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Abstract Microbial communities play a crucial role in
various biogeochemical processes in aquatic ecosys-
tems. However, existing knowledge on microbial com-
munities in the waters of wetlands is still very scant.
The objective of the present study was to investigate
the bacterioplankton community in the Luoshijiang
Wetland, a high-altitude freshwater wetland in the
Yunnan-Kweichow Plateau. Water samples were collect-
ed from different sites. The bacterioplankton communi-
ty was characterized using 16S rRNA gene clone li-
brary analysis. A spatial variation of the diversity and
composition of the bacterioplankton community was
observed. Verrucomicrobia and Proteobacteria were
the most abundant components. Proteobacteria might
play an important role in water self-purification, but the
significance of Verrucomicrobia remained unclear.
Moreover, Pearson’s correlation analysis showed that
Actinobacteria and Gemmatimonadetes were positively
correlated with nitrite nitrogen in waters, while
Alphaproteobacteria with dissolved phosphorous.
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Introduction

Microbial communities play vital roles in decomposition
of organic matter, remineralization of nutrients, and bio-
geochemical cycling in terrestrial and aquatic environ-
ments. Wetlands are unique ecosystems, and can act as
ecotones between terrestrial and aquatic systems (Menon
et al. 2013). Wetlands are important players in nutrient
cycling, sediment accretion, pollution filtration, and ero-
sion control (Qin and Mitsch 2009). Knowledge of micro-
bial communities can greatly contribute to our understand-
ing of the complex processes within wetland ecosystems.
To date, little is known about microbial communities in
wetland ecosystems. A few previous studies indicated that
microbial community structure in wetlands was dependent
on soil type (Tang et al. 2012; Peralta et al. 2013), soil
depth (Tang et al. 2012), carbon and nitrogen sources
(Morrissey et al. 2013), vegetation (Akiyama et al.
2010), and successional stage (Tang et al. 2011). These
previous studies focused on soil microorganisms in wet-
lands. However, the bacterioplankton community is also a
key component in aquatic ecosystems, due to its efficient
nutrient uptake, high abundance, and large growth poten-
tial (Parveen et al. 2013). Unfortunately, information on
bacterioplankton communities in the waters of wetlands is
still very limited (Dorador et al. 2013).

The Luoshijiang Wetland, a typical freshwater wetland in
the Yunnan-Kweichow Plateau, is located in Dali City, Yun-
nan Province. The fresh wetland is adjacent to the Rrhai Lake,
the second largest high-altitude lake in Yunnan Province. The
wetland covers an area of 1 km2 with an elevation of about
2,056 m and is surrounded by farmlands. Annual mean air
temperature and annual precipitation in the local region were
15.7 °C, and 1000–1200 mm, respectively. To date, informa-
tion on microbial communities in high-altitude wetlands is
still very scant. Tang et al. (2012) investigated soil bacterial
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communities in the Zoige Wetland of the Qinghai-Tibetan
Plateau in China. Dorador et al. (2013) reported on microbial
diversity of five high altitude wetlands from the Chilean
Altiplano. Unfortunately, there has been no report on micro-
bial communities in other high-altitude wetlands. Therefore,
the main objective of the current study was to investigate the
bacterioplankton community structure of the Luoshijiang
Wetland.

Materials and methods

Study sites and water sampling

Surface water samples (0–20 cm) in triplicate from four dif-
ferent sites of the Luoshijiang Wetland were collected in
March 2013: A (25°57′25″N–100°06′06″E, no vegetation
zone), B (25°57′12″N–100°05′59″E, reed-planted zone), C
(25°57′4″N–100°06′00″E, densely water-lily-planted zone),
and D (25°56′55″N–100°05′59″E, sparsely water-lily
planted zone) (Fig. 1). At the time of sample collection, the
temperature and pH of the four samples were about 15 °C and
7.5, respectively. The chemical parameters of the water sam-
ples are shown in Table 1.

Bacterial clone library analysis

For analysis of the bacterial community, water samples
(250 mL) were filtered through 0.22-μm-pore-size mem-
branes (diameter 50 mm; Millipore). The membrane filter

was cut into quarters with a sterile scalpel and was used for
further molecular analysis. DNA was extracted using the
E.Z.N.A.® Water DNA kit (Omega, USA) according to the
manufacturer’s protocol. Bacterial clone libraries were con-
structed according to the literature (Zhang et al. 2012; Lu et al.
2013). Briefly, bacterial 16S rRNA genes were amplified
using primers 27 F (5′-GAGTTTGATCMTGGCTCAG-3′)
and 1492R (5′-GGTTACCTTGTTACGACTT-3′). The puri-
fied PCR products were cloned into pGEM-T-easy Vector
(Takara Corp, Japan), and clones containing an insert of the
correct size were sequenced. Chimera-free bacterial sequences
with ≥97 % identity were grouped as operational taxonomic
units (OTUs). OTUs, rarefaction curves, and Shannon diver-
sity index were determined using the DOTUR program
(Schloss and Handelsman 2005). The Ribosomal Database

Fig. 1 Schematic representation
of the Luoshijiang Wetland and
sampling sites.

Table 1 Chemical parameters of water samples

Parameters Sample A Sample B Sample C Sample D

TN (mg/L) 3.84 2.62 2.99 1.92

NH4
+-N (mg/L) 0.27 0.04 0.15 0.07

NO3
--N (mg/L) 0.16 0.26 0.02 0.01

NO2
--N (mg/L) 0.01 0.01 0.01 0.26

DOC (mg/L) 28.7 35.0 41.0 34.0

TP (mg/L) 0.19 0.07 0.10 0.09

DP (mg/L) 0.07 0.02 0.01 0.02

TN total nitrogen;DOC dissolved organic carbon; TP total phosphorous;
DP dissolved phosphorus
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Project analysis tool “classifier” ( http://rdp.cme.msu.edu/
classifier/classifier.jsp) was used to determine the taxonomic
identities of the bacterial sequences (Wang et al. 2007). In
addition, Pearson’s correlation analysis of the bacterial com-
munity structure with the determined chemical parameters
was performed using SPSS 20.0 software.

Nucleotide sequence accession numbers

The sequences obtained in this study were submitted to
GenBank under accession numbers KF443412–KF443504
for Sample A, KF443505 –KF443596 for Sample B,
KF443597–KF443691 for Sample C, and KF443692 –
KF443782 for Sample D, respectively.

Results

Bacterial diversity

A total of 91– 95 bacterial sequences were retrieved from each
sample. Based on the threshold of 3 % difference, OTUs,
rarefaction curves, and Shannon diversity index were obtained
using the DOTUR program (Schloss and Handelsman 2005).
Clone libraries with Samples A, B, C, and D were composed
of 26, 35, 9, and 20 OTUs, respectively (Table 2). The

Shannon diversity index of bacterial community in Sample
C was only 0.7, much lower than that in the other three
samples (1.7– 3.2).

The rarefaction curve for Sample C approached a plateau,
indicating that the community was well sampled but had a
very low bacterial diversity (Fig. 2). However, the rarefaction
curves for Samples A, B, and D did not level off completely,
suggesting that further sequencing would have resulted in
more OTUs in each sample.

Bacterial community composition

The bacterial phylum composition of the four water samples is
shown in Fig. 3. In this study, six known phyla were identified
in these samples including Proteobacteria , Actinobacteria ,
Bacteroidetes , Cyanobacteria , Gemmatimonadetes , and
Verrucomicrobia . However, only Proteobacteria ,
Bacteroidetes , and Verrucomicrobia were shared among all
the four water samples. A shift in the composition of major
bacterial groups was found in the different sampling sites in
the Luoshijiang Wetland. For example, the major bacterial
groups (with relative abundance no less than 10 %) in both
Sample A and Sample D were Verrucomicrobia (64.5 % or
65.9%) andGammaproteobacteria (12.9 % or 15.4%), while
Verrucomicrobia (88.4 %) predominated in Sample C. Sam-
ple B was mainly represented by Verrucomicrobia (43.5 %),
Betaproteobacteria (25 %), and Gammaproteobacteria
(17.4 %).

Table 3 shows the Pearson’s correlation coefficients for the
relationship between the proportion change of the major bac-
terial groups and water chemical properties. Actinobacteria
and Gemmatimonadetes had a significant positive correlation
with nitrite nitrogen (p <0.05). Alphaproteobacteria also
showed a significant positive correlation with dissolved phos-
phorus (p <0.05). However, other major bacterial groups did
not show any significant correlation with the determinedwater

Table 2 OTU-based community richness and diversity indices for Sam-
ples A–D

Sample No. of sequences OTUs Shannon index

A 93 26 2.6

B 92 35 3.2

C 95 9 0.7

D 91 20 1.7
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chemical parameters. Correlation analyses were limited by the
very low number of samples analyzed (n =4).

Table 4 illustrates the abundance and distribution of the 24
known genera detected in the four samples. At the genus level
of taxonomic classifications, variations of bacterial communi-
ty structure among the four samples were more evident. For
Samples A and B, a large portion of sequences (50/93 or 61/
92) could be classified at the genus level. In contrast, for
Samples C and D, only a small portion of sequences could
be related to known bacterial genera. A total of 14 genera were
present only in a single sample. Members of genus
Luteolibacter were dominant in Samples A and B, but were
detected with much lower abundance in Samples C and D.
Haloferula was the third largest component in Sample A,
while the minor one in the other samples. These results indi-
cate a large spatial variation of verrucomicrobial communities
in the investigated wetland. Moreover, the abundance and
composition of proteobacterial communities also differed
greatly among the four different samples.

Discussion

Bacterial community in the water body of freshwater ecosys-
tems is usually highly diverse (Humbert et al. 2009; Kwon
et al. 2011; Kadnikov et al. 2012). However, to the authors’
knowledge, this was among the first reports on diversity of
bacterioplankton communities in freshwater wetlands. A spa-
tial variation of bacterioplankton community diversity was
observed in the Luoshijiang Wetland.

Verrucomicrobia is a universally distributed phylum and
can be present in terrestrial and aquatic habitats (Arnds et al.
2010; Freitas et al. 2012; Parveen et al. 2013) and manmade
bioreactors (Feng et al. 2013; Liao et al. 2013a, b). The
reported isolates from phylum Verrucomicrobia could utilize
various carbon compounds (Arnds et al. 2010). Little attention
has been paid to the abundance of aquatic Verrucomicrobia ,
although a few previous studies have shown the dominance of
Verrucomicrobia in the waters of freshwater lakes (Lindström
et al. 2004; Arnds et al. 2010; Kolmonen et al. 2011). The
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quantitative contribution of the
sequences affiliated with different
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number of sequences from
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classified to any known phylum
are included as unclassified
bacteria.

Table 3 Pearson’s correlation coefficients describing the relationship between water characteristics and the change of the relative abundance of major
bacterial groups

TN NH4
+-N NO3

--N NO2
--N DOC TP DP

Alphaproteobacteria 0.724 0.627 0.609 -0.372 0.752 0.803 0.953a

Betaproteobacteria -0.021 -0.453 0.930 -0.351 0.861 -0.272 0.025

Gammaproteobacteria -0.312 -0.396 0.570 0.346 0.619 -0.138 0.246

Actinobacteria -0.770 -0.378 -0.578 0.999a -0.526 -0.337 -0.246

Bacteroidetes -0.659 -0.203 -0.876 0.893 -0.842 -0.280 -0.362

Cyanobacteria -0.021 -0.478 0.915 -0.409 0.826 -0.322 -0.053

Gemmatimonadetes -0.770 -0.378 -0.578 0.999a -0.526 -0.337 -0.246

Verrucomicrobia 0.156 0.429 -0.822 0.001 -0.820 0.184 -0.190

TN total nitrogen; DOC dissolved organic carbon; TP total phosphorus; DP dissolved phosphorus
a Correlation is significant at the 0.05 level.
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abundance of Verrucomicrobia in lakes might be positively
correlated with nutrient-richness and phosphorus availability,
and could vary between seasons and between more and less
humic basins (Arnds et al. 2010). However, de Figueiredo
et al. (2007) found that Verrucomicrobia was associated with
the most oligotrophic aquatic ecosystems and low pH values.
To date, the existing information on the abundance and distri-
bution of Verrucomicrobia in the waters of wetlands is very
scant. Dorador et al. (2013) revealed a low abundance of
Verrucomicrobia in high-altitude wetlands of the Chilean
Altiplano. To the authors’ knowledge, this was the first report
on the dominance of Verrucomicrobia in the waters of wet-
lands. In this study, Verrucomicrobia was the largest compo-
nent in the bacterial communities, but its relative abundance

varied among the different sampling sites. Surprisingly, no
s i gn i f i c an t co r r e l a t i on was obse rved be tween
Verrucomicrobia and the determined water chemical parame-
ters. Therefore, further efforts are necessary in order to eluci-
date the links between Verrucomicrobia and the environmen-
tal parameters in aquatic ecosystems.

Luteolibacter (Verrucomicrobia ) was the largest genus
detected in the Luoshijiang Wetland. To the authors’ knowl-
edge, this was the first report on the dominance of
Luteolibacter in a freshwater ecosystem. Members of genus
Luteolibacter have been isolated from activated sludge (Park
et al. 2013), Arctic tundra soil (Jiang et al. 2012), marine
environments (Yoon et al. 2008), and leek rhizosphere (da
Rocha et al. 2011). Unfortunately, the role of Luteolibacter
species in the environment remains largely unclear. Only a
recent study indicates Luteolibacter algae H18 could assim-
ilate fucoidan as a sole carbon source (Ohshiro et al. 2012).
Moreover, information on the other detected verrucomicrobial
generaHaloferula , Prosthecobacter, andOpitutus is still very
limited, and their ecological roles also remain unclear. There-
fore, further study is necessary in order to elucidate the sig-
nificance of the dominance of phylum Verrucomicrobia in
wetland.

Phylum Proteobacteria might play active roles in biodeg-
radation of organic pollutants and carbon cycling, and various
biogeochemical processes in aquatic ecosystems (Cheng et al.
2013). Proteobacteria (mostly Alpha -, Beta -, and
Gammaproteobacteria ) usually predominate in freshwater
habitats (Kwon et al. 2011). There have also been a few reports
on the abundance and composition of Proteobacteria in the
waters of high-altitude lakes. Sommaruga and Casamayor
(2009) found that Betaproteobacteria commonly predominat-
ed in high-altitude lakes in the Mount Everest region (Nepal).
Betaproteobacteria was also the dominant group in Lake
Namco, the largest Tibetan lake (Liu et al. 2013a). Wu et al.
(2006) revealed that, in 16 high-mountain lakes located on the
Tibetan Plateau (China), Betaproteobacteria was abundant in
all freshwater lakes, while Alpha- and Gammaproteobacteria
gained much higher abundance in saline lakes. However, very
limited information exists on the abundance and composition
of Proteobacteria in the waters of wetlands. Dorador et al.
(2013) reported the abundance of Proteobacteria (alpha, beta,
gamma and delta subgroups) in high-altitude wetlands of the
Chilean Altiplano. In this study, Proteobacteria , composed of
alpha, beta and gamma classes, was the second largest phylum
in the Luoshijiang Wetland, but a marked shift in its relative
abundance occurred in the different sampling sites.
Alphaproteobacteria was detected with low abundance in all
the water samples and was positively correlated with dissolved
phosphorus (p <0.05). Betaproteobacteria was one of the ma-
jor components in Sample B (25 %), but became much less
abundant in the other sampling sites. Gammaproteobacteria
was abundant in Samples A, B and D. However,

Table 4 Distribution of the sequences affiliated with the identified
genera in Samples A–D

Phylogenetic affiliation Sample A Sample B Sample C Sample D

Alphaproteobacteria

Rhodobacter —a 2 — —

Sphingomonas — — — 1

Betaproteobacteria

Polynucleobacter 4 1 2 —

Methylotenera — 2 1 —

Undibacterium — 4 — —

Limnohabitans 3 8 — 4

Dechloromonas — — — 1

Hydrogenophaga — 2 — —

Malikia 1 — —

Acidovorax 1 — — —

Gammaproteobacteria

Pseudomonas 8 5 — 8

Shewanella — — 1 1

Silanimonas — 1 — —

Aeromonas — 5 2 4

Rheinheimera 3 3 — —

Bacteroidetes

Fluviicola — — — 2

Flavobacterium 2 — — 1

Cyanobacteria

Cryptomonadaceae 1 — — —

Chlorophyta — 2 — —

Gemmatimonadetes

Gemmatimonas — — — 1

Verrucomicrobia

Luteolibacter 19 23 1 5

Haloferula 7 1 1 —

Prosthecobacter 2 — — —

Opitutus — 1 — —

Total 50 61 8 28

a —, not detected
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Betaproteobacteria and Gammaproteobacteria did not show
significant correlation with the determined water chemical
parameters.

Microorganisms from alphaproteobacterial genera
(Rhodobacter and Sphingomonas), betaproteobacterial gen-
e r a (Hydrogenophaga and Ac i d o v o r a x ) , a nd
gammaproteobacterial genera (Pseudomonas , Shewanella
and Aeromonas) are known for biodegradation of a variety
of environmental organic pollutants (Zhang et al. 2011;
Ogugbue et al. 2012; Wang et al. 2012; Cheng et al. 2013;
Johnson et al. 2013; Liao et al. 2013a; Liu et al. 2013b).
Therefore, the presence of these microorganisms might play
important roles in reduction of organic pollutants and water
self-purification in the Luoshijiang Wetland.
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