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Abstract This article provides an overview of the free-living
and plant-associated nitrogen (N)-fixing bacterial communi-
ties in wet rice fields, with a focus on describing the elements
affecting community assemblages in this waterlogged soil–
plant system. Nitrogen is a crucial nutrient for rice yield and
growth. Characteristics of the rice paddy ecosystem promote
N-fertilizer losses, resulting in negative impacts on the envi-
ronment. Public concerns on sustainable rice crop production
and food security have accentuated interest in exploring bio-
logical supplementary nitrogen sources. Biological N-fixation
is a significant source of the nitrogen in agroecosystems. The
nitrogen requirement of rice crops can be partly remedied by
managing and promoting the activities of N-fixing microor-
ganisms. These changes are leading towards a cleaner ap-
proach that maintains sustainability while simultaneously im-
proving crop production targets. The use of N-fixing micro-
organisms as biofertilizers and the factors driving the success
of this technology in wet rice paddies are also discussed.
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Introduction

Rice (Oriza sativaL.) is one of the world’s three leading cereal
crops and an important dietary component for more than 3.5
billion people. As such, it significantly impacts individual and
family-level food security in Asia (Tonini and Cabrera 2011).
Rice cropping systems can be upland, lowland, rainfed, wet or
deepwater and range from one to three crops per year [Global
Rice Science Partnership (GRiSP 2013]. Intensively cropped
wet rice systems account for the majority (75 %) of global rice
production, and the majority (93 million ha) of land used to
grow rice (GRiSP 2013). Somewet rice-growing regions have
been in production for centuries, with steady yields using tra-
ditional rice varieties. These wet rice fields, which are com-
monly flooded for part of the growing season in order to
control weeds and pests, are more fertile than non-wet sys-
tems, allowing for greater planting density and greater per
hectare yields (Ghosh and Bhat 1998). Part of this increased
fertility is attributed to the presence of nitrogen (N)-fixing
bacteria, called diazotrophs, that metabolize atmospheric ni-
trogen (N2) and release it in a form which is available for rice
uptake (Watanabe and Liu 1992).

New rice varieties were introduced in the second half of the
20th century that provided increased yields, and these yield
gains were almost doubled when synthetic fertilizers were
used (Khush 2001). Nitrogen is one of the primary macronu-
trients needed for rice growth and one of the main factors to be
considered for achieving a high-yielding rice crop, particularly
when modern rice varieties are used (Chen and Wang 2014).
The most common mechanism used to provide sufficient N to
rice plants grown in modern intensive wet cropping systems is
through the addition of synthetic N-fertilizers (Cai et al. 2007).

While the use of synthetic fertilizers cannot be eliminated
without influencing food security, the use of N-fertilizers is
not without challenges. Only a portion of the applied N-
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fertilizer is used by the rice plant, with up to 70 % of the
applied synthetic N lost from the system (Ghosh and Bhat
1998; Trân Van et al. 2000; Fageria and Baligar 2007). The
unused fertilizer leaches into surrounding water bodies and
contributes to eutrophication. Synthetic fertilizer losses can
also adversely affect the soil (e.g. concentration of heavy
metals, soil acidification) and increase the emission of green-
house gases (Zhang et al. 2013). As the use of chemicals in
rice culture causes environment hazards and the rate of rice
yield growth slows, there is renewed interest in exploring the
possibility of “biofertilization”, an area of research which
seeks to understand and harness naturally occurring biological
processes to enhance rice yields (Prakamhang et al. 2009).

The primary biological mechanism by which N is available
to plants is referred to as biological nitrogen fixation (BNF),
which is performed by prokaryotic diazotrophs (N-fixing),
which are extensively distributed among the Bacteria and
Archaea domains (Xie et al. 2014). Plants also can obtain
nitrogen by N-mineralization of organic matter and from na-
tive NH4 and NO3 in the soil (Ghosh and Bhat 1998).

A large body of evidence suggests that diazotrophic bacte-
ria can be used and managed in rice production systems to
improve the quantity and/or quality of rice while using the
same or decreased synthetic fertilizer inputs (Biswas et al.
2000a, b; Das and Saha 2007; García de Salamone et al.
2010; Yanni and Dazzo 2010; Javaid 2011; Jha et al. 2013;
Souza et al. 2013). Although it is common to advocate for the
use of diazotrophic bacteria as biofertilizers, and as an alter-
native to synthetic fertilizer use, a more applied and immediate
use of this technology for intensively cropped wet rice sys-
tems is only one component of multi-faceted management
strategy. An action plan has been proposed that acknowledges
both the need of individual farmers to maintain production
and profitability and the need of society to protect the envi-
ronment and provide for long-term continued yields. In order
to harness the N-fixing capabilities of diazotrophic bacteria it
is important to understand the underlying ecology of these
organisms throughout the rice production cycle, identify ag-
ronomically beneficial interactions between microbes, fertil-
izer and plants (Rodrigues et al. 2008; Orr et al. 2012) and
identify native plant-associated and free-living bacteria that
fix N2 at high numbers in these specific production systems.
In this review we explore the agronomic and ecological as-
pects of BNF in wet rice systems and discuss experiments
pertaining to other rice cropping systems.

Ecology of diazotrofic bacteria in wet rice fields

Nitrogen is one of the primary structural elements of all living
organisms and an essential component for the growth of plants,
including rice (Tabuchi et al. 2007). Atmospheric nitrogen (N2)
consists of two N atoms bound together with a triple bond which

renders it. This structure renders the N2 unavailable to plants
(Wagner 2011) and, consequently, plants and animals cannot
directly obtain nitrogen from the atmosphere (Fields 2004).
The nitrogenase enzyme is needed to catalyze the breaking of
the N2 triple bond. After this bond is broken, three hydrogen
atoms are inserted onto to each N atom, and the hydrogen atoms
combine to form ammonia (NH3) (Wagner 2011). In this way, N2

is removed from air and converted into the un-ionized species of
water-soluble NH3. The ionized species NH4 (ammonium) can
be acquired by plants (Fig. 1).

The most well-known diazotroph—plant interactions con-
sist of those involving bacteria, such as rhizobia that are in-
volved in the formation of root nodules on leguminous dicot-
yledonous herbaceous plants (e.g. peas and beans) and
Frankia sp. that form root nodules on woody plants (non-
legumes) (Hurst et al. 2014). It has been suggested the supply
of nitrogen from the symbiotic association between bacteria
(e.g. Rhizobia or Frankia) and plants occurs at higher rates
than that in non-symbiotic systems (Unkovich and Baldock
2008). However, numerous biomes do not have the benefit of
nitrogen inputs from symbiotic N-fixers, and thus the demand
for nitrogen can be filled by non-symbiotic nitrogen fixation
(Reed et al. 2011). Rice is a monocotyledonous non-legume
cereal grain, and the diazotrophs associated with rice do not
form root nodules. Biological nitrogen fixation has been esti-
mated to contribute about 30 kg N ha−1 per year to rice sys-
tems (Herridge et al. 2008).

The nitrogenase enzyme of N-fixing microorganisms can
be broken down by oxygen (Lery et al. 2010). Prevailing N-
fixing bacteria fix nitrogen in microaerophilic situations
(Barraquio et al. 1982). In paddy fields, flooding changes
the plant root zone conditions from aerobic to anaerobic

Fig. 1 Summary diagram of nitrogen (N) transformations in flooded rice
field with an overview of diazotrophic bacteria action and fertilizer losses
through volatilization and leaching. Dotted line shows the denitrification
process from NO2

− to N2O
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(Ghosh and Bhat 1998), and rice roots release oxygen (O2)
and thereby oxygenate the rhizosphere zone. The interfaces of
the oxic and anoxic layers that are present in the flooded rice
field favors the colonization of microorganisms belonging to a
variety of respiration strategies, including strict anaerobes,
facultative anaerobes, microaerophiles and aerobic organisms
(Newton 2007; Chen et al. 2009). For example, the
microaerobic genera Azospirillum and Azoarcus show a trend
to move toward locations where the presence of O2 is ideal for
its metabolism (low O2 concentration) (Reis et al. 2011). The
obligate anaerobe Clostridium fixes N2 in the absence of air.
The facultative anaerobe Klebsiella pneumoniae is able to
develop in the presence of O2 but to fix N2 only in its absence
(Roger 1996). Azotobacter and Rhizobium need aerobic envi-
ronments to obtain resources for N2-fixing. The secretion of
polysaccharides and the formation of heterocysts by
cyanobacteria are also mechanisms used to form microarobic
conditions for N-fixation (Pratte et al. 2006; Lery et al. 2010).
Carbon replenishment in standing water, the rhizosphere and
the soil layer also promote an ideal niche for autotrophic
and heterotrophic rice-associated diazotrophs (Ladha and
Reddy 2003).

Associative diazotrophs live in “close association”with the
rice plant; they can be divided into endophytes that live within
the plant tissues (Prayitno and Rolfe 2010), rhizospheric bac-
teria that live outside of (but in close association with) the rice
root (Prasanna et al. 2009) and epiphytic bacteria that live
outside of (but in close association with) other rice plant parts
(Gnanamanickam and Immanuel 2007). Free-living
diazotrophs are an important font of nitrogen in many ecosys-
tems, including wet rice fields. In rice systems, the free-living
diazotrophs are mostly cyanobacteria and photosynthetic bac-
teria found in the topsoil and floodwater (Ladha and
Reddy 2003).

There is no formal definition of “closely associated”, and
some diazotrophic bacteria can be both free-living and asso-
ciative. The general ecological relationship between the asso-
ciative diazotrophs and the rice plant is assumed to be
protocooperative, with the rice plant providing carbon and
phytohormones and the diazotrophs providing bioavailable
nitrogen (Lu et al. 2006; Dalton and Kramer 2007).
However, significant gaps remain in our knowledge of the
precise relationship(s) between individual rice cultivars and
specific diazotrophic species or community assemblages in
applied agronomic settings (Knauth et al. 2005).

The complex relationships between diazotrophs and other
biotic and abiotic components of rice ecosystems are impacted
by environmental (natural) and agronomic (anthropogenic)
conditions. As with all bacteria, the primary drivers affecting
which diazotrophs are present in any particular location relate
to physical and chemical parameters, such as pH, oxygen
availability, temperature and phosphorus (P) and nitrogen
levels (Quesada et al. 1997; Nayak and Prasanna 2007; Orr

et al. 2012). In addition to these broad environmental influ-
ences, diazotroph community structure in wet rice cropping
systems is influenced by plant-specific and management-
specific inputs (Pedraza et al. 2009).

The numbers and types of bacteria that are present in a crop
system are believed to impact yields, system health and sup-
ports of specific production systems over time (Van der
Heijden et al. 2008). It is generally assumed that greater di-
versity of bacterial communities is correlated with the desired
outcomes, with the implication that effects on diversity influ-
ence the stability and function of a community in a given
environment and consequently the sustainability of crop fields
(Jones and Bradford 2001; Hsu and Buckley 2009;
Eisenhauer et al. 2012).

The current working hypothesis underlying diazotrophic
community studies is that by identifying the drivers which
affect the number, types and evenness of diazotrophs in inten-
sively cropped wet rice systems, these factors can be managed
to maximize profit for individual farmers while minimizing
environmental impact on the broader community (Berthrong
et al. 2014). The agronomic drivers, namely, plant cultivar/
genotype, fertilizer and agrochemical input, should be consid-
ered when screening bacterial strains for use in an inoculation
program (Table 1).

Plant cultivar/genotype

Rice plant cultivar and genotype appear to influence which
types of diazotrophs colonize and associate with rice plants
(Hardoim et al. 2011), even when all other parameters are
identical. This has been attributed to the expression of genet-
ically encoded features that influence plant metabolism and
the constitution of root exudates (Aira et al. 2010), such as
sugar that accumulates in the root exudate and varies with rice
genotype (Hertenberger et al. 2002; Naher et al. 2008).
Chamam et al. (2013) evaluated under gnotobiotic conditions
the effects of two diazotrophs strains used as inoculum in rice
seeds; one isolated from the Cigalon rice cultivar and the other
isolated from the Nipponbare rice cultivar. These authors ob-
served that each rice cultivar performed best when inoculated
with its original diazotroph strain, demonstrating that specific
bacterial agronomic benefits can be plant cultivar-dependent.

Root exudates are the leading factor for the approximation
of the bacteria that live near the plant roots (Naher et al. 2011).
Although the precise compound(s) in most root exudes, as
well as their impacts in the rhizosphere are as yet undeter-
mined, it has been proposed that the community structure of
the N-fixing organisms associatingwith roots varies according
to differences in plant exudates (Ladha and Reddy 2003;
Tawaraya et al. 2009). For example, plant exudates can affect
the bacterial genes and subsequent release of indole-3- acetic
acid (IAA) byAzospirillum and are therefore directly involved
in Azospirillum–-plant communications (Puyvelde et al.
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2011). Rice plant roots provide a variety of amino acids, car-
bohydrates, sugars and secondary elements that supply nutri-
tion to colonizing microorganisms in the rhizosphere (Aulakh
et al. 2001; Bacilio-Jiménez et al. 2003). In early stages of rice
development, these exudates comprise compounds of simple
sugars that selectively enhance the chemotactic responses of
some bacteria (Bacilio-Jiménez et al. 2003). In this way, the
plant can exert an important effect on the mixed strain inocu-
lum, with positive or negative actions on rhizosphere micro-
organisms that will have an effect on their ability to establish
advantageous relations with the plant (Hartmann et al. 2009).

Fertilizer input

Ingredients commonly found in both organic and synthetic
fertilizers, such as nitrogen, phosphorus, potassium, sulfur
and calcium, are essential components of microorganisms
and, therefore, tend to modify the growth and activity of the
microbial community, including diazotrophs (Cruz et al. 2009;
Wu et al. 2011; Costa et al. 2013; Othman et al. 2013).
Depending on the level, form and combination of other com-
ponents, the effects of N-fertilization on the diazotrophic bac-
terial community can be favorable (Kanungo et al. 1997;
Muthukumarasamy et al. 2007; Othman et al. 2013) or harm-
ful (Wu et al. 2009; Omar and Ismail 1999). A pH of 5 has
been shown to affect soil microbiota (Fierer and Jackson
2006). Consequently, the application of N-fertilizers, which
tend to reduce soil pH, has a potentially negative effect on soil
microorganisms (Guo et al. 2010).

The changes caused to the diazotrophic assemblages ac-
cording to the levels and nature of carbon and nitrogen are
less consistent (Hsu and Buckley 2009). N-fertilization usual-
ly generates lower N-fixation rates since diazotrophic bacteria
do not fix nitrogen when it is abundant (Reed et al. 2011).
Thus, plant nitrogen absorption from the roots and a decrease
in fertilizer loads provide a friendly microenvironment in
terms of the establishment of diazotrophic bacteria
(Kanungo et al. 1997). Moreover, a high nitrogen concentra-
tion may lead to osmotic stress and the ultimate death of the
microorganisms (Maheshwari et al. 2012), which eventually
results in soil infertility (Duarah et al. 2011).

Pedraza et al. (2009) verified significant improvement in
grain yield in a rice rainfed field following inoculation with
Azospirillum brasilense, both with and without additional N-
fertilization. The action of phosphate-solubilizing bacteria
(PSB) on the availability and uptake of rice nutrients was the
subject of investigation in a pot experiment study carried out
by Duarah et al. (2011). The results demonstrated that with or
without the use of nitrogen, phosphorus, and potassium
(NPK) fertilizers, the addition of PSB increased NPK (when
applied) uptake, germination index, root length and biomass
as compared to the control. The point highlighted by these
authors was that excessive utilization of NPK fertilizers resulted

in low bacterial enzyme activity. It has also been shown that the
utilization of NPK fertilizers can influence the diversity of
diazotrophic bacteria (Prakamhang et al. 2009) which in turn
can impact N-fixation rates (Hsu and Buckley 2009). In a rice
field study, Wu and co-workers (2011) applied the 16S rRNA
approach and found no statistical significant influence of inor-
ganic fertilizers on bacterial abundance. However, application
of the fertilizer together with resulted in a significant increase in
bacterial abundance whichwas not related to the soil pH values.
Similar results were found in a model paddy microcosm study
with the use of urea and rice straw in relation to the effects on
N-fixing activity (Tanaka et al. 2006). Soil nitrogen-fixing ac-
tivity was reduced in microcosmos treated with urea; however,
in the rice straw treatment N-fixation increased by 40 % in
relation to the control. In another study, Sarkar et al. (2014)
verified that the diversity of the diazotroph assemblage was
higher in rice fields treated with an organic fertilizer than in
those subjected to long-term N-fertilizer inputs.

In summary, based on the studies mentioned above, it can
be concluded that in agricultural systems, irrespective of the
(long-term) use of synthetic fertilizer, the application of
biofertilizers in a field context can reduce the amount of syn-
thetic fertilizer required to increase rice crop development and
yield when biofertilizers are used in combination with their
synthetic counterparts.

Agrochemicals

The answer to the question of whether or not herbicide use
influences diazotrophs remains disputed. Long-term utiliza-
tion of agrochemicals in cropping systems has been shown
to modify soil diazotrophic bacterial communities (Orr et al.
2012). Pesticide use in non-rice crops has also been shown to
impact diazotrophs in soil (Das and Mukherjee 2000).
However, it has also been shown that when the correct amount
is applied, agrochemicals do not notably impact diazotrophic
communities and that in modest concentrations they can actu-
ally stimulate nitrogenase activity (Okmen and Ugur 2011;
Shen and Luo 2011).

Pseudomonas aeruginosa (De Vleesschauwer et al.
2006), Pseudomonas sp. (Chaiharn et al. 2009) and
Azospirillum sp. B510 (Yasuda et al. 2009) have been
reported to benefit rice plants with increases in the levels
of defense enzyme activity in response to pest attack,
reduction of disease due to the iron sequestration by
siderophores and/or the production of compounds harmful
to competing organisms. Ji and coworkers (2014) identi-
fied diazotrophic bacteria from rice plants using a nifH
gene technique. The bioassay demonstrated an antagonis-
tic effect between all of the diazotrophic bacteria isolated
in the study and the phytopathogenic fungi Fusarium
oxysporum and Rhizoctonia solani. The antagonist
potential of Azospirillum sp., Burkholderia brasilensis
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and Herbaspirillum seropedicae against Fusarium sp. was
also verified in a rice seed inoculation experiment by
Araújo et al. (2010) which showed that these bacteria
promoted the rate of seed germination and less fungal
infection.

By influencing bacterial activity, the application of herbi-
cides can provide a competitive advantage to a specific bacte-
rial group (e.g. heterotrophs), causing an imbalance in micro-
bial processes, such as the conversion of organic matter and
degradation of extraneous components (Zabaloy et al. 2008).
In this context, herbicide application may have the potential to
affect microbial abundance (Moorman and Dowler 1991;
Maurhofer et al. 1994), such as the densities of pathogenic
and beneficial organisms, respectively, and thereby the
response of microbiota to herbicides could impact crop
health. Gimsing et al. (2004) reported that the mineralization
of the herbicide Glyphosate in rice farms was highly correlat-
ed with Pseudomonas spp. number. Zabaloy and Gómez
(2008) verified the impact of Glyphosate on the soil microbial
community and observed a stimulatory effect on heterotrophic
bacteria density and a transient increase in the proportion of
carbon sources utilized by the bacterial community.

All of the studies reported in this section describe agronom-
ic factors that can interfere with the plant–microorganism in-
teraction in the rice field. These factors can be used either to
select effective bacterial strains (e.g. cultivar/genotype) or to
ensure themost suitable conditions for biofertilizer application
and management (fertilizer and agrochemical input).

In flooded rice fields the aerobic and anaerobic conditions
which develop, with the formation of microhabitats in the
rhizosphere and in plant tissues, changes in organic carbon
availablity and the lower mineral nitrogen concentration in
the soil, creates an optimal habitat for N-fixing bacteria,
influencing both the number and diversity of these microor-
ganisms (Kanungo et al. 1997). The most frequent bacterial
taxa associated to rice fields across all of the studies cited
herein are presented in Table 2.

Advances in Gramineae development using
diazotrophic bacteria

Biofertilizers

Biofertilizers are bioinoculants consisting of living or latent
cells of microorganisms which when inoculated onto seeds,
plant surfaces or the soil re-locate to inside plant tissue or onto
the root surface, resulting in improved plant mineral nutrient
availability and input (Vessey 2003). According to Okon and
Labandera-Gonzalez (1994), the term biofertilizer is not suit-
able because biofertilizers do not replace fertilizers, rather they
enhance plant nutrient uptake.

An example of a natural association that can result in crop
gain is the positive effect on plant growth due to the develop-
ment of a relationship between the microorganism and either
the rice plant, or other plants in the field, such as the aquatic
fern Azolla, which can be co-grown with the crop. There is a
natural symbiosis among Azolla and diazotrophic bacteria,
and farmers in regions where Azolla is endemic were quick
to notice that rice production increased in the presence of these
small aquatic ferns. The rice and Azolla plants provide a phys-
ical habitat for the bacteria, and the products of the bacterial
metabolism serve as growth promoters for the rice plants
(Bocchi and Malgioglio 2010). The biofertilizer industry orig-
inated over 1000 years ago in Vietnam, where a few families
had monopolies on Azolla propagation (Lumpkin and
Plueknett 1981). While the use of Azolla continues today, this
system alone cannot adequately provide for the needs of mod-
ern rice production (Bocchi and Malgioglio 2010).

As with any agronomic input, the goal of biofertilizer use is
to increase grain yield and improve grain quality. Both exper-
imental and commercial field studies have demonstrated that
rice plants inoculated with either individual diazotrophic
strains or specific groups of strains have increased grain yields
and/or improved grain quality (Govindarajan et al. 2008;
García de Salamone et al. 2010; Isawa et al. 2010; Yanni
and Dazzo 2010; Bhattacharjee et al. 2012) (Table 3).
Various studies have examined the benefits of biofertilizer
use on other rice growth parameters, with the implied assump-
tion that improvement in any of these parameters would likely
result in improved plant health and ultimately improved grain
yield and quality. The parameters studied include plant bio-
mass (Bhattacharjee et al. 2012), tiller numbers (Govindarajan
et al. 2008), plant height (Saadatnia and Riahi 2009) and in-
creased root length (Jha et al. 2009). A third set of measure-
ments that are often taken when the goal is to evaluate the
efficacy of biofertilizers is to assess the uptake and distribution
of specific nutrients by rice plants, most commonly nitrogen
and phosphorus (Cong et al. 2009).

A number of barriers need to be overcome in order to
expand the small-scale localized use of naturally occurring
bacteria in food production to large-scale food production sys-
tems. The dairy and wine industries are good examples of how
to harness the desired qualities of naturally occurring micro-
bial interactions and then systematically apply them in their
respective production/processing systems (Hutkins 2006).
The average size of a typical operation in many food produc-
tion industries/systems has increased over the years, as has the
throughput, or in the case of rice, yield per hectare. While
small-scale and traditionally managed operations still exist,
the dairy and wine industry is dominated by producers with
large production capacities. In the fermented food industry,
these scale-ups camewith fundamental changes in the produc-
tion system, namely, a change from using undefined natural
cultures with large variations in quality from batch to batch to
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using defined cultures that provide a product of consistent
quality. Many biofertilizer proponents are currently focusing
on isolating and characterizing diazotrophic bacteria from rice
systems in an effort to identify those strains that would best
serve as defined cultures for intensively cropped wet rice
(Ashrafuzzaman et al. 2009; Araújo et al. 2013).

The first step in manufacturing inoculants is to obtain
diazotrophic strains that are efficient at fixing nitrogen under
the conditions used for a specific rice system (Mia and
Shamsuddin 2010). Endophytic beneficial diazotrophic
strains can be isolated from surface-sterilized rice plants in
high-yield rice fields (Gyaneshwar et al. 2001). A second
consideration when screening strains for their use as a
biofertilizer is to evaluate their interaction with the host plant.
At the present time, this generally means determining if the
selected diazotrophic strain ormix of strains is able to colonize
rice plant seeds or roots (Chi et al. 2005; Etesami et al. 2013).
This interaction is governed not only by the bacteria but also
depends on the specific variety of rice that is being grown. In a
mixed inoculum, plant genotype is an important factor to be
considered (Hardoim et al. 2011; Araújo et al. 2013).
Biofertilizer candidates need to be able to survive in a wide
range of environments and to tolerate pesticides and herbi-
cides, as well as be able to effectively compete with the native
flora (Kavadia et al. 2011). In addition to their qualities in the
field, potential biofertilizer strains need to be amenable to
large-scale production and distribution, i.e. easy tomake ready
for use, with an economical carrier and proper transport and
storage. This includes being able to both grow the strain effi-
ciently in broth culture while maintaining the desired field
qualities and process the stock cultures so that they survive
during storage (Pindi and Satyanarayana 2012).

Other practical considerations include appropriate han-
dling, application and adhesion of the inoculant to the rice
seed and persistence of the inoculant on the seed and soil
environment. The bacterial inoculum can be applied by seed
treatment, seedling dip, root dip, nursery inoculation and rhi-
zosphere, soil or planting pit application (Muraleedharan et al.
2010; Earanna and Muruli 2011). The planting technique,
which involves growing rice seedlings in nurseries and then
transplanting these seedlings to pre-prepared fields, is an ap-
proach which has been shown to improve the establishment
and survival of the living organism inoculum, with better sur-
vival results in the field environment compared to non-
inoculated seedlings (Solaiman and Hirata 1997).

A important factor underlying the economic feasibility of
any large-scale use of biofertilizer is the establishment of pro-
duction parameters that are reliable, quality-controlled and
cost-effective. Consequently, in terms of efficacy and com-
mercial application, beneficial bacteria that are able to colo-
nize the intercellular or intracellular spaces of rice tissues (en-
dophytes) (Baldani et al. 2000) may be the better choice as inoc-
ulum candidates than rhizosphere and free-living bacteria

(Bhattacharjee et al. 2008). Endophytes have a direct supply of
nutrients inside the host and a low oxygen habitat, both condi-
tions favoring the nitrogenase enzyme (Bhattacharjee et al.
2008). In return, microorganisms occupying this niche provide
benefits in the form of fixed nitrogen (Prakamhang et al. 2009).
Additionally, the anti-plant pathogen actions of these strains are
more efficient than those of other plant-associated bacteria be-
cause endophytes colonize a niche similar to that of the phyto-
pathogens where they specifically can exert their competitive
activities for space and nutrients (Etesami et al. 2013).

Beneficial mechanisms other than N-fixation shared
by diazotrophs and plants

In addition to N-fixation, biofertilizers can also promote the
ability of diazotrophs to solubilize phosphorus so that it is
available to the rice plant, provide specific iron chelators and
synthesize plant growth-promoting hormones [such as cytoki-
nins, gibberellins, indole-3-acetic acid (IAA)]. Some bacteria
are also able to metabolize xenobiotic elements that can be
used to control plant pathogens are useful; the potential of
these strains in biofertilizers have also been explored (Al-
Taweil et al. 2009) (Table 4).

However, some bacterial groups contain strains which both
promote plant growth and cause animal and plant disease,
such as Pseudomonas aeruginosa, Klebsiella pneumoniae
and Pantoea ananatis. Consequently, these strains should
not be used as biofertilizers (García-Fraile et al. 2012).

Phosphate solubilization and mineralization Phosphate-
solubilizing bacteria convert insoluble forms of phosphorus
(organic and inorganic) to forms that the plant is able to take
up (available P) (Leelahawonge and Pongsilp 2009). The ac-
tivities of phosphatase enzymes promote mineralization of
organic phosphorus (Rodríguez et al. 2006). The mechanism
by which microorganisms solubilize inorganic phosphorus re-
quires the presence of organic acids in chelation and exchange
reactions (Asea et al. 1988). Panhwar et al. (2014) investigated
rice seed development in a high alluminum and low pH envi-
ronment after PSB inoculation. These authors observed im-
provements in root size, seedling dry weight—probably due to
the solubilization of phosphorous—and the production of
polysaccharides by bacterial strains that increased the pH
and decreased the aluminum concentration in the suspension.

Sequestering iron Siderophores are low-molecular weight
high-affinity iron chelating compounds synthesized by bacte-
ria and fungi which bind ferric (Fe3+) and other heavy metals
(such as Al, Cd, Cu, Pb and Zn). As such, they provide con-
ditions conducive to plant development by promoting iron
availability and alleviating the heavy metal concentration in
contaminated soil (Indiragandhi et al. 2008). For, the avail-
ability of soluble ferrous (Fe 2+) is relatively higher in wet rice
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fields, and its compounds may cause physiological stress to
the rice plant. In this context, bacteria capable of sequestering
iron can promote the health of rice plants (Etesami et al. 2013).
Siderophores play an additional role as biocontrols, decreasing
the accessibility of ferric ions to the phytopathogens (Beneduzi
et al. 2012). Chaiharn and co-workers (2009) screened bacterial
siderophore producers in rice rhizospheric soil. Of the 216 bac-
terial isolates tested, 48 showed siderophore production, with
isolated strains of Streptomyces sp., Pseudomonas sp., Bacillus
firmus and Kocuria rhizophila effectively inhibiting the myce-
lial development of the rice pathogenic fungi. In another study,
Naureen et al. (2015) verified a bacterial antagonistic effect
against Rhizoctonia solani, the causative pathogen of rice
sheath blight disease and correlated the antagonistic property
to the quantity of siderophores produced by bacterial strains
isolated from rice fields.

Phytohormone production Phytohormones are organic com-
pounds that influence growth and development of plants at
very low levels (Dobbelaere et al. 2003). Plant-associated mi-
croorganisms, such as bacteria, algae, and fungi, have the
ability to release phytohormones (Mwajita et al. 2013). In
gramineous plants, such as rice, IAA produced by
Azospirillum sp. (Prakamhang et al. 2009) has been cited to
be the principal factor in the plant growth process through its
action on root tissue development (Cassán et al. 2014) which
in turn enhances soil mineral and water intake by the plant
(Matsuda et al. 2005). Manickavelu et al. (2006) reported that
the extracts of the cyanobacteria Plectonima sp. showed an
effect on root induction in rice callus that was probably related
to the production of growth regulators such as IAA.

These multiple mechanisms combined or separately may
be responsible for the promotion of plant growth and yield
increase, thereby resulting in crop improvement.

Bacterial taxa associated to rice which have been shown to
be promising candidates for future use as biofertilizers in rice
fields are Azospirillum, Rhizobium and Cyanobacteria.

The genus Azospirillum

Azospirillum sp. are Gram-negative members of Class
Alphaproteobacteria that live in association with plant roots
and is able to fix nitrogen under microaerophilic conditions
(Reis et al. 2011). In rice, Azospirillum has been show to
create colonies around the surface of the roots, fix nitrogen
and produce plant growth regulators that increase develop-
ment and the panicle and harvest indices (Rodrigues et al.
2008; Khorshidi et al. 2011). The most frequent phytohorme
released by Azospirillum is an auxin (IAA) (Moghaddam et al.
2012), and this auxin is responsible for the plant growth-
promoting action of Azospirillum (Dobbelaere et al. 2003).
However the release of phytohormone by bacteria not always
beneficial to the plant, and in some situations it can result in an

inhibition of plant growth (Rodrigues et al. 2008). Plant re-
sponse to the action of IAAwill depend on the concentration
of the phytohormone in the rhizosphere of the plant
(Lambrecht et al. 2000). Azospirillum has been shown to be
one of the most dynamic organisms incorporating plant-
derived carbon in the rice rhizosphere (Lu et al. 2006).
Isawa and co-workers (2010) assessed Azospirillum sp. strain
B510 as an inoculum in rice and observed that it promoted the
number of tillers at the beginning of rice growth and increased
seed production by increasing panicle quantity. This strain has
been found to adapt well to various stress conditions (Drogue
et al. 2014) and to increase the mass and length of root hairs,
as well as the frequency of emergence of lateral roots (Okon
and Labandera-Gonzales 1994), which results in higher nutri-
ent and water uptake by the plant (Henry et al. 2012).
Azospirillum has been used in association with synthetic ni-
trogen to achieve greater rice yields than fertilizer used alone
(Islam et al. 2012a).

Evaluations of Azospirillum as a biofertlizer in rice have
focused mainly on A. lipoferum and A. brasilense (García de
Salamone et al. 2010; Reis et al. 2011). In another study,
Rodrigues et al. (2008) evaluated the auxin production and
nitrogenase activity of A. amazonense in association with rice
plant yield. These authors reported that this bacterial species
promotes rice growth by fixing N2.

The Genus Rhizobium

Rhizobium is also a Gram-negative alphaproteobacterial
diazotroph. Members of this genus are commonly associated
with root nodules in leguminous plants; however, Rhizobium
has been found to be naturally associated with cereal grains
(Dazzo et al. 2000). Some Rhizobium species have been eval-
uated as biofertilizer strains that are associated with the rice
rhizosphere (Chi et al. 2005). Bhattacharjee and colleagues
(2012) documented the ability of Rhizobium to interact natu-
rally with rice and its beneficial effect on rice plant perfor-
mance. There is also interest in its use as an endophyte inside
rice tissues (Perrine-Walker et al. 2007). Yanni and Dazzo
(2010) analyzed the effect of inoculating one or many
Rhizobium leguminosarum bv. trifolii strains into five rice
varieties over five culture periods. They also rated the inocu-
lation with different N-fertilizer inputs. Their results revealed
that middle doses of N-fertilizer was associated with an in-
crease in rice grain yield and that inoculation with associations
of Rhizobium strains achieved better results as a biofertilizer
than inoculation with only one strain.

Cyanobacteria group

Cyanobacteria are free-living Gram-negative photoauto-
trophs. In rice production systems, Anabaena and Nostoc are
the most common genera of diazotrophic cyanobacteria
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(Irisarri et al. 2001; Prasanna et al. 2009), but members of
genera Calothrix, Cylindrospermum, Nodularia, Scytonema
and Tolypotrix can be present at low abundance (Irisarri
et al. 2001).

There are numerous reports on the beneficial use of
cyanobacteria alone and as part of a microbial consortium-
based biofertilizer in terms of increasing the growth and yield
of rice (Saadatnia and Riahi 2009; Pereira et al. 2009; Singh
et al. 2011; Bhuvaneshwari et al. 2012; Prasanna et al. 2012;
Jha et al. 2013). In rice fields, nitrogen fixed by cyanobacteria
can be made accessible to the plants via exudation, the de-
struction of microbial cells and/or degradation (Singh et al.
2013). Nayak and Prasanna (2007) inoculated cyanobacteria
into rice plants and observed that the amount of N fixed and
thus promptly accessible by the rice plants increased by 2–
10 %, with the remaining nitrogen becoming available upon
decomposition of dead algae.

Cyanobacteria are the major elements in rice fields that can
be used as an inoculum. However, the use of cyanobacterial
inoculants has faced challenges, including the inability of lab-
oratory strains (1) to compete with native flora and be main-
tained in culture for a prolonged time or (2) to fix nitrogen
efficiently in the presence of N-fertilizer (Akoijam et al.
2012). Cyanobacteria release a broad range of extracellular
compounds, including plant growth-promoting substances,
which impact plant crop growth and productivity (Mazhar
and Hasnain 2011). Prasanna et al. (2012) investigated the
results from a combination of plant growth-promoting bacte-
ria and cyanobacteria for effective nutrient management of
rice. They found an interactive action between the bacterial
(Providencia sp. and Brevundimonas sp.) and cyanobacterial
(Anabaena sp.) species, resulting in an improvement of N-
fixing capacity. In waterlogged rice fields, Azolla (fern)–
Anabaena symbiosis has an economically and agronomically
important impact value (Unkovich and Baldock 2008).
Anabaena, a member of the cyanobacterial order Nostocales,
has been identified as a symbiont of Azolla. The Azolla–
Anabaena complex can promote rice production due its po-
tential to fix nitrogen in significant amounts (Pabby et al.
2003). Moreover, the use of this water fern as green manure
can improve the ability of the soil to retain water and nutrients
(Nayak et al. 2004), as well as help control weed emergence
(Biswas et al. 2005).

Conclusions

More rice must be produced using less land, while minimizing
costly and environmentally unfavorable inputs. Taking into
account the current food security issues, researchers are
looking to harness the functionality of diazotrophic bacteria
to improve intensively cropped wet rice production yields.
There are also economic and environmental demands related

to the increasing costs of synthetic fertilizer, based on both the
negative effects of fossil energy use and on demands from
society to diminish or at least not increase the use of synthetic
fertilizer. Recent advances in biological N-fixation have been
promising, and applied field studies are demonstrating the
potential of biofertilizers and green manures containing
diazotrophic bacteria to decrease the use of N-fertilizers while
maintaining yields. In addition, the diazotrophs commonly
used as rice inoculums do not seem to have adverse effects
on humans. The results of environmental screening studies of
the natural environments of these microorganisms and of
greenhouse and field studies demonstrate that the positive
effects of long-term biofertilizer use outweigh the negative
ones. Although hurdles associated with the large-scale com-
mercialization of biofertilizers remain, a roadmap to the in-
dustrialization of natural biological processes is available from
the fermented foods industry. In the short term, it will be
possible to reduce N-fertilization through the use of
diazotrophic inoculum in combination with green manures,
but also by adding legumes in crop rotations, incorporating
rice straw and applying fertilizer more precisely. Further stud-
ies are needed to clarify the ecology of natural diazotrophic
groups (phylotypes) in different management conditions and
the effects of their application in long-term wet rice cropping
experiments. In addition, it is imperative that research be
translated into practical applications that can be implemented
by farmers in a cost-efficient manner and that diazotrophs
biofertilizer be included in rice production recommendations
and breeding programs with the aim of establishing efficient
and beneficial associations of crop varieties and microflora.
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