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Abstract Soil pH has been suggested as one of the most
important factors affecting the ecological characteristics of
soil ammonia-oxidizers (AO), which mediate the conversion
of ammonia to nitrate via nitrite and contribute significantly to
the leaching of nitrate to groundwater and the production of
atmospheric nitrous oxide (N2O). However, the dynamics of
the AO community in acidic purple soils, which are widely
distributed in Southwest China, remain largely unknown. In
this study, two typical purple soils with different pH values
(acidic: ACI; alkaline: ALK) were collected and studied. The
abundance o f amoA ( g ene encod i ng ammon i a
monooxygenase) of ammonia-oxidizing bacteria (AOB) and
archaea (AOA) and that of the cbbL gene (encoding ribulose-
1,5-biphosphate carboxylase/oxygenase) were determined by
real-time PCR, and the community structures of AOB and
AOA were investigated by cloning and sequencing. The re-
sults revealed that abundances of AOB and AOAwere signif-
icantly lower in the ACI purple soil sample than in the ALK
sample, but a higher ratio of AOA to AOB was found in the
ACI purple soil sample. No significant difference in the abun-
dance of cbbL was found between the two soils, but the ratio
of AOB and AOA amoA to cbbL genes in the ACI soil sam-
ples was higher than that in the ALK sample. Moreover, the
ALK and ACI soils harbored contrasting community compo-
sitions of AO. AOB in the ALK were dominated by cluster 3a
(87 %), while the percentage of cluster 3a decreased and

clusters 9 and 10 accounted for almost 77 % of the AOB
community in the ACI soil. Nitrososphaera and Nitrosotalea
were the major AOA phylotypes in the ALK and ACI soils,
respectively. In conclusion, our results revealed the potential
relations among pH, AO, and total chemoautotrophic bacteria
in soil and that pH might have an essential impact on the
adaptation and selection of AO in purple soils.

Keywords Purple soil . pH . Ammonia-oxidizers . amoA .

cbbL . Community composition

Introduction

Ammonia oxidation, as the first and rate-limiting step in nitri-
fication, is mainly driven by ammonia-oxidizers (AO) and is
considered to be one of the most important processes in the
soil nitrogen (N) cycle (Deboer et al. 1991). In the soil envi-
ronment, ammonia oxidation can trigger the subsequent nitri-
fication process, resulting in the transformation of ammonia to
nitrate; the nitrate can be leached into groundwater and finally
be reduced to nitrous oxide (N2O) or nitrogen gas (N2) by
denitrification, which is an important part of the global N-
cycle and can also lead to soil nitrogen losses and environ-
mental problems (Kowalchuk and Stephen 2001;
Ravishankara et al. 2009). Th importance of soil ammonia
oxidation has been increasingly recognized in recent years,
and increasing attention has focused on the drivers of soil
AO and the relative contributions of ammonia-oxidizing ar-
chaea (AOA) and ammonia-oxidizing bacteria (AOB) to ni-
trification (Zhang et al. 2012; Hu et al. 2014).

AOB were considered to be the sole key drivers of soil
ammonia oxidation until the discovery of AOA (Konneke
et al. 2005). Subsequent studies confirmed that both AOB
and AOA may be the main drivers of ammonia oxidation in
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soil, but their relative contributions to ammonia oxidation is
still under debate (He et al. 2012; Hu et al. 2014). It is assumed
that soil AOA may be the primary participants in ammonia
oxidation under various harsh environmental conditions, such
as low pH, extremely low or high temperature, high salinity,
low oxygen, and low concentrations of the ammonium cation
(NH4

+) (Erguder et al. 2009). Of these properties, soil pH,
which affects the form and availability of a number of impor-
tant elements [N, sulfur, phosphorus (P)] in soil, has long been
considered as one of the most essential factors determining the
relative contributions of AOB and AOA (Hu et al. 2014). The
direct relationship between autotrophic nitrification activity
and AOA in acidic soils has been verified using DNA enrich-
ment detection with stable 13CO2 (Lehtovirta-Morley et al.
2011; Zhang et al. 2012). More recently, the ecological char-
acteristics of AO in soils with different pH values have
attracted worldwide attention (Gubry-Rangin et al. 2011;
Yao et al. 2013; Hu et al. 2014). Gubry-Rangin et al. (2011)
found that soil AOA can be clustered into acidophilic, acido-
neutral, and alkalinophilic groups based on the soil pH value,
with the former dominant in soils with pH<5.5, acido-neutral
AOA dominant in soils with pH 5.5–7.5, and the latter dom-
inant in soils with pH>7.5. It has also been reported that in
some Chinese agricultural soils pH is the most important fac-
tor controlling the community structures of AOA and AOB
(Yao et al. 2013; Hu et al. 2014). Although these studies con-
firm the pH-dependent adaptation and selection of soil AOB
and AOA, the factors affecting AOB and AOA are very com-
plex (Prosser and Nicol 2012), and the effects of parent mate-
rial should not be ignored in the investigation of ecological
characteristics of soil AO. Therefore, for a better understand-
ing of the pH-dependent adaptation and selection of soil AO,
comparative studies on the community compositionthe rela-
tionship between soil carbon dioxide (CO2)-fixing bacteria
and the CO2 budget has received much attention, and the
community structure of total chemoautotrophic bacteria with-
in this framework has been investigated by many researchers
(Tolli and King 2005; Videmsek et al. 2009; Yuan et al. 2013;
Wu et al. 2014; Xiao et al. 2014). However, although AO
represent one of the important groups of CO2-fixing microor-
ganisms, the relationship between AO and total chemoauto-
trophic bacteria has only rarely been reported. Soil AOB and
AOA have long been considered to be obligate chemoautotro-
phic organisms, but recent studies have demonstrated that
AOA and AOB also have the ability to utilize organic carbon
at low concentrations (Schmidt 2009; Tourna et al. 2011),
po s s i b l y i nd i c a t i n g t h a t AO a r e no t ob l i g a t e
chemolithoautotrophs but mixotrophs. However, despite the
potential for being obligate chemolithoautotrophs or
mixotrophs, both AOA and AOB genomes contain genes
encoding enzymes involved in carbon fixation via the modi-
fied 3-hydroxypropionate/4-hydroxybutyrate pathway
(Blainey et al. 2011) and the ribulose-1,5-biphosphate

carboxylase/oxygenase (RuBisCO) pathway (Kusian and
Bowien 1997). Therefore, as an important characteristic of
AO, the functional genes related to carbon fixation should
be taken into consideration in the investigations of soil AO
dynamics.

Purple soils are the most representative soil type in the
Sichuan basin of Southwestern China. These soils are charac-
terized by lithologic soils without distinct pedogenic horizons
and have developed from the fast physical weathering of sed-
imentary rocks of the Trias-Cretaceous system (He 2003).
They are classified as Orthic Entisols according to the
Chinese Soil Taxonomic System and as Regosols in the
FAO Taxonomy or Entisols in USDA taxonomic terms. In this
study, we have investigated the abundance of amoA (gene
encoding ammonia monooxygenase) of AOB and AOA and
of cbbL (encoding RuBisCO), as well as the community struc-
tures of ammonia-oxidizing microorganisms in two purple
soils (originating from the same parent material) with distinct-
ly different pH values. The objective was to compare the dif-
ferences in abundance and community structure of AOB and
AOA in purple soil with different pH values and to study the
relationship between the abundance of ammonia-oxidizing
microorganisms and that of the total chemoautotrophic bacte-
ria. This knowledge could be helpful for a better understand-
ing of effect of pH on ammonia oxidation in soils.

Materials and methods

Site description and soil sampling Soil samples were col-
lected from two agricultural fields with a similar planting pat-
tern (cabbage–sweet potato rotation), in the Jiangjin [28°75′N,
106°46′E; acidic (ACI) purple soil] and Fulin [29°57′N,
107°11′E; alkaline (AKI) purple soil] districts of Chongqing
(China). Six soil cores (diameter 5 cm; depth 20 cm) were
collected randomly from each plot and mixed thoroughly to
form one composite sample. Each treatment contained three
replicate soil samples. After the fine roots and visible organic
debris had been removed by passage through a 2-mm sieve,
the soil samples were stored at 4 °C and −80 °C for chemical
analysis and DNA extraction, respectively.

Physicochemical determination of soil Soil pH was deter-
mined in a water suspension (soil:water, 2:5). Soil organic
matter (OM) was measured using the K2Cr2O7 oxidation
method. Soil total nitrogen (TN), total P (TP), and total potas-
sium (TK) content were determined by micro-Kjeldahl diges-
tion, colorimetric analysis, and a dissolution-flame photome-
ter, respectively (Lu 1999). Soil available N (AN), available P
(AP), and available K (AK) were determined by conventional
methods described by the Chinese Society of Soil Science (Lu
1999). Soil properties are listed in Table 1.
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Extraction of soil DNA Soil DNAwas extracted from 0.5 g of
fresh soil using a Fast DNA® SPIN kit for soil (Q BIOgene,
USA) according to the manufacturer’s protocol. The extracted
DNA was checked by electrophoresis on a 1 % agarose gel
and then stored at −20 °C prior to use.

Measurement of potential nitrification rates Soil potential
nitrification rate (PNR) was measured by the chlorate inhibi-
tion method (Kurola et al. 2005). Briefly, (NH4)2SO4 was
added to catalyze the formation of nitrite, and KClO3 was
added to inhibit the last step in which the nitrite is transformed
to nitrate. The accumulation of nitrite was then measured to
calculate the PNR value.

Quantification of bacterial and archaeal amoA and cbbL
genes Real-time PCR was performed on an iCycler iQ5
thermocycler (Bio-Rad, USA), and the standard curves for
real-time PCR assays were developed as described previously
(He et al. 2007). Amplification was performed in 25-μL reac-
tion mixtures using SYBR® Premix Ex TaqTM following the
manufacturer’s instructions (Takara Biotechnology, Japan),
with the original DNA as template in each reaction mixture.
The primer sets (AOB: amoA-1 F/amoA-2R; AOA: Arch-
amoAF/Arch-amoAR; cbbL: K2f/V2r, specific to all
chemolithotrophs in the bacterial domain) and thermal profiles
used in the amplification of each target gene are listed in
Table 2. As the temperature increased from 55 to 95 °C during

the thermal cycling step, a melting curve analysis was per-
formed to assess the specificity of the PCR products for each
real-time PCR amplification by measuring the fluorescence
continuously as the temperature increased from 55 °C to
95 °C. Using iCycler software (version 1.0.1384.0 CR), the
parameter Ct (threshold cycle) was determined as the cycle
number at which the start of exponential increase in the re-
porter fluorescence was detected.

Construction and analysis of bacterial and archaeal amoA
clone librariesBacterial and archaeal amoA gene clone librar-
ies were constructed based on purified PCR products, using
the primer sets of Arch-amoAF/Arch-amoAR and amoA1F/
amoA2R, respectively (Table 2). PCR reactions (50 μL)
contained 5 μL of 10× PCR buffer (Mg2+ plus), 4 μL of
2.5 mM dNTPs, 0.5 μL of Ex Taq polymerase (5 U μL−1;
Takara Biotechnology), 1 μL of each primer (10 μM), and
2 μL of DNA template (1–10 ng). Each PCR product was
gel-purified with the Wizard® SV Gel and PCR Clean-Up
System (Promega Corp., USA). The purified PCR products
were ligated into the pGEM-T Easy Vector (Promega Corp.)
and then transformed into Escherichia coli JM109 (Takara
Biotechnology) following the manufacturer’s instructions.
The positive clones (110) were randomly selected from each
clone library and sequenced by a DNA sequencer (ABI
3730XL; Applied Biosciences, USA). The homology analysis
of the obtained sequences was performed by the software

Table 2 Primer sets and thermal profiles used in PCR amplification

Target group Primer set Sequence (5′-3′) Thermal profile Reference

AOB amoA-1 F GGGGTTTCTACTGGTGGT 5 min at 94 °C, followed by 35 cycles of 30 s
at 94 °C,30 s at 55 °C and 1 min at 72 °C,
and 5 min at 72 °C for the last cycle

Rotthauwe et al. 1997
amoA-2R CCCCTCKGSAAAGCCTTCTTC

AOA Arch-amoAF STAATGGTCTGGCTTAGACG 5 min at 94 °C, followed by 35 cycles of 30 s
at 94 °C,30 s at 53 °C and 1 min at 72 °C,
and 5 min at 72 °C for the last cycle

Francis et al. 2005
Arch-amoAR GCGGCCATCCATCTGTATGT

cbbL K2f ACCAYCAAGCCSAAGCTSGG 5 min at 94 °C, followed by 38 cycles of 30 s
at 94 °C,30 s at 57 °C and 1 min at 72 °C,
and 5 min at 72 °C for the last cycle

Tolli and King 2005
V2r GCCTTCSAGCTTGCCSACCRC

cbbL, Gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO)

Table 1 Basic properties of the alkaline and acidic purple soils

Samplesa pH OM (g kg−1) TN (g kg−1) TP (g kg−1) TK (mg kg−1) AP (mg kg−1) AK (mg kg−1) AN (mg kg−1) PNR (μg NO2
−-N g−1

dry soil h−1)

ACI soil 5.10b 5.11b 0.55b 0.21b 10.60b 3.80b 82.00a 37.70b 0.07b

ALK soil 7.50a 14.20a 1.27a 0.64a 18.30a 9.40a 72.50a 76.30a 0.36a

Values are the mean of 3 measurements (n=3), and values within the same column followed by the different lowercase letters indicate significant
differences at P<0.05

OM, Organic matter; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK, available
potassium; PNR, soil potential nitrification rate
a ACI, Acidic purple soil; ALK, alkaline purple soil
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DNAMAN (version 6.0.3.48;, Lynnon Biosoft, USA). The
sequences displaying >97 % identity with each other were
classified into the same operational taxonomic units (OTUs),
and one representative sequence of each OTU was used to
construct the phylogenetic tree. The phylogenetic analysis
based on the sequences (obtained from this study and refer-
ence sequences from GenBank) was conducted with the soft-
ware MEGA (version 4.0), and the neighbor-joining tree was
constructed using Kimura two-parameter distance with 1,000
replicates to produce bootstrap values (Tamura et al. 2007).
Analytic Rarefaction version 1.3 software (http://www.uga.
edu/strata/software.hml) was used for the rarefaction analysis
of each clone library. The sequences obtained in this study
have been submitted to the GenBank nucleotide sequence
database with the accession numbers KJ433520–KJ433548
(AOB) and KJ433492–KJ433519 (AOA).

Statistical analysis A one-way analysis of variance followed
by a Student–Newman–Keuls test was performed using SPSS
version 11.5 software (IBM Corp., USA) to check for quanti-
tative differences between treatment groups. A Pvalue of
<0.05 was considered to be significant.

Results

Soil properties and PNR

Soil properties and PNR are listed in Table 1. The pH value of
the ALK purple soil and ACI purple soil samples was 7.5 and
5.1, respectively. Except for there being no significant differ-
ence in soil AK, the contents of OM, TN, TP, TK, AP, and AN
were all lower in the ACI soil than in the ALK soil. A signif-
icantly higher PNR value was detected in the ALK soil sam-
ple, which was almost fivefold higher than that of the ACI
sample.

Abundance of archaeal, bacterial amoA and cbbL genes

In the ALK soil sample, the copy number of AOA amoA gene
(1.09×107 g−1 dry soil) was higher than AOB amoA gene
(1.93×106 g−1 dry soil) or cbbL (1.47×106 g−1 dry soil), and
no difference was found for the copy numbers of AOB amoA
and cbbL genes (Fig. 1). In the ACI sample, the copy numbers
of these three functional genes were in the order of AOA
(3.91×106 g−1 dry soil)>cbbL (2.13×106 g−1 dry soil)>
AOB (1.72×105 g−1 dry soil). Additionally, no difference in
the copy number of cbbLwas found between these two purple
soils, but the abundance of both the AOA and AOB amoA
genes in the ALK soil were higher than those in the ACI soil
sample. Moreover, the ratio of AOA to AOB in the ALK soil
(5.65) was lower than that in the ACI soil (22.79), and the
ratios of AOA and AOB amoA to cbbL gene in the ALK soil

(7.44 and 1.32, respectively) were higher than those in the
ACI sample (1.84 and 0.08, respectively).

Results of cloning and sequencing

To analyze the structure of the AO communities in the ALK
and ACI soils, we randomly selected and sequenced 110 pos-
itive clones from each clone library. The rarefaction curves of
the four libraries tended to approach the saturation plateau
indicating that the positive clones selected in each library ad-
equately covered the diversity of the AO (Fig. 2). Ultimately,
73 and 72 available AOB sequences were obtained for the
ALK and ACI clone libraries, respectively, and used to con-
struct the phylogenetic tree of AOB (Fig. 3a). The AOB se-
quences in the ALK and ACI libraries can be binned into 12
and 16 OTUs, respectively, but the community structures of
the AOB sequences of these two libraries were very different.
The AOBOTUs in ALK belonged to clusters 9, 3b, 3a.1, 3a.2,
and Nitrosomonas, and the composition analysis (Fig. 3b—a)
indicated that the dominant OTUs in ALK were cluster 3a.2
(54 %) and 3a.1 (34 %). In contrast, the AOB taxa in ACI
belonged to clusters 10, 9, 3a.1, and 3a.2 (Fig. 3a), and the
dominant OUTs were clusters 9 (24 %), 3a.2 (15 %), and 10
(53 %) (Fig. 3b—b).

For AOA, 78 (15 OTUs) and 65 (14 OTUs) available AOA
sequences were obtained for the ALK and ACI clone library,
respectively (Fig. 4a). The composition of the AOA commu-
nities in ALK and ACI was different, as Nitrososphaera sub-
cluster1.1 was the sole community shared by the two commu-
nities (Fig. 4b). The dominant OTUs in ALK were
Nitrososphaera subclusters 9–11 (73 %) and 5.1 (14 %)
(Fig. 4b—a), but Nitrosotalea (62 %) and Nitrososphaera
subclusters 1.1 (20 %) and 7 (18 %) represented the dominant
AOA taxa in the ACI (Fig. 4b—b).
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Fig. 1 Abundance of amoA and cbbL [gene encoding ribulose-1,5-
biphosphate carboxylase/oxygenase (RuBisCO) pathway] in the ALK
and ACI purple soil samples. The gene copy numbers were log-trans-
formed. Error bars indicate standard deviations (n=3). Different letters
above the columns indicate significant differences (P<0.05)
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Discussion

It has been widely reported that the abundance of AOA is
usually higher than that of AOB in a broad range of soil
environments (He et al. 2007; Nicol et al. 2008; Shen et al.
2008; Ying et al. 2010; Wessen et al. 2011). The results of our
study are similar to those of previous studies and indicate that
the abundance of AOA was clearly higher than that of AOB
both in alkaline (ALK) and acidic (ACI) purple soils.
Additionally, the ratio of AOA to AOB in the ACI soil
(22.79) was nearly fourfold higher than that in the ALK soil
(5.65), which is also consistent with the results of other soil
molecular investigations in China (Yao et al. 2011; Hu et al.
2013; Shen et al. 2014), suggesting a competitive advantage
of AOA over AOB in acidic soils (Zhang et al. 2012; Hu et al.
2013). Both AOA and AOB were more abundant in ALK soil
than in ACI soil, which might indicate the effect of soil pH on
the abundance of soil AO. A lower abundance of AOB in
acidic soils has also been reported in other studies (Nicol
et al. 2008; Stopnisek et al. 2010; Andert et al. 2011; Yao
et al. 2011; Isobe et al. 2012). Moreover, lower AOA abun-
dance also was found in ACI, which might support the posi-
tive relationship between soil pH and AOA abundance (He
et al. 2007; Hallin et al. 2009; Cao et al. 2012; Hu et al. 2013;
Hu et al. 2014). Additionally, it was reported that most AOA
might be more adapted to neutral or alkaline environments
(Konneke et al. 2005; de la Torre et al. 2008; Tourna et al.
2011; Kim et al. 2012). Therefore, the results here were con-
sistent with the physiological features of cultivated or isolated
AOA strains.

It is unclear whether AO are obligate chemolithoautotrophs
or mixotrophs, but it is known that the genomes of both AOA
andAOB contain genes encoding enzymes involved in carbon
fixation through the modified 3-hydroxypropionate/4-
hydroxybutyrate pathway and the RuBisCO pathway
(Kusian and Bowien 1997; Blainey et al. 2011). Therefore,

in our study, we looked at the functional gene (cbbL of total
chemoautotrophic bacteria) for carbon fixation. The result
showed that copy number of cbbL in the purple soil samples
was approximately 106 g−1 dry soil, which was in the range of
106–109 reported by other studies (Selesi et al. 2007;
Videmsek et al. 2009; Yuan et al. 2013; Xiao et al. 2014).
Xiao et al. (2014) found that the cbbL gene copy number
was in the range of 106–109 g−1 dry soil in five Chinese paddy
soils (pH ranged from 4.09 to 6.29) and that pH might be one
of the important factors affecting the abundance and diversity
of cbbL. Our results showed that the ALK and ACI purple
soils did not differ in terms of cbbL abundance, but that the
ratios of AOA and AOB, respectively, to cbbL in the ACI soil
were obviously lower than those in the ALK soil. This result
possibly indicates that pHmight not only affect the abundance
of soil AO, but also their roles within the whole community of
chemoautotrophic microorganisms via competition for oxy-
gen, CO2, and other necessary elements or substrates.
Therefore, as an important part of determining how chemoau-
totrophic microorganisms drive the key step in N-cycling, the
relationship between AO and total chemoautotrophic micro-
organisms should be further investigated as such knowledge
may facilitate a better understanding of the roles of AO in the
coupling of soil carbon and nitrogen.

Soil pH has long been considered as an important factor
affecting the community composition of AO (Nicol et al.
2008; Gubry-Rangin et al. 2011). In this study, substantial
variance was detected in the composition of AOA and AOB
between the ACI and ALK purple soil samples, which might
suggest a selective effect of soil pH on soil AO. For AOB,
Nitrosospira was dominant both in the ALK and ACI soils,
which is consistent with the results of a previous study on the
structure of the AOB community in neutral purple soil (Zhou
et al. 2014). However, the prevalence of Nitrosospira differed
dramatically in the ALK and ACI soils, with clusters 3a.1
(34 %) and 3a.2 (54 %) being the dominant taxa in the ALK
soil and clusters 10 (53 %) and 9 (24 %) representing almost
77 % of the AOB in the ACI soil. Similar results have been
reported in other kinds of Chinese acidic soils (Ying et al.
2010; Chen et al. 2011; Jiang et al. 2014). For example, in a
Chinese acidic soil (Ferric Acrisols in Jiangxi Provence,
pH 4.62), 454 pyrosequencing revealed that clusters 9 and
10were the dominant taxa andNitrosomonaswas not detected
(Jiang et al. 2014). The composition of the AOA community
in ALK and ACI soils was also completely different, with
Nitrososphaera subclusters 9–11 and Nitrosotalea being the
dominant AOA in the ALK and ACI soils, respectively.
Nitrososphaera has been found to be the dominant AOA in
many soil environments (Pester et al. 2012), and Zhou et al.
(2014) also found it to be the dominant taxa in a neutral purple
soil subjected to long-term fertilization. Our results indicate
that Nitrosotalea was the dominant AOA in the ACI purple
soil, and similar results have also been found in other acidic
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Fig. 4 a Neighbor-joining
phylogenetic tree of AOA amoA
sequences retrieved from the ACI
and ALK libraries. Filled circles
(red ACI, blue ALK) Sequence
numbers from this study, open
black triangles reference
sequences. Bootstrap values
(>50) are indicated at branch
points. Scale bar represents 5 %
estimated sequence divergence. b
The composition analysis of the
archaeal amoA gene in the ALK
(a) and ACI (b) libraries
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soils in China (Hu et al. 2014; Jiang et al. 2014). For example,
Hu et al. (2014) investigated 32 different dry farmlands across
China and found that Nitrosotalea (>60 %) were dominant in
those soils with pH values of <6.0. Therefore, it would appear
that Nitrosotalea might be an important AO in acidic soil
environments. The adaptation of Nitrosotalea to low pH and
its ability to grow at extremely low concentrations of ammo-
nia has been demonstrated (Lehtovirta-Morley et al. 2011;
Zhalnina et al. 2012), suggesting that it has evolved to tolerate
acidic conditions that result in very low ammonia
concentrations.

In conclusion, the results of this comparative study on AO
in acidic and alkaline purple soils reveal that soil pH has a
strong effect on the composition of the AO community. The
higher ratio of AOA to AOB observed in the acidic purple soil
indicates the potential advantage of AOA over AOB in acidic
soil environments, and the difference in the structure of the
AO community in purple soils with different pH values re-
veals a pH-based separation and selectivity of soil AO in pur-
ple soils. Additionally, the lower ratios of AOA and AOB
amoA to the cbbL gene in the acidic purple soil illustrates
the potential links among soil pH, AO, and total chemoauto-
trophic bacteria. Further study is necessary to investigate the
relationship between the functions (ammonia oxidation and
CO2 fixation) of AO and chemoautotrophic microorganisms
in soil.
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