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Abstract In this study, we investigated a protocatechuate cat-
abolic gene cluster involved in naphthalene degradation in
Rhodococcus ruber OA1. Rhodococcus ruber OA1 was iso-
lated from the pharmaceutical wastewater treatment plant of
Xinhua Pharmaceutical Co., Ltd. (Zibo, China). Substrate uti-
lization tests showed that OA1 utilizes naphthalene, phenol,
benzoate, salicylate, and protocatechuate as the sole carbon
and energy sources for growth. A degradation assay revealed
that phthalate is an intermediate in naphthalene degradation
and that the protocatechuate pathway plays an important role
in naphthalene degradation. To determine the genetic basis
and regulation of protocatechuate catabolism in OA1, a
fosmid genomic library was constructed and a positive clone
carrying the protocatechuate degradation gene cluster was iso-
lated. Sequencing and a bioinformatics analysis identified the
complete gene cluster, pcaJIGHBARC, responsible for
protocatechuate degradation. Based on this gene cluster, the
genes pcaGH (encoding the α and β subunits of
protocatechuate 3,4-dioxygenase, 3,4-PCD) were
coexpressed and the expressed products showed 3,4-PCD ac-
tivity. This study illustrates a potential pathway of naphthalene
degradation and identifies a protocatechuate pathway in
Rhodococcus ruber OA1 for the first time, thus extending
our understanding of polycyclic aromatic hydrocarbon degra-
dation and the related aromatic compounds degraded in the
process.
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Introduction

Aromatic compounds, such as polycyclic aromatic hydrocar-
bons (PAHs) and aromatic acids, are spread widely by the
combustion of fossil fuels, chemical production, pharmaceu-
tical processes, etc. They are raising increasing concerns, not
only because they have toxic effects on ecosystems and hu-
man health, but also because the high thermodynamic stability
of the benzene moiety makes them relatively persistent in the
environment (Zhu et al. 2011). With their long-term bioaccu-
mulation and biomagnification, some are even mutagenic or
carcinogenic (Burchiel and Luster 2001; Jones et al. 2011;
Lehner et al. 2014). These properties have prompted re-
searchers to find efficient ways of eliminating aromatic con-
taminants from the environment.

Biodegradation is considered the most efficient way of
eliminating aromatic pollutants (Habe and Omori 2003; Seo
et al. 2007, 2009; Haritash and Kaushik 2009; Kanaly and
Harayama 2010). The microbial degradation of PAHs is well
documented in Gram-negative bacteria, such as Pseudomonas
putida OUS82 (Kiyohara et al. 1994; Takizawa et al. 1994;
Tay et al. 2014), Burkholderia sp. RP007 (Laurie and Lloyd-
Jones 1999), Acidovorax sp. NA3 (Singleton et al. 2009), and
Novosphingobium pentaromativorans US6-1 (Yun et al.
2014). Most Gram-negative PAH degraders express similar
PAH catabolic pathways. In the first step of catabolism of
the model compound naphthalene, an oxygen molecule is in-
troduced at the 1,2 position of the aromatic nucleus by naph-
thalene dioxygenase (NDO) to produce cis-naphthalene
dihydrodiol (Kauppi et al. 1998; Parales et al. 1999). cis-
Naphthalene dihydrodiol is transformed into 1,2-
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dihydroxynaphthlene and subsequent intermediates, resulting
in the production of salicylaldehyde, which is then trans-
formed to salicylate by salicylaldehyde dehydrogenase.
Salicylate is then catabolized via catechol or gentisic acid to
tricarboxylic acid (TCA) cycle intermediates. The catabolic
enzymes in the pathway are encoded by similar gene clusters
in the Gram-negative degraders, which have been identified
with molecular biological techniques (Meyer et al. 1999;
Moser and Stahl 2001).

Some Gram-positive bacteria, such as Rhodococcus
NCIMB12038, Nocardioides KP7, and Mycobacterium PYR-
1, also degrade PAHs such as naphthalene, phynanthrene, an-
thracene, fluoranthene, pyrene, benzo[a]pyrene, etc. (Iwabuchi
and Harayama 1997, 1998; Iwabuchi et al. 1998; Larkin et al.
1999; Uz et al. 2000; Kim et al. 2008). However, the genetic
organization of the PAH catabolic enzymes is more diverse in
Gram-positive degraders than in Gram-negative degraders, and
have diverse substrate profiles. Naphthalene is mainly degrad-
ed through the catechol or gentisic acid pathway (Kulakov et al.
2005; Kweon et al. 2007). It was recently reported that a ho-
mologue of the nidA gene is amplified in Rhodococcus
wratislaviensis IFP 2016, which degrades 11 compounds, in-
cluding naphthalene, but the genetic background and degrada-
tion pathway remain unclear (Auffret et al. 2009).

In this study, a Gram-positive PAH degrader, Rhodococcus
ruber OA1, was isolated from the activated sludge of the
wastewater treatment plant of Xinhua Pharmaceutical Co.,
Ltd (Zibo, China). The research revealed that OA1 can de-
grade a variety of aromatic compounds, including naphtha-
lene. Interestingly, phthalate, whose downstream product is
usually protocatechuate in the phenanthrene degradation path-
ways of other PAH degraders, was shown to be an intermedi-
ate of naphthalene degradation in R. ruber OA1, suggesting
that the protocatechuate pathway plays a role in naphthalene
degradation. With the purpose of determining the actual path-
way(s) of naphthalene degradation and the molecular mecha-
nism in OA1, the strain was identified, the degradation me-
tabolites were determined, the related enzymes activities were
analyzed, and the gene cluster encoding the key enzyme
(protocatechuate 3,4-dioxygenase) involved in naphthalene
degradation in OA1 was characterized. We identified the
protocatechuate pathway and the pca gene cluster in
R. ruber OA1, advancing the research into protocatechuate
and naphthalene degradation by Rhodococcus and other
Gram-positive bacteria.

Materials and Methods

Strain isolation and identification and substrate utilization

To isolate the strain, activated sludge was sampled from
the pharmaceutical wastewater treatment plant of Xinhua

Pharmaceutical Co., Ltd. (Zibo, China), which produces
amidopyrine, analgin, aspirin, hydrocortisone, ibuprofen,
pipemidic acid, theophylline, etc. We created a tenfold
dilution series of the sludge, and the diluted solutions
were spread on naphthalene-supplemented mineral medi-
um plates: 1.0 g of NH4NO3, 0.5 g of KH2PO4, 0.5 g
of K2HPO4, 0.5 g of MgSO4·7H2O, 0.02 g of CaCl2,
15 g of agar, and 1 ml of trace element solution per
liter (pH 7.0–7.2). The trace element solution contained
1 g of FeSO4·7H2O, l g of MnSO4·H2O, 0.25 g of
Na2Mo·2H2O, 0.1 g of H3BO3, 0.25 g of CuCl2·2H2O,
0.25 g of ZnCl2, 0.1 g of NH4VO3, 0.25 g of CoCl2·
6H2O, 0.1 g of NiSO4·6H2O, and 5 ml of H2SO4 per
liter of distilled water. Naphthalene was dissolved in
hexane, filter sterilized, and added to the medium as
the sole carbon source at a concentration of 500 mg/l.
To eliminate the solvent, the solution was incubated
overnight before inoculation. Bacterial strain OA1 was
isolated from one of the plates. OA1 was further puri-
fied with the streaking plate method on a naphthalene-
supplemented mineral medium plate.

To identify the isolate, its genomic DNA was extract-
ed with the phenol–chloroform–isopentanol method from
OA1 grown in LB medium. A 16S rRNA gene frag-
ment was amplified and sequenced with primers 27 F
5′-AGAGTTTGATCCTGGCTCAG-3′ and 1541R 5′-
AAGGAGGTGATCCAGCCGCA-3′ (Weisburg et al.
1991; Dastgheib et al. 2011). The morphological char-
acteristics of the strain were evaluated under a normal
optical microscope. The physiological and biochemical
properties were determined with the API Coryne system
(BioMerieux S.A., Marcy l’Etoile, France, version 4.0),
according to the manufacturer’s instructions.

Liquid mineral medium containing a 500 mg/l carbon
source was inoculated with the isolated OA1 to test its sub-
strate utilization. The substrates for these tests included naph-
thalene, phynanthrene, pyrene, phenol, benzoate, salicylate,
protocatechuate, and 2-chlorobenzoate. Substrate utilization
was determined by measuring the substrate degradation and
cell growth. All determinations were made in triplicate with
10 % inoculum.

Phenol, benzoate, salicylate, protocatechuate, and 2-
chlorobenzoate were detected with an UV–visible spec-
trophotometer (U-3310, Hitachi) at wavelengths of
225 nm, 225 nm, 298 nm, 252 nm, and 215 nm, respec-
tively. Naphthalene was detected with a gas chromato-
graph (GC-2010, Shimadzu) (Hedlund et al. 1999).
Phynanthrene and pyrene were detected with a high-
performance liquid chromatography (HPLC) system
(Waters) with a reversed-phase C18 column (5 μm,
4.6×150 mm) (Dastgheib et al. 2012). Cell growth was
determined by monitoring the optical density of the cul-
tures at 600 nm (OD600).
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Naphthalene degradation assay

On days 0, 6, and 16, 100 ml of culture grown in naphthalene-
supplemented (2000 mg/l) mineral medium was extracted
with three equal volumes of ethyl acetate. The aqueous frac-
tion was acidified to pH 2.0 with HCl and extracted again with
three equal volumes of ethyl acetate. The residual extract was
dried over anhydrous Na2SO4 and concentrated at room
temperature.

Naphthalene and the extracted metabolites were ana-
lyzed with gas chromatography–mass spectrometry (GC–
MS; QP-2010plus, Shimadzu) and HPLC. For the GC–MS
analysis, the prepared extracts were dried and dissolved in
methanol. The GC temperature program was 80 °C (iso-
thermal for 2 min), 80–280 °C (15 °C/min), and 280 °C
(isothermal for 2 min). Helium was used as the carrier gas,
at a flow rate of 1 ml/min. The following conditions were
set for the mass analysis: ionization mode, EI+; ionizing
electron energy, 70 eV; source temperature, 230 °C; and
mass range, m/z 30–450. For the HPLC analysis, a
reversed-phase C18 column (5 μm, 4.6×150 mm) was
used. Elution was performed with a mobile phase
consisting of eluent A (1 % acetic acid in water) and eluent
B (1 % acetic acid in methanol) with an HPLC pump sys-
tem (Waters 600 Controller). Gradient elution was per-
formed as follows: linear gradient from 90 % to 50 % A
at a flow rate of 0.8 ml/min at 0–30 min; 50 % A at a
gradient flow rate from 0.8 ml/min to 1.0 ml/min at 30–
35 min; 50 %–10 % A at a flow rate of 1.0 ml/min at 35–
55 min; 10 % A at a gradient flow rate from 1.0 ml/min to
0.8 ml/min at 55–60 min; and a linear gradient from 10 %
to 90 % A at a flow rate of 0.8 ml/min at 60–65 min. A
Waters 2996 Photodiode Array Detector was used for UV
detection at 275 nm. The biomass of OA1 grown in
naphthalene-supplemented mineral medium was deter-
mined with dry weight measurements (Jackson et al.
1999).

Enzyme assays

Enzyme activities were analyzed with a spectrophotometer
(1510, Thermo Fisher) at 30 °C. Intradiol catechol 1,2-
dioxygenase (C12O) activity was assayed by measuring the
increase in absorbance at 260 nm (Dorn and Knackmuss
1978). Extradiol catechol 2,3-dioxygenase (C23O) activity
was monitored under the same conditions, except that the
increase in product absorbance was monitored at 375 nm
(Strachan et al. 1998). The activity of gentisate dioxygenase
(GDO) was assayed by measuring the increase in absorbance
at 334 nm, attributable to the appearance of maleylpyruvate.
The activity of protocatechuate dioxygenase (PCD) was
assayed by measuring the increase in absorbance at 270 nm,
attributable to the production of 3-carboxy-cis, cis-muconate

(Strachan et al. 1998). The reactions were performed in
50 mM potassium phosphate buffer (pH 7) with 300 μl of
enzyme solution, and were initiated by the addition of 10 μl
of 10 mM substrate. One unit of enzyme activity was defined
as the amount of enzyme catalyzing the release of 1 nmol of
product per minute under the specified assay conditions. The
protein concentrations were determined with the method of
Bradford (1976).

Genomic library construction

Genomic DNA was extracted from R. ruber OA1 cells
grown in LB medium with the method of Marmur (1961).
The DNA was sheared to about 40-kb fragments by pipet-
ting with a 200 μl pipette tip (Singleton et al. 2009), end-
repaired with the End-Repair Enzyme Mix in the
CopyCont ro l™ Fosmid Libra ry Produc t ion Ki t
(Epicentre), ligated into pCC2FOS, packaged with
MaxPlax™ Lambda Packaging Extract (Epicentre), titered,
and plated in the Phage T1-Resistant TransforMax™
EPI300™-T1REscherichia coli EPI300 strain, according
to the kit instructions (Epicentre). For long-term storage,
the packaged DNA, constituting the primary library in
E. coli EPI300, was frozen at −80 °C after an equal volume
of 20 % glycerol was added.

In situ hybridization

Based on the DNA sequences of the protocatechuate
dioxygenase genes reported in Gram-positive bacteria, a pair
of primers was designed for the PCR amplification of the
protocatechuate dioxygenase gene of OA1: forward primer
2F 5′-TGCCCNTACCACGGCTG-3′ and reverse primer 2R
5′-GCDCCGAKCTTCCAGTT-3′. The genomic DNA of
R. ruber OA1 was used as the template for PCR. The PCR
products were purified with the EZ-10 DNA Gel Extraction
Kit of Shanghai Sangon Biological Engineering Technology
& Services Co., Ltd. (Shanghai, China) and sequenced by
Shanghai Biosune Biotechnology Co., Ltd. (Shanghai,
China). A digoxigenin (DIG)-labeled nucleotide probe was
generated using the dioxygenase gene amplified from
R. ruber OA1 as the template and the DIG High Prime
DNA Labeling and Detection Kit (Roche), according to the
manufacturer’s instructions.

Colonies of the OA1 genomic library were transferred to
nylon membranes (Roche), according to the manufacturer’s
instructions, then sequentially soaked in denaturing solution
(0.5 M NaOH, 1.5 M NaCl), buffer solution (1 M Tris–HCl,
pH 7.4), and neutralizing solution (1.5 M NaCl, 0.5 M Tris–
HCl, pH 7.4). The nylon membrane was dried at room tem-
perature for 20 min and the DNA was fixed at 80 °C in a
vacuum oven for 2 h.
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Hybridization with the DIG-labeled DNA probe was per-
formed according to the manufacturer’s instructions for the
DIG High Prime DNA Labeling and Detection Kit (Roche).
Genes homologous to the pcd gene were detected with
nitroblue tetrazolium chloride and 5-bromo-4-chloro-3-
indolyl phosphate (NBT/BCIP), part of the DIG High Prime
DNA Labeling and Detection Kit.

Bioinformatics analysis and functional prediction
of positive fosmid DNA

Positive colonies were selected according to the locations
of the blue spots on the nylon membranes. Positive colo-
nies were transferred to LB broth containing chloramphen-
icol and induced to high copy numbers at 37 °C overnight
with the CopyControl™ Fosmid Autoinduction Solution
(Epicentre). The plasmids were then extracted from the
positive colonies with the alkaline lysis method. The plas-
mid DNA was sequenced with high-throughput next-gen-
eration sequencing on an Illumina HiSeq 2000 sequencer
(Pareek et al. 2011). Sequencing and the subsequent bio-
informatics analysis were performed by BerryGenomics
Co., Ltd., Beijing.

Cloning and expression of target genes

Based on the sequencing results and gene function predictions
for the positive fosmid clones, primers were designed with the
Primer Premier 5.0 software to amplify the complete target
gene. The positive fosmid DNAwas used as the template for
PCR. The PCR products were digested with a restriction en-
zyme and purified with the EZ-10 Spin Column Gel
Extraction Kit. The purified products were ligated into the
corresponding restriction site of pET-30a(+) with T4 ligase,
and competent E. coli BL21(DE3) cells were transformed
with the recombinant plasmids. The sequence was verified
withDNA sequencing to ensure that nomutation had occurred
during the process.

LB broth (2 ml) containing 50 μg/ml kanamycin was inoc-
ulated with the transformant carrying the recombinant plas-
mid, and incubated at 32 °C for 15 h at a shaking speed of
160 rpm. About 0.5 ml of the culture was transferred into
50 ml of LB containing 50 μg/ml kanamycin and incubated
at 32 °C until an OD600 of 0.6–0.8 was reached. Isopropyl β-
D-1-thiogalactopyranoside (IPTG) was added to the culture at
a final concentration of 0.5 mM, and the culture was continu-
ously incubated at 28 °C for 16 h. The cells were collected by
centrifugation at 8000 rpm for 10 min, lysed by
ultrasonication, and centrifuged at 12,000 rpm for 10 min.
The expressed target proteins were identified with SDS-
PAGE and an enzyme assay.

Results

Strain isolation and identification, and substrate
utilization

The bacterium OA1 was isolated on a naphthalene-
supplemented mineral medium plate. Gram staining and mi-
croscopic observation revealed that strain OA1 is a non-spore-
forming Gram-positive short rod with round ends. The cells
are around 0.8–1.2 μm in width and 1.5–3.0 μm in length. An
API Coryne system analysis showed that OA1 shares the
physiological and biochemical properties of the genus
Rhodococcus. 16S rRNA gene sequencing and a phylogenetic
analysis demonstrated that OA1 shares 99 % sequence iden-
tity with R. ruber M2 (Fig. 1) in tetrahydrofuran-degrading
culture (Daye et al. 2003). These characters support the taxo-
nomic identification of OA1 as a strain of R. ruber. The 16S
rRNA gene sequence was submitted to GenBank under acces-
sion no. JQ687062.

Substrate utilization tests showed that not only naphtha-
lene , but a lso phenol , benzoate , sa l icyla te , and
protocatechuate are utilized byOA1 as sole carbon and energy

R. wratislaviensis J3 (AB192963) 

R. wratislaviensis FPA1 (FM999002) 

R. kyotonensis DS472 (AB269261) 

R. hoagii ATCC33701 (D37876)

R. opacus B-9 (AB192963) 

R. opacus B-10 (B192964)

R. hoagii CUB 1116 (AJ272468) 

R. hoagii GMA339 (AB738794)

R. erythropolis DSM 43188T (X80618) 

R. erythropolis DSM 43200 (AB429542) 

R. erythropolis NCIMB 13064 (AJ250928) 

R. aetherivorans 126189 (JN180179) 

R. aetherivorans 8 (KJ571061) 

R. aetherivorans IR34-DHCE-402 (AB546298)

R. ruber DSM 43338T (X80625) 

R. ruber OA1 (JQ687062) 

R. ruber M2 (AY247275) 

R. rhodochrous DSM 43274T (X80624) 

M. vanbaalenii PYR-1 (NR_074572) 

R. hoagii DSM 20307T (X80614) 

R. hoagii DSM 43199T (X80613)

R. wratislaviensis SC5s3 (X80618) 

Fig. 1 Phylogenetic tree of Rhodococcus ruber OA1 and its relatives
based on 16S rRNA gene sequences. The tree rooted with
Mycobacterium vanbaalenii PYR-1 was constructed using the
neighbor-joining method with bootstrap values based on 1000
replications. The numbers at branch points are the percentages
supported by bootstrap, and those in parentheses are the GenBank
accession numbers of the 16S rRNA gene sequences. Bar = 5 %
sequence divergence
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sources, whereas 2-chlorobenzoate, phynanthrene, and pyrene
are not utilized by OA1.

Naphthalene degradation assay

Naphthalene and its metabolites were analyzed with GC–MS
during the degradation of naphthalene by OA1. The GC–MS
results showed that when naphthalene was degraded
completely in 6 days, both salicylate and phthalate were pres-
ent in the 6-day sample, whereas both salicylate and phthalate
were substantially reduced in the 16-day sample, and neither
salicylate nor phthalate was present on day 0. Then the con-
centrations of naphthalene, salicylate and phthalate in the sam-
ples were determined with HPLC. The HPLC results showed
that the trends of these compounds were consistent with those
in GC-MS analysis. The concentrations of naphthalene,
phthalate and salicylate were displayed in Table 1. The dry
weight measurement showed the biomass of OA1 increased
with the degradation of naphthalene and the metabolites
(Table 1). These results indicated that salicylate and phthalate
were intermediates of naphthalene degradation in OA1.

Enzyme assays

Rhodococcus ruber OA1 cells were harvested by centrifuga-
tion from a late-exponential-phase cell culture in naphthalene-
supplemented mineral medium. The enzyme solutions were
obtained by ultrasonication and centrifugation, and were used
to screen for different enzyme activities. The enzyme activity
assays revealed that PCD, GDO, and C12O activities were
present in the enzyme solution extracted from an R. ruber
OA1 culture grown on naphthalene. The specific activities
of the enzymes detected are shown in Table 2.

These results indicated that naphthalene induced the ex-
pression of PCD, GDO, and C12O in this culture, but not
C23O. The expression of PCD was consistent with the
protocatechuate pathway deduced above. This is the first
proof that the protocatechuate pathway is involved in the deg-
radation of naphthalene by Rhodococcus. The presence of

GDO and C12O may confirm the presence of the gentisate
and catechol pathways, respectively, in R. ruber OA1.

Genomic library construction and screening

A genomic library was constructed with the CopyControl™
Fosmid Library Production Kit using the pCC2FOS vector
and the phage T1-resistant E. coli EPI300 plating strain.
Titering the packaged CopyControl fosmid clones indicated
that the library titer was 1×104 CFU/ml. The probability of the
presence of every gene in the genome of R. ruber strain OA1
was 99.99 %, and the library coverage was at least tenfold
genome equivalents.

With primers 2 F and 2R, a PCR product of about 300 bp
was amplified from the genomic DNA of R. ruber OA1. The
sequencing results showed that it was homologous to the
protocatechuate dioxygenase gene. A DIG-labeled probe
was generated based on the gene sequence, with the DIG
High Prime DNA Labeling and Detection Kit (Roche), and
was used to screen for the protocatechuate dioxygenase gene
(cluster) with in situ hybridization. A positive colony was thus
identified in the genomic library.

Sequencing and a bioinformatics analysis of the positive
plasmid DNA

Sequencing and a bioinformatics analysis of the positive
plasmid DNA revealed a 45,518-bp sequence containing
56 genes, including eight genes encoding proteins related
to protocatechuate catabolism (Zhang et al. 2012). The
eight genes were organized into the gene cluster
pcaJIGHBARC (accession nos. KJ546148, KP057223),
whose putative protein products were 3-oxoacid CoA-
transferase β subunit, 3-oxoadipate CoA-transferase α
subunit, protocatechuate 3,4-dioxygenase β subunit,
protocatechuate 3,4-dioxygenase α subunit, 3-carboxy-
cis, cis-muconate cycloisomerase, 4-carboxymuconolactone
decarboxylase, transcriptional regulator PcaR, and acetyl-
CoA acetyltransferase, respectively. The sizes, locations, and

Table 1 Quantitative measurement of naphthalene and its metabolites
as well as the biomass in the degradation of naphthalene by Rhodococcus
ruber OA1

Concentration (mg/l)*

0d 6d 16d

Naphthalene 1976.55±21.16 0 0

Phthalate 0 0.27±0.01 0.04±0.01

Salicylate 0 0.64±0.04 0.04±0.02

Biomass (dry weight) 10.00±2.89 955.56±19.25 1311.11±69.39

* The results were expressed as an average of three experiments

Table 2 Specific activities of enzymes in naphthalene degradation in
Rhodococcus ruber OA1

Substrate Specific activity (U/mg protein)*

PCDa GDOb C12Oc C23Od

Naphthalene 127.45±5.1 69.22±2.11 9.61±1.65 0

* The results were expressed as an average of three experiments
a Protocatechuate dioxygenase
b Gentisate dioxygenase
c Catechol 1,2-dioxygenase
d Catechol 2,3-dioxygenase
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directions of the genes are shown in Fig. 2. In the cluster,
pcaG (720 bp) and pcaH (597 bp) encode the α subunit and
β subunits of protocatechuate 3,4-dioxygenase (3,4-PCD),
respectively. 3,4-PCD is the key enzyme in the cleavage of
protocatechuate to 3-carboxy-cis, cis-muconate. The other
genes in the cluster play roles in converting 3-carboxy-cis,
cis-muconate to the subsequent products before they enter
the TCA cycle of R. ruber OA1.

Heterologous expression of protocatechuate catabolic
genes

To verify the function of the protocatechuate catabolic gene
cluster, key genes (pcaGH) were cloned and expressed in
E. coliBL21(DE3). Because these two genes share eight over-
lapping nucleotides (Fig. 3), the genes pcaGH were
coexpressed in E. coli BL21(DE3), and formed the complete
and active 3,4-PCD enzyme. A pair of primers was designed
based on the complete pcaGH gene sequence: pcaGHF 5′-
GGAATTCCATATGCTTCATCTGCCGCCC-3 ′ and
pcaGHR 5′- CCCAAGCTTCTAGATCGCGAAGAAC-3′.
The underlined nucleotides indicate NdeI and HindIII restric-
tion sites, respectively. The plasmid DNA was used as the
template for PCR amplification. The PCR product containing
pcaGH, whichwas 1309 bp long, was purified and sequenced.

The purified and sequenced pcaGH gene was digested with
NdeI and HindIII and ligated into the expression vector pET-
30a(+) digested with the same enzymes. TheNdeI andHindIII
restriction enzymes were used to identify the recombinant
pET-30a(+)–pcaGH construct. A sequencing analysis showed
that the pcaGH sequence in the recombinant pET-30a(+)–
pcaGH construct was correct. After induction with IPTG,
the pcaGH gene efficiently expressed the α and β subunits
of 3,4-PCD. An SDS-PAGE analysis confirmed the expressed
α subunit (PcaG) and β subunit (PcaH) of 3,4-PCD (Fig. 4).
The molecular weights of PcaG and PcaH were ~27.1 kDa
and ~21.4 kDa, respectively.

The expressed soluble proteins were extracted with
ultrasonication and centrifugation. Enzyme assays revealed
that the expressed proteins could convert protocatechuate to
β-carboxy-cis, cis-muconic acid, indicating that they were the
components of active 3,4-PCD. The specific activity of 3,4-
PCD in E. coli BL21(DE3) cells was 81.37±4.32 nmol/min/
mg protein, which was a little lower than its specific activity in
R. ruber OA1.

Nucleotide sequence accession numbers

The 16S rRNA gene sequence ofR. ruberOA1was submitted
to GenBank under accession number JQ687062. The pca
gene cluster sequence, containing the pcaJ, pcaI, pcaG,
pcaH, pcaB, pcaA, pcaR, and pcaC genes of R. ruber strain
OA1, was submitted to GenBank under accession numbers
KP057223 (pcaJ, pcaI) and KJ546148 (pcaG, pcaH, pcaB
pcaA, pcaR, and pcaC).

Discussion

PAH contaminants are normally produced during the incom-
plete combustion of fossil fuels, oil treatments, chemical and
pharmaceutical production, etc. (Cerniglia 1992; Seo et al.
2009; Braun et al. 2015). The study of PAH biodegradation
has shown that different kinds of environments can be habitats
of PAH degraders. A large number of PAH degraders have
been isolated from PAH-contaminated or oil-contaminated
soils and characterized (Ahn et al. 1999; Uz et al. 2000;
Derz et al. 2004; Seo et al. 2007; Singleton et al. 2009), some
of which were derived from sediments (Yu et al. 2005; Zhou
et al. 2006), some from marine environments (Iwabuchi et al.
1998), and some from contaminated compost, consisting of
lignite-treated wooden ties mixed with sugar beet mud
(Annweiler et al. 2000). In this study, a PAH degrader,
R. ruber OA1, was isolated from the activated sludge of a
pharmaceutical wastewater treatment plant after the produc-
tion of amidopyrine, pipemidic acid, etc. Biodegradation stud-
ies based on these strains should contribute to the
biodecontamination or biotreatment of these kinds of
environments.

Rhodococcus is a genus of the family Nocardiaceae, sub-
order Corynebacterineae, order Actinomycetales, subclass
Actinobacteridae, phylum Actinobacteria, and domain
Bacteria. The genus has a variety of degradation substrates,
especially xenobiotic compounds that cause serious environ-
mental problems throughout the world. Rhodococcus sp.
strain RHA1 degrades polychlorinated biphenyls and benzo-
ate as substrates (Kitagawa et al. 2001); Rhodococcus sp.
strain DK17 uses indan as a growth substrate via the o-
xylene pathway (Kim et al. 2010, 2011); Rhodococcus
wratislaviensis IFP 2016 degrades 11 compounds, including
naphthalene (Auffret et al. 2009); and Rhodococcus

pcaJ pcaI  pcaG pcaH    pcaB       pcaA     pcaR  pcaC

Fig. 2 Genes organization of the
protocatechuate degradation
pathway in Rhodococcus ruber
strain OA1. The arrows indicate
the sizes, locations, and directions
of the genes
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erythropolis djl-11 degrades carbendazim for growth (Zhang
et al. 2013). In this study, R. ruberOA1was shown to degrade
a variety of aromatic compounds, including naphthalene, phe-
nol, benzoate, salicylate, and protocatechuate, extending our
knowledge of Rhodococcus and its degradation properties.
Compared to the naphthalene biodegradation, the more diffi-
cult thing with PAH is the biodegradation of congeners with a
higher number of rings. However, when phynanthrene or
pyrene was added to the mineral medium as the sole carbon
source, it could not support the growth of OA1, nor be de-
graded by OA1. This might limit to some extent the study of
OA1 degrading more complex PAHs.

Salicylate is a well-known intermediate in the degradation
of naphthalene, phenanthrene, and anthracene by previously
reported PAH degraders. Salicylate is further metabolized by

catechol or gentisate to TCA cycle intermediates (Menn et al.
1993; Sanseverino et al. 1993; Kiyohara et al. 1994; Yang
et al. 1994). Phthalate is regarded as an intermediate of phen-
anthrene, anthracene, and pyrene degradation by some PAH
degraders (Heitkamp et al. 1988; Iwabuchi et al. 1998; Khan
et al. 2001). Recently, phthalate was identified as an interme-
diate in naphthalene degradation by Bacillus thermoleovorans
Hamburg 2 (Annweiler et al. 2000), but the pathway down-
stream from phthalate in B. thermoleovorans Hamburg 2 has
not been determined or predicted. Kweon et al. (2011) pro-
posed that phthalate is an intermediate in the degradation of
naphthalene, fluorene, acenaphthylene, anthracene, phenan-
threne, pyrene, and benzo[a]pyrene by Mycobacterium
vanbaalenii PYR-1, and that protocatechuate is a downstream
product of phthalate. In the present work, phthalate was iden-
tified as an intermediate in naphthalene degradation by
R. ruber OA1, so R. ruber OA1 may degrade naphthalene
via the protocatechuate pathway.

To confirm the protocatechuate pathway in R. ruber
OA1, PCD, a key enzyme of protocatechuate metabolism,
was assayed in OA1 grown on naphthalene-supplemented
mineral medium. The high PCD activity of OA1 indicates
that naphthalene is responsible for the PCD activity of
OA1 , a n d c o n f i rm s t h e i n v o l v emen t o f t h e
protocatechuate pathway in naphthalene degradation.
GDO and C12O were also present in OA1 grown on
naphthalene-supplemented mineral medium, indicating
that the gentisate pathway via GDO and the catechol path-
way via C12O also have roles in naphthalene degradation
by OA1. However, the catechol pathway via C23O might
not be involved in naphthalene degradation by OA1, be-
cause no C23O activity was detected in OA1, although
the catechol pathway via C23O is important in naphtha-
lene degradation by Rhodococcus rhodochrous strains
P200 and P400 (Kulakova et al. 1996). The probable
pathways of naphthalene degradation in R. ruber OA1,
based on these data, are shown in Fig. 5.

Fig. 3 The nucleotide sequence
of pcaGH and the deduced amino
acid sequence. The underlined
nucleotides were the shared
nucleotides of pcaG and pcaH.
The asterisks (*) marked the stop
codons of pcaG and pcaH

Fig. 4 SDS-PAGE analysis of the expressed proteins of recombinant
pET-30a(+)-pcaGH. M, protein marker; 1, The total protein of non-
deduced E. coli BL21 (DE3) containing pET-30a(+)-pcaGH; 2: The
secretory protein in the medium; 3, The total protein of E. coli BL21
(DE3) containing pET-30a(+)-pcaGH induced with IPTG for 4 h; 4,
The precipitate protein obtained by ultrasonication and centrifugation;
5: The supernatant protein obtained by ultrasonication and
centrifugation. The arrows indicate the positions of the expressed α and
β subunits
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In subsequent experiments, protocatechuate-degrading
activity was detected in OA1 and a gene cluster related to
protocatechuate degradation was cloned and identified.
The genes in this cluster encoding protocatechuate 3,4-
dioxygenase (3,4-PCD) were subcloned and expressed in
E. coli BL21(DE3). Enzyme assays showed that the
expressed heterodimeric protein had 3,4-PCD activity and

successfully degraded protocatechuate. To date, three pat-
terns have been ident i f ied in the catabol ism of
protocatechuate, which are catalyzed by three PCDs:
protocatechuate 4,5-dioxygenase (4,5-PCD) reported in
Pseudomonas (Dagley et al. 1968), protocatechuate 2,3-
dioxygenase (2,3-PCD) reported in Bacillus (Wolgel et al.
1993) , and 3,4-PCD, reported in Pseudomonas ,
Burkholderia , and Stenotrophomonas maltophilia
(Ohlendoff et al. 1988; Romero-Silva et al. 2013; Guzik
et al. 2013). The former two enzymes, which require fer-
rous iron as a cofactor, catalyze the metacleavage of the
aromatic ring adjacent to the hydroxyl substituent (Arciero
et al. 1983; Wolgel et al. 1993), whereas 3,4-PCD, which
requires nonheme ferric iron as the sole cofactor, catalyzes
the orthocleavage of the aromatic ring between the vicinal
hydroxyls to form 3-carboxy-cis, cis-muconic acid
(Ohlendoff et al. 1988; Guzik et al. 2013). The 3,4-PCD
expressed in R. ruber OA1 displays the last pattern. This is
the first report of 3,4-PCD in R. ruber. Protocatechuate 3,
4-dioxygenase plays an important role not only in PAH
degradation, but also in the degradation of other aromatic
compounds. Romero-Silva et al. (2013) reported that
Burkho l d e r i a x enovo ran s LB400 deg r ad e s 4 -
hydroxybenzoate via the protocatechuate pathway cata-
lyzed by 3,4-PCD. Guzik et al. (2014) even found that 3,
4-PCD from S. maltophilia KB2, immobilized in calcium
alginate, increased the act ivi t ies degrading 2,5-
dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate,
and 3,5-dihydroxybenzoate. Our results for 3,4-PCD in
R. ruber OA1 should facilitate further research into 3,4-
PCD in Gram-positive bacteria, such as Rhodococcus.

Besides the steps of protocatechuate catabolism, the
naphthalene biodegradation activity of R. ruber involves
many other steps catalyzed by other enzymes. The success-
ful heterologous expression of 3,4-PCD in E. coli
BL21(DE3) has paved the way for the heterologous ex-
pression of more gene products or enzymes involved in
naphthalene degradation. This may be helpful in defining
the gene functions, and the molecular mechanisms of deg-
radation in Rhodococcus, and its potential application to
bioremediation.

In conclusion, this study has demonstrated a new naphtha-
lene degrader, R. ruber OA1, and the role of its
protocatechuate pathway in naphthalene degradation. The
gene cluster responsible for protocatechuate catabolism was
identified, and the genes encoding theα andβ subunits of 3,4-
PCD were coexpressed. This is the first report of the
protocatechuate pathway of naphthalene degradation in
Rhodococcus. The study extends our knowledge of PAH bio-
degradation and should contribute to the efficient biomonitor-
ing, biotreatment, and bioremediation of PAH pollution.

I

II

III

A

B

C

Fig. 5 Proposed pathways of naphthalene degradation in Rhodococcus
ruber OA1. I, salicylate; II, phthalate; III, protocatechuate; A, gentisate
dioxygenase; B, catechol 1,2-dioxygenase; C, protocatechuate 3,4-
dioxygenase
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