Type strains
of Pseudomonas species that did not cluster with any clone
sequence from our study were excluded. Maximum likeli-
hood was implemented in MEGA 5.0 (Tamura et al. 2011)
using 1,000 bootstrap replicates to generate the final phylo-
genetic trees for pair-wise comparison of clustering patterns.
The best-fit model (General Time Reversible) was selected
using the ]MODELTEST 0.1.1(Posada 2009).

Statistical analyses

Bacterial communities were statistically compared using
analysis of similarity (ANOSIM) (Clarke 1993) as imple-
mented in mothur (Schloss et al. 2009). The ANOSIM
procedure generates a test statistic, R, used to assess the
congruence among individuals grouped according to their
respective populations. Under the null hypothesis, the test
statistic R changes little when labels identifying populations
are rearranged randomly, indicating no differentiation. The

values of R range between 1 (maximum) and O (no separa-
tion). Also, Cramer-von Mises test statistic (Libshuff meth-
od; Singleton et al. 2001) was used to test whether the
different Pseudomonas communities have the same struc-
ture. The significance of the test statistic indicates the prob-
ability that the communities have the same structure by
chance. [-Libshuff analysis was implemented in mothur
(Schloss et al. 2009) using the exact and integral form
(Schloss et al. 2004) of the Cramer-von Mises statistic.
Finally, principal coordinate analysis was performed to vi-
sualize the effects of fertilizer applications on Pseudomonas
community structures based on the 16S rRNA sequences
retrieved from each soil plot. This analysis was implemented
using Unique Fraction metric (UniFrac; Lozupone and Knight
2005) software, a web-based program for comparing micro-
bial communities.

Nucleotide sequence accession numbers

A total of 419 Pseudomonas 16S tRNA gene sequences
obtained in this study are available in the National Center
for Biotechnology Information database under the accession
numbers HM011621-HM012039.

Results

Our goal was to evaluate Pseudomonas community struc-
ture and diversity in a long-term fertilizer application study
using PCR-based cloning, sequencing, and analysis of am-
plified 16S rRNA gene fragments.

Taxonomic and rarefaction analyses of 16S rRNA clone
libraries

Five 16S rRNA gene sequence libraries were constructed
from unfertilized and fertilized plots under corn or alfalfa
and from a fallow plot with permanent grass. A total of 729
sequences were generated, of which 51 identified as chime-
ric and discarded. The proportion of chimeric sequences in
each treatment was not statistically different. All the remain-
ing sequences (678) were assigned to taxonomical hierarchy
within Gammaproteobacteria (domain bacteria).

Figure 1 shows the distribution of the retrieved taxa
within each clone library. All libraries had sequences that
are affiliated to the genus Pseudomonas, unclassified Gam-
maproteobacteria, and the genus Lysobacter; and these 3
distinct groups constituted 96.2 % of all the clones retrieved.
Clones belonging to the genus Pseudomonas made up
61.8 % of all the clones retrieved. Clone library from plot
8 (unfertilized corn) showed a significantly (»p<0.01) higher
number of clones that belonged to Lysobacter and unclassi-
fied Gammaproteobacteria and a significantly low number
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Fig. 1 Distribution of 678 16S rRNA sequences to hierarchical taxa
using the Ribosomal Database Project 10 Classifier (Wang et al. 2007),
a naive Bayesian tool based upon taxonomic classifications in Bergey’s
Taxonomic Outline of the Prokaryotes (Garrity et al. 2004). Sequences
were obtained in 2007 after subcloning of PCR-amplified products of
total community DNA extracted from fertilized and unfertilized soils
under long-term rotation plots

of clone sequences that could be affiliated with Pseudomo-
nas (Fig. 1). Plot 11 (fallow, under grass, and unfertilized)
had significantly (»p<0.01) higher number of clone sequen-
ces affiliated to unclassified Gammaproteobacteria. Other
minor bacterial groups retrieved could be affiliated to the
genera Cellvibrio and Flavimonas or unclassified Betapro-
teobacteria class or unclassified Oceanospirillales order.
Rarefaction analysis performed by plotting the numb-
ers of OTUs at 3 % distance level against the number
of clones sequenced (Fig. 2) showed that the bacterial
sequence populations from unfertilized soil treatments were
more diverse statistically compared with corresponding
groups from fertilized soil plots. The calculated rarefac-
tion curves did not reach a clear saturation for unfertil-
ized soil plots under either corn or alfalfa cultivation
(Fig. 2). Soil samples from plots under long-term min-
eral fertilizer applications showed apparent saturation
especially in plots under alfalfa cultivation (S5). Com-
parison of rarefaction curves between unfertilized plots
(S7 and S8) and permanent grass (S11) did not reveal
significant differences in diversity (data not shown).
Also, in pair-wise comparisons, ANOSIM showed a
clear separation among corresponding populations de-
rived from fertilized and unfertilized plots, with global
R statistics of 0.033 (P<0.001) or 0.080 (P<0.001)
under alfalfa or corn cultivation, respectively. Pair-wise
[-Libshuff analysis supported observations of ANOSIM
with ACxyscores of 0.00145 (P<0.0001) or 0.00072
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Fig. 2 Rarefaction curves (3 % distance level) generated from 16S
rRNA sequences of Gammaproteobacteria community in the bacterial
clones retrieved. Numbers of operational taxonomic units were signif-
icantly lower in fertilized compared to unfertilized soil plots under
alfalfa (S5 vs. S7) (a) or corn (S2 vs. S8) (b). Analysis was performed
with DOTUR (Schloss and Handelsman 2005) using furthest neighbor
assignment algorithm with 16S rRNA library of the different treat-
ments. Error bars 95 % confidence intervals. The provided Analysis of
Similiarity (ANOSIM) R statistic values show highly significant popula-
tion structure differences between fertilized soils and their corresponding
unfertilized field plots

(P<0.0001) between corresponding populations derived from
fertilized and unfertilized soil plots under alfalfa or corn
cultivation respectively.

Analyses of Pseudomonas community structures

From the 5 libraries, a total of 419 clones were classified to
the genus Pseudomonas. We analyzed the different result-
ing Pseudomonas populations to determine whether fer-
tilizer applications affected the community structure
associated with each soil plot. The Cramer-von Mises statistic
of pairwise comparisons of the different populations revealed
highly significant differences with P<0.0001 except for
unfertilized soil plot pair that showed a P value of 0.017
(Table 1).

Phylogenetically, the 419 clone sequences clustered with
19 type strains. Representative ML trees are shown in
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Table 1 [-Libshuff pairwise comparison of Pseudomonas community structures in fertilized and unfertilized soil plots using Cramer-von Mises test

statistic®

Soil treatment

Fertilized soil under corn (S2) versus fertilized soil under alfalfa (S5)
Fertilized soil under corn (S2) versus unfertilized soil under alfalfa (S7)

Fertilized soil under corn (S2) versus unfertilized soil under corn (S8)

Fertilized soil under alfalfa (S5) versus unfertilized soil under alfalfa (S8)

Fertilized soil under alfalfa (S5) versus unfertilized soil under corn (S8)

Unfertilized soil under alfalfa (S7) versus unfertilized soil under corn (S8)

ACXY Score P
0.00043446 <0.0001
0.00198467 <0.0001
0.000963 <0.0001
0.00121828 <0.0001
0.00106402 <0.0001
0.00020923 0.0172

Highly significant differences in Pseudomonas community structures except for unfertilized soil plot pair (S7 vs. S8); P probability
#Based on Libshuff method as implemented in mothur (Schloss et al. 2009)

Fig. 3a, b. The majority of the sequences within the different
populations did not cluster with any of the type strains and
were considered as uncultivated potential new Pseudomo-
nas genotypes (group I) with low similarity to P. amygdali
or P. avellanae. The percentage number of uncultivated
genotypes was similar between fertilized soil plots and their
corresponding unfertilized plots. Under corn cultivation,
42.0 or 42.6 % of clones retrieved did not group with any
described type strains, while a 65.0 % or 70.0 % rate was
observed for plots under alfalfa cultivation. The main clus-
ters of sequences retrieved from fertilized soil plots under
corn cultivation (S2) could be associated to P. oryzihabitans
(Fig. 3a, cluster A) and P, putida (Fig. 3a, cluster B), while
the clones from the corresponding unfertilized soil plot (S8)
were strongly associated with P. frederiksbergensis (Fig. 3b,
cluster C). Similar clustering patterns were observed between
Pseudomonas populations retrieved from fertilized soil plot
under alfalfa cultivation and the corresponding unfertilized
soil plot (data not shown).

A principal coordinate analysis supported the hypothesis
that long-term mineral fertilizer applications to soil plots
could influence Pseudomonas community structure. Pseu-
domonas clone libraries from fertilized field plots, irrespec-
tive of the crop type under cultivation, clustered closely (PC1
and PC2) while a similar trend was observed with clone
libraries from unfertilized plots (Fig. 4). The analyses also
revealed a potential but less pronounced effect of crop species
(PC1 vs. PC3; Fig. 4). The unfertilized permanent grass plot
(S11) showed a loose relationship (P3 vs. P2) with the other
unfertilized plots (S7 and S8) (data not shown).

Discussion

This study demonstrated that the community structure of
Pseudomonas is influenced by long-term (>40 years) min-
eral fertilizer amendments. Analysis of 16S rRNA clone
libraries using a suite of tools supports this hypothesis.
The use of a culture-independent method for studying 16S

rRNA bacterial diversity has proved to be a powerful tool
for evaluation of shifts in community structures (Amann et
al. 1995; Baati et al. 2010; Sun et al. 2004). This approach
was adopted because of the limitations of traditional techni-
ques using pure cultures, which are reported to represent
only a small proportion (0.1-10 %) of the total soil bacteria
(Amann et al. 1995; Colwell 2009; van Elsas et al. 2002).
This is corroborated to an extent in our study since a high
proportion (>40 %) of retrieved clone sequences did not
cluster with cultured described type strains. The ability of
16S rRNA cloning to sample the phylogenetic diversity in
natural communities more comprehensively than cultivation
is characteristic of the method (Dunbar et al. 1999; Ludwig
et al. 1997).

The primer set (F311 Ps/R1459 Ps) reported to be Pseu-
domonas-specific (Costa et al. 2007; Milling et al. 2004)
consistently amplified 16S rRNA fragments of the genus
Lysobacter (Xanthomonadaceae Family) and genus Cellvi-
brio (Pseudomonadaceae family). A few of the retrieved
clones were classified as members of the genus Flavimonas,
an indication of 16S rRNA sequence similarity to the primer
set used in this study. This is not surprising given that the
genera Flavimonas and Chryseomonas are junior subjective
synonyms of Pseudomonas (Anzai et al. 1997).

Our study supports the general view that soil manage-
ment practices could influence shifts in bacterial community
structure (Buckley and Schmidt 2003; Peacock et al. 2001;
Sun et al. 2004). However, long-term soil management
practices would show a more significant impact than short-
term land use (Buckley and Schmidt 2003; Sun et al. 2004).
We analyzed soil plots that have been treated or not with
mineral fertilizer for more than 40 years, and obtained
substantive data on its influence on Pseudomonas commu-
nity structure. For example, based on the rarefaction analy-
sis, all fertilized plots consistently and significantly showed
less diverse gammaproteobacteria populations than unfertil-
ized plots, suggesting that recognizable gammaproteobacte-
ria community structures have established in relation to
long-term (>40 years) mineral fertilizer amendments. These
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Fig. 3 (continued)
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Fig. 4 First three principal
coordinates from principal
component analysis (PCA)
based on 419 rRNA
Pseudomonas sequences of
unfertilized and fertilized soil
plots under long-term corn-
alfalfa rotation (cf. “Materials
and methods” for details). PCA
was implemented using
UniFrac software package
(Lozupone and Knight 2005) to
measure the relative contribu-
tions of different factors
(fertilizer treatment and plant
type) to similarities between
samples. The percentages in the
axis labels represent the per-
centages of variation explained
by the principal coordinates
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results are in agreement with the conclusions of Buckley
and Schmidt (2003) and Sun et al. (2004). A similar trend in
Pseudomonas community structure was observed in fertil-
ized and unfertilized plots under alfalfa cultivation.

Unfertilized plot (S8) under corn cultivation showed a
low number of clones that belonged to the genus Pseudo-
monas compared to the other plots. This low number of
sequences of Pseudomonas-like clones retrieved could be
attributed to the unexpectedly high Lysobacter-like clones in
the same soil plot. The proportion of Lysobacter-like clones
retrieved from the unfertilized soil plot (S8) under corn
cultivation was at least three times higher than in each of
the other field plots. It is not clear why this unfertilized plot
exhibited a high abundance of Lysobacter-like clones. It is
possible that the order of crop rotation, a year of oat/alfalfa
followed by a 2-year continuous alfalfa cultivation on this
plot, might have enhanced the population of Lysobacter.
The ecology of Lysobacter is not clear, but soil and plant
types and seasonal factors are reported to influence their
population (Hayward et al. 2010). Cultivation of clover
seems to stimulate Lysobacter populations (Postma et al.
2008). However, its corresponding fertilized soil plot (S2)
under the same rotation sequence did not show a similar
abundance level of Lysobacter, which could be attributed
partly to potential effects of long-term mineral fertilizer
applications. Also, the unfertilized fallow (grass) plot
(S11) had at least twice the clone abundance of unclassified
Gammaproteobacteria (>50 % of retrieved clones), an indi-
cation that this plot harbors potential new genotypes of this
predominant class of bacteria. Based on BLAST results,
some of the clone sequences from this soil plot (11) were
highly similar to Pseudomonas syringae, an indication that this
plot could be a reservoir for this potential plant-pathogenic
bacterium.

Phylogenetic analysis of the 16S rRNA clones indicated
high association of P. putida and P. oryzihabitans with plots
that received long-term mineral fertilizer applications. This
could be partly due to the versatility of members of these
two species in soils. Pseudomonas putida is a well-studied
versatile Gram-negative bacterium that possesses most
genes of any known species involved in bioremediation of
several organic environmental pollutants. Aerobic denitrifi-
cation by some P. putida strains has been reported (Lin
1999; Kim et al. 2008), while Carter et al. (1995) reported
the expression of a periplasmic nitrate reductase in Pseudo-
monas putida 2.9 (Carter et al. 1995). Unlike P. putida, P
oryzihabitans is not well studied, but most of its strains
reduce nitrate to nitrite, without denitrification (Palleroni
2005). The recovery of clone sequences that affiliated with
P putida or P. oryzihabitans mainly from soil plots that
received long-term fertilizer applications species is, proba-
bly, the first report in which these 2 species are associated
strongly with long-term mineral fertilizer applications.

A strong and consistent effect of fertilizer applications
was evident in this study. Principal component analysis
allowed for visualization of the influence of fertilizer appli-
cation. While fertilizer effects were strong, only a relatively
weak influence of crop type on bacterial community struc-
ture and diversity was observed. This is contrary to the
conclusions of Buckley and Schmidt (2003) and Sun et al.
(2004) on continuous winter wheat (Triticum aestivum L.).
This discrepancy could be attributed to the fact that our
study was in a crop rotation experiment in which the plant
type is changed more frequently. An alfalfa crop effect was
more pronounced than that of corn, probably because of the
implemented sequence of rotation which favored the former.
For example, in a 4-year rotation period, alfalfa was cropped
three times either as monoculture or intercropped with oat.
This duration of alfalfa cropping could have a significant
influence on bacterial community structure and diversity.
This sequence of crop rotation was adopted since corn
disproportionately depletes soil nutrients, while alfalfa
plants, because they have root nodules containing nitrogen-
fixing bacteria, could improve soil fertility.

In conclusion, despite limitations inherent to culture-
independent approaches, such as DNA extraction efficiency,
competitive PCR amplifications of non-target DNA, and
DNA amplification of non-viable cells, the use of this ap-
proach to investigate Pseudomonas community structure
supports the accumulating evidence that mineral fertilizer
application could influence shifts in microbial populations.
The strength of our data in corroborating this general view
could be due to the fact that we had the unique advantage of
sampling long-term field plots that would have allowed for
preferential accumulation of specific bacterial genotypes.
The sustainability of agricultural systems is dependent on
adapting management practices that conserve and maintain
soil microbial biodiversity.
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