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Abstract Two bacterial isolates from milk and cheeses were
selected based on their inhibition of Listeria monocytogenes,
and classified as Enterococcus faecium based on 16S rRNA
analysis. In MRS broth at 37 °C, bacteriocin-like substances
(BLS) produced by E. faecium EM485 and EM925 were
detected at 3,200 arbitrary units/mL. These peptides were
inactivated by proteolytic enzymes, but not when treated with
α-amylase, catalase and lipase. The two BLS remained stable
at pH values ranging from 2.0 to 10.0, after exposure to

100 °C for 120 min and in the presence of surfactants and
salts. DNA from both strains generated positive PCR results
for enterocin A and B genes.
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Introduction

The physiological characteristics of Enterococcus spp. include
tolerance to salts and acids, giving them a high survival rate in
several food systems. Cheese and other fermented food prod-
ucts produced in the Mediterranean area are often rich sources
ofEnterococcus spp. and it is believed that the latter contribute
to ripening and to the development of aroma (Giraffa 2003;
Foulquié-Moreno et al. 2006; Franz et al. 2011) due to prote-
olysis, lipolysis and the production of diacetyl (Giraffa 2002).
Furthermore, some studies have shown that bacteriocinogenic
lactic acid bacteria (LAB), including Enterococcus spp., are
common in Brazilian dairy products as well (Gomes et al.
2008; Frazzon et al. 2010; Moraes et al. 2010; Ortolani et al.
2010).

LAB are known for their production of antimicrobial com-
pounds, including bacteriocins or bacteriocin-like peptides (De
Vuyst and Vandamme 1994; Todorov 2009). Bacteriocins /
bacteriocin-like substances (BLS) of LAB are defined as
ribosomally synthesized proteins or protein complexes usually
antagonistic to genetically closely related organisms (Nes and
Johnsborg 2004). They are generally low molecular weight
proteins that gain entry into target cells by binding to cell
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surface receptors. In general their bactericidal mechanisms
vary and may include pore formation and inhibition of pepti-
doglycan synthesis (James et al. 1991).

BLS peptides are classified into four classes, with most
bacteriocins grouped in classes I and II. Class I peptides,
known as lantibiotics (< 5 kDa), are post-translationally mod-
ified and contain lanthionine and β-methyl-lanthionine, while
class II bacteriocins are small (< 10 kDa), heat-stable, cationic,
hydrophobic and membrane-active peptides (de Vuyst and
Vandamme 1994). Bacteriocins with the highly conserved
N-terminal amino acid sequence YGNGVXaaC (Tyr-Gly-
Asn-Gly-Val- Xaa-Cys), non-polar amino acids, one or more
disulfide bridges and activity against Listeria spp. are grouped
in class IIa (Eijsink et al. 1998; Ennahar et al. 2001). Bacte-
riocins that function in pairs, usually as two distinct peptides,
are grouped in class IIb (Ennahar et al. 2001). Thiol-activated
bacteriocins that rely on a sec-dependent secretion mechanism
are grouped in class IIc (Hechard and Sahl 2002).

Enterococcus spp. species have been reported to produce
bacteriocins belonging to classes I, IIa, IIb, IIc and III. Most of
these bacteriocins are produced by Enterococcus faecium and
Enterococcus faecalis (Foulquié-Moreno et al. 2006).
Enterocin A (Aymerich et al. 1996), bacteriocin N15
(Losteinkit et al. 2001) and bacteriocin RC714 (Del Campo
et al. 2001) produced by E. faecium, as well as enterocin SE-
K4 (Eguchi et al. 2001), enterocin ST5HA (Todorov et al.
2010b) and bacteriocin 31 (Tomita et al. 1996) produced by
E. faecalis are grouped in class IIa. Enterocins 1071A and
1071B produced by E. faecalis (Balla and Dicks 2005), and
enterocins L50A and L50B produced by E. faecium (Cintas
et al. 1998) belong to class IIb. Meanwhile, enterocin RJ-11
(Yamamoto et al. 2003) produced by E. faecalis, and enterocin
P (Cintas et al. 1997), enterocin B (Casaus et al. 1997) and
enterocin Q (Cintas et al. 2000) produced by E. faecium are
grouped in class IIc.

In this study, strains isolated from artisanal Coalho cheese
produced in Ceará state, Brazil were evaluated for their
bacteriocinogenic potential. The strains were identified as
E. faecium, their BLS partially characterized and their mode
of action studied. To our knowledge, this is the first report on
the production of BLS by LAB isolated from Coalho cheese.
The objective of this work was to perform a partial character-
ization of the produced BLS, with the future aim of using the
strains as a co-starter or adjusting culture in cheese or milk
fermentations.

Materials and methods

Isolation of LAB and screening for BLS activity

LAB were isolated from artisanal Coalho cheese. Twelve
samples of Coalho cheese made from raw milk, from distinct

brands, were collected from different markets in the city of
Fortaleza, Ceará, Brazil. Cheeses were originally produced in
Vale do Jaguaribe and Sertões Cearenses, traditional Coalho
cheese manufacturing regions in Ceará, Brazil.

Twenty-five grams of each cheese was homogenized in
225 mL 2 % (w/v) sodium citrate (Vetec) preheated to 45 °C
in a Stomacher (Seward, 400). Serial dilutions were made in
0.1 % (w/v) peptone water (Merck, Darmstadt, Germany) and
plated in duplicate on M17 agar (Oxoid, http://www.oxoid.
com) and cultivated for 48 h at 30 °C and 42 °C. Total
microbial populations were enumerated and 15–20 colonies
were picked randomly from M17 and Rogosa agar count
plates for each cheese at both temperatures. Subsequently,
isolates were purified in MRS (Difco, http://catalog.bd.com)
and were examined for cell morphology, Gram stain, catalase
activity and acid production. Acid production was evaluated
by coagulation and reduction of Litmus Milk medium (BBL)
at 35 °C for 7 days. Microorganisms that were acid producers,
Gram-positive, catalase-negative, with cocci shape were pre-
selected for future study.

The cocci were tested for their ability to grow in skim milk
at 10 °C and 45 °C, in APT broth (Himedia, http://www.
himedialabs.com) at pH 4.4 and 9.6 and in the presence of
6.5 % NaCl (Harrigan 1998). Presumptive enterococci were
pre-identified by API50CHL and API20Strep systems
(BioMéureux®, Marcy-l’Etoile, France). The following mi-
croorganisms were used as control for identification: E.
faecalisATCC 19433, Lactococcus lactis subsp. lactisNCDO
2003 and Streptococcus thermophilusNCDO 1968.

All previously isolated microorganisms have been
screened for the production of antimicrobial substances
against three strains of Listeria monocytogenesand three strains
of E. faecalis and, based on preliminary tests, isolates EM485
and EM925 were selected for future study based on their
inhibitory spectrum and were screened for BLS production
by the agar-spot-test method (Todorov 2008) against a panel
of test microorganisms, including various strains of Listeria
spp., Enterococcus spp., and Lactobacillus spp. (Table 1).
Activity was expressed as arbitrary units (AU) per milliliter,
with 1 AU defined as the reciprocal of the highest dilution
showing a clear zone of inhibition (Mayr-Harting et al. 1972).
Listeria monocytogenes 211 (collection of the Faculty of
Pharmaceutical Sciences, University of São Paulo, São Paulo,
Brazil) was used as a sensitive test strain.

Identification of isolates EM485 and EM925

Based on preliminary tests and largest inhibition zones, iso-
lates EM485 and EM925 were selected for future studies. In
addition to physiological and biochemical tests, and carbohy-
drate fermentation reactions (API50CHL and API20 Strep test
strips) performed in preliminary screening, identification was
confirmed by PCR using genus-specific primers Ent1 and
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Ent2 (Ke et al. 1999). Additional confirmation of identity was
obtained by amplifying genomic DNA with universal primers
F8 and R1512 (Felske et al. 1997), and primers 16-1A and 23-
1B (Tannock et al. 1999). The fragments amplified using F8 and
R1512 and 16-1A and 23-1B primers were purified using
Exonuclease 1 (Exo1; USB, http://www.affymetrix.com/estore/
browse/brand/usb) and Shrimp Alkaline Phosphatase (SAP;
USB). The smaller 16S–23S rRNA gene intergenic spacer
region amplified using 16-1A and 23-1B primers was purified
by 1.5 % low melting agarose preparative gel followed by
QIAquick Gel extraction kit (Qiagen, Valencia, CA). Both
purified fragments were sequenced and compared to sequences
in GenBank using BLAST, Basic Local Alignment Search Tool.

Differentiation of the isolates (EM485 and EM925) was
performed by random amplification of polymorphic DNA
(RAPD) PCR. DNA was isolated according to the manufac-
turer’s protocol using a ZR Fungal/Bacterial DNA Kit (Zymo
Research, Irvine, CA) using primers OPL-14 (5′-GTG ACA
GGC T-3′) and OPL-20 (5′-TGG TGG ACC A-3′). Amplifi-
cation reactions were performed according to Todorov et al.
(2010a). The amplified products were separated by electro-
phoresis in 1.4 % (w/v) agarose gels in 0.5x TAE buffer at

100 V for 2 h. Gels were stained in TAE buffer containing
0.5 μg/mL ethidium bromide (Sigma Diagnostics, St. Louis,
MO). Banding patterns were analyzed using Gel Compare,
Version 4.1 (Applied Maths, Kortrijk, Belgium).

Characterization of BLS EM485 and BLS EM925

Isolation of BLS EM485 and BLS EM925

Strains EM485 and EM925 were cultured in MRS broth for
24 h at 30 °C. The cells were harvested (8,000 g, 10 min,
4 °C), the cell-free supernatant was adjusted to pH 5.0 with
1 M NaOH, heat-treated (80 °C for 10 min) and the level of
antimicrobial activity determined by testing against
Listeria monocytogenes 211.

Effects of enzymes, pH, detergents and temperature on BLS
EM485 and BLS EM925

One milliliter of a cell-free supernatant obtained from a 24-h
culture ofE. faeciumEM485 and E. faeciumEM925, prepared
as described before, was added to 1mg/mLα-amylase, catalase,
Proteinase K, proteinase type XIV, pronase, trypsin, α-chymo-
trypsin, pepsin and papain (all from Sigma Diagnostics), respec-
tively. Samples were incubated at 30 °C for 30 min and then
heated at 95–97 °C for 5 min. In a separate experiment, the pH
of 10 mL of cell-free supernatants was adjusted to 2.0, 4.0, 6.0,
8.0, 10.0 or 12.0 with 1 M HCl or 1 M NaOH and incubated at
30 °C for 1 h. Another batch of cell-free supernatants was treated
with 10 mg/mL Triton X-100 (Sigma), Triton X-114 (Sigma),
Tween 20 (Merck), Tween 80 (Merck), NaCl (Sigma), SDS
(Sigma), urea (Merck), glycerol (Merck), milk (Difco) or EDTA
(Merck), respectively, and incubated for 30 min at 30 °C. The
effect of temperature on BLS EM485 and BLS EM925 was
determined by incubating cell-free supernatants at 30, 37, 45,
60, 80 and 100 °C for 30 min and 2 h, respectively, and at
121 °C for 20min. The pH of all samples was adjusted to 6.0 and
BLS EM485 and BLS EM925 activity determined with Listeria
monocytogenes 211 as the sensitive strain, as described above.

Production of BLS EM485 and BLS EM925

Twomilliliters of a 24 h culture of strains EM485 and EM925,
respectively, were inoculated into 100 mL MRS broth and
incubated at 30 °C. Changes in optical density at 600 nm
(OD600) and pH were monitored hourly for 36 h. BLS
EM485 and BLS EM925 activity was measured every 3 h,
as described above.

Mode of BLS EM485 and BLS EM925 activity

BHI broth (200 mL) was inoculated with 1 % (v/v) overnight
culture of Listeria monocytogenes211 and incubated for 3 h at

Table 1 Antimicrobial spectrum activity of bacteriocin-like substances
(BLS) produced by Enterococcus faecium EM485 and Enterococcus
faeciumEM925 determined by the spot-on-lawn method

Test microorganism Medium Incubation
temperature
(°C)

BLS
EM485

BLS
EM925

Enterococcus faecalis MRS 30 2 / 2 2 / 2

Enterococcus faecium MRS 30 2 / 9 2 / 9

Enterococcus mundtii MRS 30 1 / 1 1 / 1

Enterococcus spp. MRS 30 13 / 18 13 / 18

Lactobacillus acidophylus MRS 30 0 / 2 0 / 2

Lactobacillus curvatus MRS 30 0 / 3 0 / 3

Lactobacillus delbrueckii MRS 30 0 / 2 0 / 2

Lactobacillus fermentum MRS 30 0 / 3 0 / 3

Lactobacillus paracasei MRS 30 4 / 8 5 / 8

Lactobacillus plantarum MRS 30 0 / 4 0 / 4

Lactobacillus sakei MRS 30 0 / 6 0 / 6

Lactococcus lactis MRS 30 0 / 3 1 / 3

Leuconostoc
mesenteroides subsp.
mesenteroides

MRS 30 0 / 4 0 / 4

Listeria innocua BHI 30 0 / 3 0 / 3

Listeria monocytogenes BHI 30 27 / 29 29 / 29

Pediococcus acidilactici MRS 30 0 / 4 0 / 4

Shigella flexneri BHI 37 0 / 1 0 / 1

Salmonella spp. BHI 37 0 / 7 0 / 7

Clostridium spp. BHI 37 0 / 4 0 / 4

Escherichia coli BHI 37 0 / 6 0 / 6
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37 °C. Filter-sterilized cell-free supernatant (20 mL) was
added to the culture and changes in OD600 recorded every
hour for 10 h. A cell count of Listeria monocytogenes 211 on
BHI supplemented with 2 % agar plates was performed 10 h
from the beginning of the experiment.

Adsorption of BLS EM485 and BLS EM925 to producer cells

Adsorption of BLS EM485 and BLS EM925 to producer
cells was studied according to Yang et al. (1992). An 18-
h-old culture was adjusted to pH 5.0 with 1 M NaOH,
10 mL of the cells harvested (8,000 g, 15 min, 4 °C) and
washed with an equal volume of sterile 0.1 M phosphate
buffer (pH 6.5). The pellet was re-suspended in 10 mL
100 mM NaCl, pre-adjusted to pH 2.0 with 1 M HCl, and
stirred for 1 h at 4 °C. Cells were harvested (3,000 g,
30 min, 4 °C) and the cell-free supernatant adjusted to
pH 7.0 with sterile 1 M NaOH. Activity of BLS EM485
and BLS EM925 was tested as described above.

Screening for presence of bacteriocin genes

Total DNA was isolated from E. faecium EM485 and
E. faecium EM925 using a ZR Fungal/Bacterial DNA Kit
(Zymo Research) according to the manufacturer’s instruc-
tions. DNA was submitted to PCR reactions to detect genes
responsible for codification of the following bacteriocins:
enterocin A, enterocin P, enterocin B and enterocin L50B
(Aymerich et al. 1996; Cintas et al. 1998; Du Toit et al.
2000) (Table 2). The PCR reaction was prepared using
primers at 10 pM/μL and conditions as described previ-
ously (Aymerich et al. 1996; Cintas et al. 1998; Du Toit
et al. 2000) adjusting the annealing temperature accord-
ing to the specification of the primers used. The ampli-
fied products were separated by electrophoresis on aga-
rose gels in 0.5× TAE buffer. Agarose gels were stained
in TAE buffer containing 0.5 μg/mL ethidium bromide
(Sigma Diagnostics).

Results and discussion

Spectrum of antimicrobial activity

The selected isolates (20 in total) were subjected to pre-
screening by testing for the production of antimicrobial sub-
stances based on the spot-on-lawnmethod against three strains
of Listeria monocytogenesand three strains ofE. faecalis. Two of
the microbial isolates obtained from artisanal Coalho cheese
inhibited the growth of Listeria monocytogenes. These strains,
named EM485 and EM925, were selected for further study and
screened against a panel of test organisms (Table 1). Cell-free
supernatants obtained from E. faecium EM485 and E. faecium
EM925, adjusted to pH 6.0, inhibited the growth ofEnterococcus
spp., Lactobacillus paracasei and Listeria monocytogenes. In
addition cell-free supernatants obtained from E. faecium
EM925 inhibit the growth of Lactococcus lactis. However, none
of the other strains included in the panel test were inhibited by the
cell-free supernatant frombothE. faeciumstrains tested (Table 1).
In general, this narrow spectrum of activity was revealed to be
unique for a BLS produced by E. faecium. Most bacteriocins
described for E. faeciumwere found to be active against a much
broader range of microbial genera and species (de Vuyst and
Vandamme 1994). However, the narrow spectrum of activity
recorded for bacteriocin T8 has been described as typical for
only class IIa bacteriocins (De Kwaadsteniet et al. 2006). It is
important to underline the very strong activity of BLS produced
by E. faecium EM485 and E. faecium EM925 against
Listeria monocytogenes and Enterococcus spp., which may lead
to important applications in the biopreservation of fermented
food products.

Identification of isolates EM485 and EM925

According to the results of sugar fermentation reactions based
on API50CHL, the isolates were classified as Lactococcus
lactis (99.2 %); however, based on API20Strep test strips the
strain was 99.7 % related to E. faecium (data not shown).

Table 2 Primer sequences and results used in the investigation of presence of bacteriocin (enterocin A, enterocin P, enterocin B and enterocin L50B)
genes in total DNA isolated from Enterococcus faeciumEM485 and Enterococcus faecium EM925

Bacteriocin genes Enterococcus
faeciumEM485

Enterococcus
faecium EM925

Primers (5′ – 3′) Reference

Enterocin A +a + F: GAG ATT TAT CTC CATAAT CT Aymerich et al. 1996
R: GTA CCA CTC ATA GTG GAA

Enterocin P - - F: ATG AGA AAA AAATTATTTAGT TT Gutierrez et al. 2005
R: TTA ATG TCC CATACC TGC CAA ACC

Enterocin B + + F: GAA AAT GAT CAC AGA ATG CCTA Du Toit et al. 2000
R: GTT GCATTTAGA GTATAC ATT TG

Enterocin L50B - - F: ATG GGA GCA ATC GCA AAATTA Cintas et al. 1998
R: TAG CCATTT TTC AAT TTG ATC

a + indicates positive results for genes corresponding to known bacteriocins in E. faecium EM485 and E. faeciumEM925
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Identification based only on sugar fermentation profiles very
often generates such conflicting results. In order to properly
identify the isolates, we applied PCR with genus-specific
primers. Amplification of genomic DNA from isolates
EM485 and EM925 with genus-specific primers produced a
112 bp fragment, which corresponded in size to that of
E. mundtiiCRL35 (data not shown). The 16S rRNA amplified
from isolates EM485 and EM925 revealed 99 % homology to
the 16S rRNA sequence of E. faecium. As a result, the isolates
EM485 and EM925 were regarded to be strains of E. faecium.

The isolates (EM485 and EM925) were differentiated by
random amplification of polymorphic DNA (RAPD) PCR
applying primers OPL-14 and OPL-20 and shown that these
two isolates are not representative of the same strain (Fig. 1).

Effect of enzymes, pH, detergents and temperature on BLS
EM485 and BLS EM925

The activity of BLS EM485 and BLS EM925 was completely
abolished by treatment with proteinase K, pronase, trypsin,
pepsin and papain, but not by treatment with α-amylase or
catalase (Table 3). This suggested that the activity of BLS
EM485 and BLS EM925 is not dependent on glycosylation
and not related to the effect of H2O2. Similar results have been
reported for other bacteriocins of Enterococcus spp. (de Vuyst
and Vandamme 1994; Todorov and Dicks 2005b; Todorov
et al. 2005, 2010a, b). Leuconocin S, produced by
Leuconostoc paramesenteroides (Lewus et al. 1992) and
carnocin 54 from Leuconostoc carnosum (Keppler et al.
1994) are examples of amylase-sensitive bacteriocins.

BLS EM485 and BLS EM925 remained stable after incu-
bation (30 °C) at pH 2.0, 4.0, 6.0, 8.0, 10.0 and 12.0 (Table 3).
Additionally, treatment with Triton X-110, Triton X-114,

Tween 20, Tween 80, SDS, NaCl, urea, milk, glycerol and
EDTA had no effect on the activity of the bacteriocins EM485
and EM925 (Table 3). Similar behaviors were reported for the
bacteriocin J46 produced by Lactococcus lactis subsp.
cremoris (Hout et al. 1996). However, plantaricin C19 secret-
ed by Lactobacillus plantarum C19 (Atrih et al. 2001) and
bacteriocin HV219 from Lactococcus lactis susbp. lactis
HV219 (Todorov et al. 2006) lost activity after treatment with
SDS or Triton X-100. However, treating the enterocin EJ97
produced by E. faecalis EJ97 (Gálvez et al. 1998), bozacin
B14 from Lactococcus lactis subsp. lactisB14 (Ivanova et al.
2000) and pediocin ST18 produced by Pediococcus
pentosaceus ST18 (Todorov and Dicks 2005a) with SDS did
not affect their antimicrobial activity.

As reported in Table 3, BLS EM485 and BLS EM925
(pH 6.0) proved to be heat tolerant and remained stable after
2 h at 100 °C. However, a slight decrease in activity was
observed upon heat treatment at 121 °C for 20 min (data not
shown). This finding was consistent with a number of bacterio-
cins / BLS produced by Lactobacillus and Enterococcus spp.
(Klaenhammer 1988; Van Reenen et al. 1998; Ko and Ahn
2000; Todorov et al. 2005; Todorov and Dicks 2005c). More-
over, lactocinNK24, produced byLactococcus lactisNK24, lost
87.5 % of its activity after 30 min at 100 °C and was completely
inactivated after 15 min at 121 °C (Lee and Paik 2001). In the
case of lactocin MMFII secreted by Lactococcus lactisMMFII,
only 8.3 % activity was recorded after 30 min at 110 °C and
25 % after 30 min at 80 °C and 90 °C (Ferchichi et al. 2001).
Nisin from Lactococcus lactis subsp. lactis WNC20 was
inactivated after 15 min at 121 °C when incubated at pH 7.0,
but not when incubated at pH 3.0 (Noonpakdee et al. 2001).

Fig. 1 Agarose gels showing DNA fingerprint obtained after random
amplification of polymorphic DNA (RAPD)-PCR with primers OPL14
(left) and OPL20 (right). Lanes: M O’GeneRulertm 1 kb DNA ladder
(Fermentas, http://ThermoScientificBio.com/Fermentas) 485 E. faecium
EM485, 925 E. faecium EM925

Table 3 Effects of enzymes, pH, detergents and temperature on stability
of BLS EM485 and BLS EM925

Treatment EM485
BLS

EM925
BLS

Enzymes

α-amylase, lipase + +

proteinase K, proteinase type XIV,
trypsin, pepsin, papain, pronase,
α-chymotrypsin

- -

Detergents, protease inhibitors, salts

Triton X-100, Triton X-114, Tween 20,
Tween 80, SDS, NaCl, urea, EDTA,
milk, glycerol

+ +

pH

2.0 + +

4.0 - 10.0 + +

12.0 + +

Temperature

121 °C (20 min) -/+ -/+

30, 37, 45, 60, 80, 100 °C (2 h) + +
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Production of BLS EM485 and BLS EM925

The cell density of E. faecium EM485 increased from 0.07 to
2.21 (OD600) during 24 h of growth at 30 °C (Fig. 2). Produc-
tion of BLS EM485 increased from 200 AU/mL after 6 h of
growth to 3,200 AU/mL during the following 12 h and de-
creased to 800 AU/mL during the next 6 h (Fig. 2). A similar
profile of growth and BLS production was recorded for
E. faecium EM925. The cell density of E. faecium EM925
increased from 0.08 to 2.39 (OD600) during 24 h of growth at
30 °C while production of BLS EM925 increased from
400 AU/mL after 6 h of growth to 3,200 AU/mL during the
following 15 h before decreasing to 1,600 AU/mL during the

next 3 h (Fig. 2). Optimal production of BLS EM485 and BLS
EM925 was recorded during stationary growth, which may
suggest that the peptide is a secondary metabolite. Similar
findings were reported for plantaricin ST31 (Todorov et al.
1999); bacteriocin ST311LD produced by E. faecium
ST311LD isolated from spoiled black olives (Todorov and
Dicks 2005b); bacteriocin ST4V produced by E. mundtii
ST4V (Todorov et al. 2005); and bacteriocins produced by
E. faecium ET05, E. faecium ET12 and E. faecium ET88,
respectively, isolated from smoked salmon (Tomé et al.
2009). The pH of the cultures decreased from 6.50 to approx-
imately 5.10 during the first 9 h of fermentation, then to
approximately 4.20 during the following 15 h (data not
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Fig. 2 Growth rate of a
Enterococcus faeciumEM485
and b Enterococcus faecium
EM925 (filled diamonds) and
bacteriocin-like substance (BLS)
production in arbitrary units
(AU)/mL (bars) in MRS broth.
BLS activity was determined
against Listeria monocytogenes
211

Fig. 3 Effect of BLS produced
by Enterococcus faeciumEM485
(squares) and Enterococcus
faeciumEM925 (triangles) on the
growth of Listeria monocytogenes
211 over a period of 12 h. The
control (diamonds) is growth in
the absence of bacteriocins
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shown). Considering that the BLS was reported to be active
following exposure at pH 4.0 (Fig. 2), the decrease in antimi-
crobial activity (from 3,200 AU/mL to 800 AU/mL and
1,600 AU/mL, respectively) detected once the pH of the
MRS medium was about 4.1 cannot be ascribed to the change
in culture pH. Indeed, as reported by Yang et al. (1992) and
Van Reenen et al. (1998), it is unlikely that such a small
modification in pH could trigger a sudden interaction of
BLS EM485 and BLS EM925 from the surface of the pro-
ducer cell. On the contrary, the increase in BLS activity may
be due to the metabolism of remaining nutrients or medium
component(s) not required for cell growth or accumulation of
the BLS in the cells’ environment.

Mode of activity

Growth of Listeria monocytogenes 211 treated with BLS
EM485 or BLS EM925 (320 AU/mL final BLS activity /
concentration) was completely inhibited over a period of 10 h
(Fig. 3). TheOD600 of the control (not treatedwith BLS EM485
or BLS EM925) increased from 0.07 to 1.55 over the same
period (Fig. 3) representing bacterial growth of 107 CFU/mL.
The cell count of Listeria monocytogenes 211 on BHI supple-
mented with 2 % agar plates in BLS-treated samples showed
less than 100 CFU/mL. Similar findings were reported for
bacteriocin ST13BR (Todorov et al. 2004) and bacteriocin
ST311LD (Todorov and Dicks 2005b), whereas bacteriocins
ST28MS and ST26MS repressed the growth of Lactobacillus
casei LHS for only 2 h (Todorov and Dicks 2005c).

Adsorption of BLS EM485 and BLS EM925 to producer cells

Low EM485 and EM925 BLS activity was detected after
treatment of 18-h-old cells of E. faecium EM485 and
EM925 with 100 mM NaCl. However, the activity was lower
than that recorded in the cell-free supernatant, suggesting that
BLS EM485 and BLS EM925 adsorb to the surface of the
producer cells in very low concentrations. This is in accor-
dance with results reported for plantaricin C19, whose maxi-
mal adsorption to producer cells was recorded between pH 5
and 7, with complete loss of adsorption at pH 1.5 and 2.0
(Atrih et al. 2001). In the case of plantaricin ST31 (Todorov
et al. 1999), pediocin ST18 (Todorov and Dicks 2005a) and
bozacin B14 (Ivanova et al. 2000), no bacteriocin activity was
recorded on the cell surface of the producer strains.

Screening for presence of bacteriocin genes

On the basis of the PCR reactions targeting enterocin P and
enterocin L50B, no clear evidence for the presence of these
genes in the total DNA of E. faecium EM485 and E. faecium
EM925 was obtained. However, when we targeted enterocin
A and enterocin B in PCR reactions with genomic DNA from

E. faecium EM485 and E. faecium EM925, we had positive
results. The sequence of the generated amplicons was 100 %
identical to the targeted bacteriocin genes (enterocin A and
enterocin B). Based on these results, we can say that both
strains carry genes for production of enterocin A and enterocin
B, but in order to conclude if one or both of these genes are
expressed, appropriate biochemical protein purification and
mass spectrometry needs to be performed. It is important to
underline that some of the PCR reactions generated a product
corresponding to the size of the target bacteriocin genes
(enterocin P and enterocin L50B) and to a fragment generated
by the positive controls. However, after the sequencing of
PCR products, no homology to the targeted bacteriocin genes
was observed. In contrast, sequence of the PCR products
obtained by the positive controls generated 100 % homology.
This is a significant remark indicating the importance of
sequencing PCR products in order to confirm the identity of
the products generated.

Conclusions

This is the first study reporting the production of BLSs by LAB
strains isolated from artisanal Coalho cheeses from Brazil with
reference to bacteriocinogenic potential. The BLS secreted by
E. faecium EM485 and EM925 are heat resistant and stable
between pH 2.0 and 10.0, adsorb to the surface of the producer
cell in low concentrations and are produced at higher levels
during the stationary phase of fermentation. Considering the
stability, efficiency and the narrow spectrum of antimicrobial
activity exhibited by BLS EM485 and BLS EM925, E. faecium
EM485 and EM925 could be used in a mixed starter culture for
fermentation of milk products.
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