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Abstract The production of L-tryptophan was increased by
reducing acetate accumulation through a decrease in acetate
kinase activity by gene deletion. The effects of disruption of
the genes for acetate kinase (ackA) and an enzyme with
propionate/acetate kinase activity (tdcD) on L-tryptophan pro-
duction were investigated. The ackA and/or tdcD deletion mu-
tants accumulated less acetate and more L-tryptophan than the
parental strain. Furthermore, the production of L-tryptophan
obtained with ackA-tdcD mutant were more than the mutants
with a single deletion of ackA or tdcD, while higher produc-
tion of L-tryptophan and lower concentration of acetate were
accumulated in the ackAmutant than the mutant with a lesion
in tdcD. In L-tryptophan fed-batch fermentation using the
ackA-tdcD mutant, the excretion of acetate was reduced to
1.22 g/L, a 21.79 % reduction compared with the parental
strain, and the production of L-tryptophan and glucose con-
version rate were increased to 52.5 g/L and 47.9 g/L, respec-
tively, which represented 6.49 % and 10.88 % increases com-
pared with the parental strain, and the glucose conversion rate
reached a high level of 21.2 %, which was 8.16 % higher than

the parental strain. In addition, the metabolic flux analysis of
TRTH and TRTHAT indicated that the carbon flux through
EMPwas decreased by 8.37% and the carbon flux through PP
was increased by 57.03 % in TRTHATcompared with TRTH.
The flux of acetate and tryptophan formation of TRTHAT
were 5.2 % and 17.3 %, which were 3.67-times lower and
1.75-times higher than these of TRTH, respectively.
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Introduction

As an essential amino acid for humans and other animals, L-
tryptophan is widely supplemented in food, animal feed, and
medicine (Liu et al. 2012). As the third most limited amino
acid, L-tryptophan is widely added to common feedstocks
(Zhao et al. 2011; Liu et al. 2012). However, the market for
L-tryptophan is still limited because of its rather high produc-
tion costs (Ikeda 2006). Because of its commercial importance,
optimization of L-tryptophan production is of interest with the
aim to decrease its production costs (Liu et al. 2012). L-
tryptophan can be obtained from cheap and renewable carbon
sources such as sucrose or glucose by microbial fermentation
(Ikeda 2006), in which Escherichia coli is used as the preferred
L-tryptophan-producing strain. The production of L-tryptophan
has been improved by genetically modifying E. coli, including
overexpression of key genes for tryptophan biosynthesis, dis-
ruption of some important genes that repress tryptophan forma-
tion, and modification of the tryptophan transport system (Gu
et al. 2012; Shen et al. 2012; Liu et al. 2012;Wang et al. 2013a).

The excretion and extracellular accumulation of acetate,
the primary inhibitory metabolite in cultures of E. coli, is a
common problem encountered in high-cell-density cultivation
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of this bacterium (De Anda et al. 2006). The accumulation of
acetate inhibits cell growth and impairs the capacity of E. coli
to produce the desired product (Gosset 2005), and there are
examples where the production of the desired product was
significantly improved by decreasing the accumulation of ac-
etate (Eiteman and Altman 2006). The manipulation of the
culture environment to maintain either a low glucose concen-
tration or eliminate the accumulated acetate as well as the
application of metabolic pathway engineering to reduce car-
bon flow to the acetate-producing pathways have been applied
to reduce the excretion of acetate in E. coli cultures (De Mey
et al. 2007; Martínez-Gómez et al. 2012). In E. coli, the accu-
mulation of acetate was decreased by maintaining the concen-
tration of glucose at a low level with a combined feeding
strategy, leading to increased biomass and a higher yield of
L-tryptophan (San et al. 2002; Cheng et al. 2012).

The conversion of acetyl-CoA through the action of
phosphotransacetylase (pta) and ackA and the conversion of
pyruvate directly into acetate via pyruvate oxidase B (poxB)
contribute to acetate formation (Phue and Shiloach 2005). The
elimination of Pta and AckA activities has resulted in a sig-
nificant reduction in acetate accumulation (De Anda et al.
2006). TheΔpta mutant presented lower production and pro-
duction rate of acetate than wild-type E. coli (Chang et al.
1999). It has also been observed that, when pta is deleted in
E. coli, pyruvate accumulates in the cell because of the com-
plete alternation of the fermentation profile (Zhu and Shimizu
2005).We previously constructed a recombinant E. coliwith a
lesion in pta used for producing L-tryptophan, and the results
indicated that the excretion of acetate was decreased and pro-
duction of L-tryptophan was increased compared with the
parental strain (Huang et al. 2011; Wang et al. 2013a, b), but
the effect of the deletion of the genes encoding acetate kinase
on L-tryptophan production has not so far been studied.

It has been reported that a proportion of the acetate could
also originate from propionyl-CoA via acrylyl-CoA, lactyl-
CoA and pyruvate intermediates, which is in accordance with
the existence of another route to acetate synthesis (Heßlinger
et al. 1998). The enzymes TdcE and TdcD are also known to
play an important role in the formation of acetate. TdcE has
both pyruvate formate-lyase and 2-ketobutyrate formate-lyase
activities, whereas the TdcD protein is a new propionate/
acetate kinase (Zhou et al. 2011). TdcD exhibits a high iden-
tity with acetate kinase from E. coli (Grundy et al. 1993).
TdcD has propionate and acetate kinase activities, and over-
production of TdcD results in a 38-fold increase in acetate
kinase-specific enzyme activity (Heßlinger et al. 1998). In
addition, a lower concentration of acetate was accumulated
in the ackA-tdcD double mutant compared with the mutant
with the single deletion of ackA (Kumari et al. 1995).

The utilization of the metabolic genes is dependent on spe-
cific environmental parameters, including carbon source and
the substrate availability, and the metabolic behavior of strain

is affected by the gene deletion (Edwards and Palsson 2000).
The deletion of pta and ackAB impacted the production capa-
bilities of several of the biosynthetic precursors, such as glu-
cose 6-phosphate (Glc6P), fructose 6-phosphate (F6P), ribose
5-phosphate (R5P), erythrose 5-phosphate and glyceralde-
hyde 3-phosphate (Edwards and Palsson 2000). For L-
tryptophan production by E. coli, the disruption of pta de-
creased the metabolic flux of the Embden-Meyerhof-Parnas
(EMP) pathway and the tricarboxylic acid (TCA) cycle and
increased the metabolic flux of the pentose phosphate (PP)
pathway and tryptophan synthesis, leading to obtaining lower
accumulation of acetate and higher production of
L-tryptophan (Huang et al. 2011).

In this study, the activity of acetate kinase was reduced by
disruption of the genes ackA and tdcD, and three recombinant
E. coli strains were generated from TRTH (trpEDCBA+TetR,
Δtna): TRTHA (TRTH, ΔackA), TRTHT (TRTH, ΔtdcD)
and TRTHAT (TRTH, ΔackA ΔtdcD). Tryptophan produc-
tion by these strains was carried out in a 30-L fermentor using
the combined feeding strategy of pseudo-exponential and
glucose-stat feeding to investigate the effect of deletion of
ackA and/or tdcD on the production of L-tryptophan. Mean-
while, the metabolic flux distribution of TRTH and TRTHAT
were analyzed to study the principle of lower acetate accumu-
lation and higher L-tryptophan production obtained in the
mutant with lesions in ackA and tdcD.

Materials and methods

Bacterial strains, plasmids, and primers

All bacterial strains, plasmids, and primers are listed
in Table 1.

Media

The media used for generating and propagating the recombi-
nant strains were prepared according to published procedures
(Liu et al. 2012; Wang et al. 2013a). The seed medium
consisted of 20 g/L glucose, 15 g/L yeast extract, 10 g/L
(NH4)2SO4, 0.5 g/L sodium citrate, 5 g/L MgSO4·7H2O,
1.5 g/L KH2PO4, 0.015 g/L FeSO4·7H2O, and 0.1 g/L vitamin
B1. The fermentation medium for producing L-tryptophan
consisted of 10 g/L glucose, 1 g/L yeast extract, 4 g/L
(NH4)2SO4, 2 g/L sodium citrate, 5 g/L MgSO4·7H2O, 2 g/L
KH2PO4, and 0.1 g/L FeSO4·7H2O. The pH of the seed and
fermentation media were adjusted to 7.0 using 4 mol/L NaOH.

Culture conditions

Culture conditions used for generating and propagating recom-
binant strains were controlled according to published
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procedures (Liu et al. 2012). A 500-mL baffled flask containing
30 mL seed medium was inoculated with a single colony of
each test strain, and cultivated at 36 °Cwith shaking at 200 rpm
for 12 h. A 30-mL inoculum of this culture was added asepti-
cally to a 5-L seed fermentor containing 3 L seed medium, and
cultivated at 36 °C for 16 h. The culture grown in the seed
fermentor was inoculated aseptically (10 % v/v) into 18 L of
production medium in a 30-L fermentor. The temperature and
dissolved oxygen level were maintained at 36 °C and 20 %,
respectively. To maintain the pH at 7.0, 25 % ammonium hy-
droxide (w/w) was used.When the initial glucose was depleted,
glucose solution (80 % w/v) was fed into the fermentor accord-
ing to the combined feeding involving pseudo-exponential and
glucose-stat feeding (Cheng et al. 2012).

Construction of the strains

Genes knockout mutants were constructed as described previ-
ously (Datsenko and Wanner 2000; Wang et al. 2013a). Dis-
ruption of ackA in TRTH was performed using the Red helper
plasmid, pKD46. The appropriate DNA fragment was obtained
by polymerase chain reaction (PCR) using the primers ackA-P1
and ackA-P2 with the helper plasmid pKD3. To eliminate the
CmR gene from the integrated locus, the cells were transformed

with the plasmid pCP20 carrying the FLP recombinase gene.
All test PCRs were used with the primers ackA-P3 and ackA-
P4. Disruption of tdcD in TRTH and TRTHAwere performed
using the same method as described for disrupting ackA using
the primers tdcD-P1, tdcD-P2, tdcD-P3, and tdcD-P4.

Analysis of fermentation products

The dry cell weight (DCW) and concentration of L-tryptophan
in the fermentation broth were determined as described previ-
ously (Cheng et al. 2012; Wang et al. 2013a). The concentra-
tions of glucose and lactate were monitored using an SBA-
40C biosensor analyzer (Biology Institute of Shandong Acad-
emy of Sciences, Jinan, China). Concentrations of acetate and
pyruvate were measured using a Bioprofile 300A biochemical
analyzer (Nova Biomedical, Waltham, MA, USA).

Analysis of kinetics data

According to the DCW and Logistic equation, a model of cell
growth kinetics was constructed using Originpro 8.0 (Zawada
and Swartz 2005; Hajji et al. 2007). The production rate of L-
tryptophan and acetate, glucose consumption and conversion
rate were calculated as described previously (Wang et al. 2013a).

Table 1 Strains, plasmids, and primers used in this study

Name Characteristics Source

Strains

TRTH trpEDCBA+TetR, Δtna Liu et al. 2012

TRTHA Derived from TRTH, but ΔackA This study

TRTHT Derived from TRTH, but ΔtdcD This study

TRTHAT Derived from TRTH, but ΔackA, ΔtdcD This study

Plasmids

pKD46 AmR, λ Red-expressing vector Cherepanov and Wackernagel 1995

pKD3 CmR, Template vector Cherepanov and Wackernagel 1995

pCP20 AmR, CmR, FLP-expressing vector Cherepanov and Wackernagel 1995

Primers

ackA-P1 5’-CTGTCCCCGGCGAAACAAGCTAAAAAAATTAACAGAACGATTATCCGGCGTTGA
CATTGAGCGATTGTGTAGGCTGGAG-3’b

This study

ackA-P2 5’-CGGATCACGCCAAGGCTGACGCTGGTCAGACCGACGCTGGTTCCGGTAGGGA
TCAGTAACGGCTGACATGGGAATTAGC-3’b

This study

ackA-P3 5’-TGCCCAGCCACCACAATC-3’ This study

ackA-P4 5’-GTGGTAGTTTGCGACGAT-3’ This study

tdcD-P1 5’-GTGGGAGAGATCTCACTAAAAACTGGGGATACGCCTTAAATGGCGAAGAAACGGT
TTGAGCGATTGTGTAGGCTGGAG-3’b

This study

tdcD-P2 5’-CATCCTGAACATCGTATACAAACTGTTTTAATCCGTAACTCAGGATGAGAAAAGAG
TAACGGCTGACATGGGAATTAGC-3’b

This study

tdcD-P3 5’-CGGGCGGACCAAATGATAC-3’ This study

tdcD-P4 5’-AACCCGAACATCCTTGAC-3’ This study

a The TRTH was stored at the Culture Collection of Tianjin University of Science and Technology under the collection number TCCC 27003
b The underlined portions indicate 56-nt homology extensions of the target knockout gene
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Analysis of metabolic flux

Based on the analysis of metabolic flux balance and stoichi-
ometry model, the distribution of metabolic flux with differ-
ent strains in L-tryptophan production were calculated by
MATLAB (Edwards and Palsson 2000; Schmid et al. 2004;
Huang et al. 2011).

Statistical analysis

All experiments were conducted in triplicate, and the data
were averaged and presented as the mean±standard deviation.
One-way analysis of variance followed by Dunnett’s multiple
comparison test were used to determine significant differ-
ences. Statistical significance was defined as p<0.05.

Results

Recombinant strains

Colony PCRs using the primers ackA-P3-ackA-P4 and tdcD-
P3-tdcD-P4 were used to confirm the knockouts of ackA or
tdcD, respectively. The lengths of the fragments detected
agreed with their theoretical lengths. Thus, the strains with
deletions in ackA and/or tdcD were obtained.

DCW and growth rate of strain

The DCW and specific growth rate of the parental strain and
mutants are presented in Fig. 1. The results indicated that the
deletion of ackA and/or tdcD reduced the specific growth rate
during the early stage of L-tryptophan fermentation and in-
creased the specific growth rate during the later period of L-
tryptophan fermentation according to the analysis of the cell
growth kinetics model. The DCW of the parental strain was

higher than that of the mutants during the early fermentation
stage, but at the end of L-tryptophan production, the DCW
obtained in TRTHA, TRTHT, and TRTHAT were increased
by 4.87, 2.64, and 6.49 %, respectively, compared with that
of the parental strain (49.3 g/L). In cultures of TRTHAT, the
specific growth rate during the initial fermentation period was
the lowest and that during the later fermentation period was the
highest, and the maximum DCW (52.5 g/L) was obtained.

Production and production rate of L-tryptophan

The production and production rate of L-tryptophan in L-
tryptophan production using the parental strain and mutants
are displayed in Fig. 2. The L-tryptophan production of the
mutants were higher than that of the parental strain, and the L-
tryptophan production obtained in the mutant with a lesion in
ackA-tdcDwere higher than themutants with the single deletion
of ackA or tdcD and the L-tryptophan production of TRTHT
was lower than that of TRTHA. The L-tryptophan production
rate of the mutants were higher than that of the parental strain.
The L-tryptophan production of TRTHAT (47.9 g/L) was
10.88 % higher than that of the parental strain (43.2 g/L).

Accumulation of acetate

The concentration of acetate with the parental strain and the
mutants are presented in Fig. 3, along with its production/
consumption rate. The results showed that the accumulation
of acetate and its production/consumption rate were decreased
in cultures of the mutants, and the production/consumption
rate of acetate was decreased with reducing the excretion of
acetate. The acetate accumulation of TRTHATwas lower than
that of TRTHA and TRTHT, and the concentration of acetate
accumulated in TRTHA was lower than the TRTHT. In cul-
tures of TRTHAT, the acetate was accumulated to a

Fig. 1 Effect of gene modification on DCW and specific growth rate in
L-tryptophan production. Open symbols DCW, filled symbols specific
growth rate (p<0.05)

Fig. 2 Effect of gene modification on production and production rate of
L-tryptophan in L-tryptophan production.Open symbols production of L-
tryptophan, filled symbols production rate of L-tryptophan (p<0.05)
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concentration of 1.22 g/L which was decreased by 21.79 %
compared with the parental strain.

Excretion of pyruvate and lactate

Figure 4 shows the concentrations of pyruvate and lactate for
each strain from L-tryptophan production. The concentrations
of pyruvate and lactate obtained in the mutants were higher
than these in the parental strain, and pyruvate and lactate ac-
cumulated during strain growth were consumed by the cells
during the later fermentation period, leading to a decrease of
their concentrations. The concentrations of pyruvate (0.23 g/
L) and lactate (2.24 g/L) accumulated in the cultures of TRTH
AT during the growth phase were highest, 1.31- and 1.19-
times higher than these of the parental strain, respectively.
The strains with mutations in ackA or tdcD excreted lower
concentrations of pyruvate and lactate than these of TRTH
AT, and 0.21 g/L pyruvate and 2.12 g/L lactate were

accumulated in the cultures of TRTHA, which were increased
by 5.04 % and 5.56 % compared with the TRTHT. Further-
more, pyruvate and lactate of each strain were totally con-
sumed at the end of L-tryptophan fermentation.

Glucose consumption and conversion rate

The glucose consumption and conversion rate for each strain
in L-tryptophan production are displayed in Fig. 5. During the
early fermentation period, both the consumption rate of glu-
cose and the glucose conversion rate were increased with the
strain growth and L-tryptophan formation. In the stationary
phase, glucose was chiefly used for L-tryptophan biosynthe-
sis, leading to a high level of glucose conversion rate, while
the rate of glucose consumption was decreased. At the end of
L-tryptophan production, the glucose conversion rate was de-
creased because of the reduction of the L-tryptophan produc-
tion rate and declined production capacity of tryptophan of the
strains. Over the entire course of fermentation, the mutants
showed lower glucose consumption rate and higher glucose
conversion rate than the parental strain. The total glucose con-
version rates of TRTHA, TRTHT and TRTHAT were 20.5,
20.1, and 21.2 %, respectively, which were higher than that
of the parental strain (19.7 %).

Distribution of metabolic flux

According to the above results, the TRTHAT was the better
strain for L-tryptophan production. The metabolic flux distri-
bution of TRTH and TRTHAT during the later fermentation
period of L-tryptophan production are presented in Fig. 6.
The metabolic flux of tryptophan biosynthesis were changed
by the deletion of ackA and tdcD. Compared with TRTH, the
metabolic flux that entered the EMP decreased by 8.37 % and
that entered PP was increased by 57.03 % with TRTHAT.

Fig. 3 Effect of gene modification on accumulation and production rate
of acetate in L-tryptophan production. Filled symbols accumulation of
acetate, open symbols production rate of acetate. The absolute value of
the data less than zero indicates the consumption rate of acetate (p<0.05)

Fig. 4 Effect of gene modification on concentrations of pyruvate and
lactate in L-tryptophan production. Filled symbols concentration of
pyruvate, open symbols concentration of lactate (p<0.05)

Fig. 5 Effect of gene modification on glucose consumption and
conversion rate in L-tryptophan production. Filled symbols
consumption rate of glucose, open symbols conversion rate of glucose
(p<0.05)
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When the ackA and tdcDwere deleted in the TRTH, the flux for
acetate decreased to 5.2 and the flux for lactate increased to 0.5.
As for TRTHAT, less PEP was used for formation of Pyr, and
more PEP and E4P were applied in the biosynthesis of Cho,
leading to increasing the metabolic flux of tryptophan forma-
tion. The flux of tryptophan formation of TRTHATwas 17.3%,
which was 1.75-times higher than that of TRTH.

Discussion

Acetate metabolism in E. coli plays an important role in the
control of central metabolism (Wang et al. 2013a). The excre-
tion of acetate results not only in the inefficient utilization of
carbon source and the inhibition of cellular growth and protein
production but also in the need for cofactor recycling to sustain
balanced growth and cellular homeostasis (Chang et al. 1999).
Many authors have reported the decreased efficiency of acetate
over-producing strains for the high-yield production of recom-
binant proteins (Eiteman and Altman 2006). The mutants with
deletion of ackA and/or tdcD obtained higher DCW because of
the reduction of acetate accumulation, and the strain with le-
sions in ackA and tdcD obtained the highest DCW. The PEP/

Pyr ratio was decreased because of the presence of a higher
concentration of pyruvate, which in turn resulted in a lowered
growth rate (Castaño-Cerezo et al. 2009; Wang et al. 2013a).
Overall, the maximum specific growth rates of the mutants
were lower than that of the parental strain, and that of the ackA-
tdcDmutant was the lowest. Due to the lower growth rate of the
mutants during the early fermentation period, the DCW of the
parental strain was higher than that of the mutants during the
initial phase of L-tryptophan production. The specific growth
rates of the mutations in ackA and/or tdcDwere higher than the
parental strain during the later fermentation phase because of
the reduction of inhibition caused by the low accumulation of
acetate (Wang et al. 2013a).

The inhibition of L-tryptophan formation was decreased by
a reduction of the acetate concentration, which led to increas-
ing the production of L-tryptophan (Huang et al. 2011; Cheng
et al. 2012; Wang et al. 2013b). The higher concentrations of
pyruvate and lactate accumulated during the growth of the
mutants could increase the expression level of PEP synthase
and the supply of NADPH, which could result in the enhance-
ment of L-tryptophan production because of the improvement
of the availability of PEP and the carbon flux through the
oxidative branch (Chang et al. 1999; Schmid et al. 2004;

Fig. 6 The metabolic flux
distribution of TRTH and TRTH
AT during the later fermentation
period of L-tryptophan
production. Values in parentheses
metabolic flux of TRTHAT.
Metabolites abbreviations: Glc
Glucose, GAP Glyceraldehyde-3-
phosphate, P3G 3-
Phosphoglycerate, PEP
Phosphoenolpyruvate, Pyr
Pyruvate, AcCoA Acetyl
coenzyme A, Ru5P Ribulose-5-
phosphate, X5P Xylulose-5-
phosphate, S7P Sedoheptulose-7-
phosphate, E4P Erythrose-4-
phosphate, Cho Chorismate,
PRPP 5-Phosphoribosyl
pyrophosphate, OAA
Oxaloacetate, αKG α-
Ketoglutarate, Gln Glutamine,
Glu Glutamate, Ala Alanine, Lac
Lactate, Hac Acetate, Ser Serine,
Trp Tryptophan.
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Báez-Viveros et al. 2007). Production of L-tryptophan was
improved with the deletion of ackA and/or tdcD in E. coli.
In addition, the formation rate of L-tryptophan was increased
because of the lower accumulation of acetate (Cheng et al.
2012), and the mutants showed higher production rates of
L-tryptophan than the parental strain.

Elimination of the carbon flow toward acetate significantly
reduces the acetate yield (DeMey et al. 2007). Deletion of pta
and/or ackA is one direct approach for reducing acetate for-
mation, but this approach is accompanied by an increase in the
production of other fermentation products such as pyruvate
and lactate (San et al. 2002; De Mey et al. 2007). The excre-
tion of acetate was also decreased using antisense RNAs to
partially block the biosynthesis of Pta and AckA (Kim and
Cha 2003; Zhou et al. 2011). Compared with the results for the
KJ091 strain, the acetate accumulated from the growth of the
tdcDE deletion mutant was decreased by 50 % (Jantama et al.
2008). As for the L-tryptophan-producing strain, deletion of
ackA and/or tdcD could decrease the accumulation and pro-
duction rate of acetate because of the reduction of acetate
kinase activity, and the mutant with lesions in ackA and tdcD
excreted a lower concentration of acetate than the strains with
the single deletion of ackA or tdcD, which was consistent with
the results reported previously (Kumari et al. 1995; Jantama
et al. 2008). Acetate was always consumed in the cultures of
E. coli, and the Pta-AckA and acetyl-CoA synthetase (Acs)
pathways are solely responsible for acetate assimilation
(Castaño-Cerezo et al. 2009). Overexpression of Acs in E. coli
results in a significant decrease of acetate accumulation and
more efficient acetate assimilation, and the expression of acs
is induced by acetate (Báez-Viveros et al. 2007; Castaño-
Cerezo et al. 2009). In this study, the strains with deletions
of ackA and/or tdcD showed lower consumption rates of ace-
tate than the parental strain because of the lower accumulation
of acetate (Wang et al. 2013a).

More pyruvate accumulates in the E. coliwith disruption of
pta (Castaño-Cerezo et al. 2009). In the pta mutant, lactate
production was not the result of the increased expression of
lactate dehydrogenase (ldhA), but rather from pyruvate accu-
mulation (Zhu and Shimizu 2005). The mutants with deletions
of ackA and/or tdcD accumulated higher concentrations of
pyruvate and lactate. The ackA-tdcD mutant excreted the
highest concentrations of pyruvate and lactate, while the py-
ruvate and lactate from TRTHT were lower than that of
TRTHA (Zhou et al. 2011). Because of the changes in the
expression of ldhA and dld (coding for NAD+-dependent and
NAD+-independent lactate dehydrogenases, respectively) in
the stationary phase, the lactate accumulated in the growth
period was recaptured (Vadali et al. 2004; Shi et al. 2005). In
the stationary phase of aerobic glucose cultures, the redox
environment of the pta mutant was more reduced than that
of the wild-type strain, which reflects lactate consumption
(Chang et al. 1999). The pyruvate and lactate accumulated

during the early fermentation period for each strain were
reused in the late fermentation period, and pyruvate and lactate
were not determined at the end of L-tryptophan fermentation
(Shen et al. 2012; Wang et al. 2013a).

Due to the low accumulation of acetate, more glucose was
used to synthesize the desired product and the glucose conver-
sion rate was increased (Castaño-Cerezo et al. 2009; Wang
et al. 2013a). The DCW and glucose conversion rate were
increased because of the reduction of acetate inhibition (Wang
et al. 2013a). In the production of L-tryptophan, the glucose
conversion rate of the pta mutant exhibited a 9.24 % increase
as comparedwith the parental strain (Wang et al. 2013a). From
this study, the mutants showed a higher glucose conversion
rate than TRTH, and the glucose conversion rate of TRTHAT
was highest, 8.16 % higher than the parental strain. The mu-
tants showed lower consumption rates of glucose than the
TRTH, and the PEP used for glucose uptake reduced, leading
to increasing the production of L-tryptophan (Gosset 2005;
Jantama et al. 2008; Shen et al. 2012).

The distributions of metabolic flux were changed with the
gene deletion (Huang et al. 2011). In the mutant with lesions
in ackA and tdcD, the metabolic flux was transferred from
EMP to PP, and the increase of carbon flux through the PP
could increase the supply of E4P, leading to obtaining higher
production of L-tryptophan (Shen et al. 2012). The production
of NADPH was increased by the enhancement of metabolic
flux through PP, which was required by the biosythesis of
tryptophan (Báez-Viveros et al. 2007; Wang et al. 2013a).
The accumulation of acetate in the culture of TRTHAT was
decreased as a result of the smaller metabolic flux through the
formation of acetate, meanwhile the lactate excretion was in-
creased with more metabolic flux through the formation of
lactate (Huang et al. 2011). Increasing the availability of
PEP and E4P is crucial for achieving the maximum flow of
carbon into the common pathway for the biosythesis of aro-
matic amino acids (Wang et al. 2013a). The metabolic flux
distribution of TRTHAT indicated less flux of PEP through the
formation of Pyr and more flux of PEP and E4P through the
biosynthesis pathway of tryptophan, which resulted in a
higher production of L-tryptophan obtained in TRTHAT as
compared with that of TRTH (Shen et al. 2012).

Though higher production of L-tryptophan obtained in the
mutants with the deletion of ackA and/or tdcD, the L-
tryptophan formation of the mutants was limited by the avail-
ability of key precursors for tryptophan biosynthesis and the
inhibition of acetate (Ikeda 2006; Shen et al. 2012; Wang et al.
2013a). It has been proved that, when E. coli grows in minimal
medium containing glucose as the carbon source, 50 % of
available PEP is consumed by the phosphoenolpyruvate:sugar
phosphotransferase system (PTS) for glucose transport (Flores
et al. 2002), and the maximum theoretical molar yield from
glucose to aromatics synthesis can double in a strain that trans-
ports glucose without coupling the process to PEP utilization
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(Gosset 2005). With the production of L-phenylalanine by the
PTS- Glc+ strain where glucose was transported and phosphor-
ylated by an alternative transport system, galactose permease
(GalP) and glucokinase (Glk), the yield from the glucose in the
synthesis of phenylalanine was increased by 57 % when com-
pared to the isogenic PTS+ strains (Báez-Viveros et al. 2007).
The excretion of acetate inhibited the formation of the desired
product, and the production of L-tryptophan was effectively
increased by the reduction of acetate accumulation (Huang
et al. 2011; Cheng et al. 2012). The accumulation of acetate
was decreased by the disruption of ackA and/or tdcD, but the
formation of L-tryptophan was also inhibited by the acetate
accumulated in these mutants. Thus, the production of L-
tryptophan can be further improved by increasing the availabil-
ity of precursors for tryptophan formation and decreasing the
accumulation of acetate.

During L-tryptophan production, the accumulation of ace-
tate was decreased by reducing acetate kinase activity through
the deletion of ackA and/or tdcD, which led to the higher pro-
duction of L-tryptophan and a higher glucose conversion rate.
The gene ackA was more important for acetate activity than
tdcD according to the lower concentration of acetate accumu-
lated in the ackA mutant than in the strain with the deletion of
tdcD. The mutants with disruption of the ackA and/or tdcD
genes showed higher accumulations of pyruvate and lactate.
The highest L-tryptophan production and glucose conversion
rate was obtained in the strain with the lesions in ackA and
tdcD, and the ackA-tdcD mutant was the better strain for pro-
ducing L-tryptophan. Themetabolic flux analysis of TRTH and
TRTHAT explained why there was a lower accumulation of
acetate and a higher production of L-tryptophan obtained in
TRTHAT than in the parental strain. Furthermore, how to im-
prove the availability of precursors for tryptophan biosynthesis
and reduce the accumulation of acetate for enhancement of L-
tryptophan production should be studied further.
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