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Abstract With the aim of studying the biodiversity and the
biotechnological potential of endophytic fungi associated with
the medicinal plant Dendropanax arboreus, 45 fungal isolates
were recovered from ten plants grown at the “El Cielo”
Biosphere Reserve, Mexico. Based on the sequence analysis
of internal transcribed spacer (ITS) regions and the observation
of morphological traits, the isolates were grouped into 28 ge-
notypes corresponding to 14 genera with a predominance of
Fusarium, Phomopsis, Alternaria, andColletotrichum species.
Enzymatic activity assays revealed numerous isolates as hav-
ing xylanase (66.6 %), cellulase (57.1 %), pectinase (51.2 %),
and amylase (20.9 %) activities. Only the isolate Paecilomyces
sp. HER3-5 exhibited chitinase and chitosanase activities, and
only the unidentified isolate HET1-5 had phosphate solubili-
zation capacity. Isolates of five fungal genera had antimicrobial
activity against at least one among the Staphylococcus aureus,
Candida albicans, and Candida glabrata target strains. To the
best of our knowledge, this is the first study on the endophytic

fungi of D. arboreus, and provides evidence that: (1) endo-
phytes commonly produce enzymes associated with the colo-
nization process (xylanases, cellulases, and pectinases), while
enzymes associated with pathogenic infection (amylases) or
phosphate solubilization were relatively rare; (2) isolates of
the genera Corynespora, Endomelanconiopsis, and
Thozetella are potential sources of novel antimicrobial com-
pounds; and (3) distinctive endophytic fungal communities
occur in different plant tissues (the root, trunk, and leaf), but
this was less evident in the sampling sites (elevation).
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Introduction

Endophytes are microorganisms (often bacteria or fungi) liv-
ing within plant tissues, at least for part of their life cycles,
without causing visible symptoms of disease. Endophytes
usually exert profound effects on plant ecology, fitness, and
evolution (Brundett 2006) through several different mecha-
nisms, including induction of resistance to pathogens or heavy
metals, improvement of nutrient supplies (e.g., by nitrogen-
fixing or phosphate solubilization), enhancement of plant
growth by producing phytohormones, and synthesis of com-
pounds with biological activity, such as antibiotics, agrochem-
icals, and immunosuppressants (Ryan et al. 2008; Rodríguez
et al. 2009; Aly et al. 2011).

Dendropanax arboreus (L.) Decne. & Planch, common
name Angelica tree, belongs to the family Araliaceae. It is
an evergreen canopy tree (14–25 m in height), distributed
from Mexico to South America at elevations of up to
1500 m.a.s.l. (Figueroa-Esquivel et al. 2010). It is a traditional
medicinal plant used frequently in Mexico and Latin America
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for the treatment of fever, snakebites, and intestinal parasites
(Bourdy et al. 2000). Falcarindiol, a compound having pro-
tective effects against certain types of cancer in animal
models, has been identified in extracts of this tree (Setzer
et al. 2000). Other compounds found in this plant with struc-
tures related to falcarindiol may be of potential use as antineo-
plastic agents. The traditional medicinal uses of this plant
make it an attractive potential resource in the search for endo-
phytic fungi able to produce novel bioactive compounds, as
some previous studies have already revealed (Lv et al. 2010;
Aly et al. 2011).

Since endophytes have significant potential as sources of
novel plant-growth promoters and novel bioactive com-
pounds, and given that no study has yet reported on the endo-
phytes of D. arboreus, we characterized 45 endophytic fungi
recovered from this plant. The objectives of this study were to:
(1) evaluate the diversity of endophytic fungi associated with
different tissues of plants grown at two distinct altitudes; (2)
study the activity of enzymes related to the colonization of
fungi in plants, such as cellulase, xylanase, pectinase,
chitinase, and chitosanase; and (3) study the phosphate solu-
bilizing capacity and the antimicrobial activity of the endo-
phytic fungi.

Materials and methods

Sampling of plant tissues

The Biosphere Reserve “El Cielo” is located in the Northeast
part of Mexico, near the town of Gomez Farias in the
Tamaulipas state, and comprises 2400 km2 between 22°55′–
23°30′N and 99°02′–99°30′Wat elevations ranging from 200
to 2200m.a.s.l. “El Cielo” has unique biodiversity in flora and
fauna due to the existence of four different ecosystems within
the reserve: tropical rainforest, cloud mountain forest, pine-
oak forest, and desert scrub. The two sampling sites were
located within the tropical rainforest region at 500m.a.s.l. (site
1) and 1000 m.a.s.l. (site 2), respectively, and separated by
5 km along a small road near the Gomez Farías village.
Eighty samples per plant tissue (entire leaves, pieces of trunk
bark, and of root bark; 240 samples in total) were collected in
September 2009 from randomly selected healthy plants (five
plants/site) without visible symptoms of necrosis, chlorosis, or
parasites. All the plants had stem diameters >20 cm at breast
height. The samples were stored in plastic bags kept on ice,
transported to our laboratory within 24 h, and stored at 4 °C
for 1 or 2 days before their use for fungal isolation. This
sampling strategy was used in view of the relatively low ge-
netic variation among populations of this tree in Mexico, and
because 91.5 % of that genetic variation is attributable to indi-
vidual plant differences within populations (Figueroa-
Esquivel et al. 2010).

Isolation of fungi

Endophytic fungi were isolated according to Photita et al.
(2001). Briefly, leaves and portions of the trunk bark and root
bark, which had been previously peeled to eliminate the rough
outer layer, were sliced into 2×2 cm pieces. Subsequently,
tissue pieces were immersed for 30 s in 96 % ethanol (v/v),
then for 6 min in sodium hypochlorite solution (1 % w/v, 1:5
dilution of Clorox regular bleach), and washed six times with
sterile water. To test the sterilization efficiency, 0.1 mL of the
final washing water was placed in Petri dishes containing po-
tato dextrose agar (PDA) medium [4 g potato infusion, 20 g
dextrose, 15 g agar, 1 L distilled water, (pH 5.5)]. Eight pieces
of each tissue from each plant were placed evenly in Petri
dishes (four pieces/plate) containing PDA medium supple-
mented with streptomycin (50 mg L−1) and incubated at
28 °C for 5–10 days. The plates were checked daily until
mycelia were observed. To purify the fungal isolates, small
agar plugs were sliced from the leading edge of each colony,
transferred to new PDA plates, and further incubated under
the same conditions. This procedure was repeated as neces-
sary, until isolates were morphologically clean. The pure iso-
lates were stored on PDA slants at 4 °C and kept as living
vouchers in our laboratory. The fungal isolation rate (IR) was
determined as the ratio of the number of isolates recovered
from the plant tissue to the total number of pieces laid in Petri
dishes (80) of the tissue.

Morphological and molecular identification of the fungi

Distinctive morphotypes were grouped according to phe-
notypic characteristics on PDA. Microscopic examination
of conidia was performed in microcultures grown in
PDA at 28 °C for 14 days. When possible, isolates were
identified according to published taxonomy systems. For
example, the system of Seifert for the genera in the Class
Hyphomycetes, which relies on the examination of colo-
ny morphology, diffusible pigments, conidia production,
and microscopic observations of microcultures (Seifert
et al. 2011; more references for other genera are listed
in Supplementary Table S1). Conidia production was ob-
served microscopically with lactophenol cotton blue
staining (Seifert et al. 2011).

Total genomic DNAwas extracted from 14-day-old fungal
cultures according to Allers and Litchen (2000), as modified
by Rodriguez Tovar et al. (2005). The DNAwas dissolved in
sterile water and stored at -20 °C. The internal transcribed
spacer region (ITS rDNA) containing the ITS1, 5.8S, and
ITS2 regions was PCR-amplified using the primers ITS1
(Fw 5′-TCC GTA GGT GAA CCT GCG G-3′) and ITS4
(Rv 5′-TCC TCC GCT TAT TGA TAT GC-3′) (Gardes and
Bruns 1993). The reaction mixture (50 μL) contained 50 ng
genomic DNA, 20 pmol of each primer, 1× Taq buffer, 3 mM
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MgCl2, 0.2 mM dNTP, and 1 U Taq polymerase (Thermo
Scientific, Waltham, MA). The PCR reactions comprised a
DNA denaturation step at 94 °C for 10 min, followed by
35 cycles of 1 min at each temperature: 94 °C, 54 °C, and
72 °C, and a final extension step at 72 °C for 7 min. The
amplified products were examined by electrophoresis in
1.0 % (w/v) agarose gel in 0.5× TBE buffer (Green and
Sambrook 2012) and purified using a PCR DNA Clean &
Concentrator kit (Zymo Research, Irvine, CA) according to
manufacturer’s instructions. The amplicons were bidirection-
ally sequenced with an ABI 3100 Analyzer (Applied
Biosystems, Foster City, CA) in the UBIPRO platform FES-
IZTACALA of the National Autonomous University of
Mexico. All the sequences acquired in this study have been
deposited in the GenBank database (http://www.ncbi.nlm.nih.
gov/genbank/) under accession numbers JQ716993 through
JQ717331 and KF668285.

The ITS rDNA sequence data was used in phylogenetic
reconstruction to estimate the taxonomic placement and for
genotype designation of the recovered isolates. BLASTn
searches of ITS rDNA sequence data in the NCBI GenBank
database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to
guide taxon sampling for the phylogenetic analysis. All
sequences were edited manually with BIOEDIT (Hall 1999)
and aligned using CLUSTALX v1.7 software (Thompson
et al. 1997). The phylogenetic tree was constructed by the
maximum-likelihood method using PhyML software (http://
www.atgc-montpellier.fr/phyml; Guindon and Gascuel 2003).
The best model for sequence evolution was selected with
jModeltest 3.06 software (Posada 2008) based on Akaike in-
formation criterion. The model of Tamura Nei (TrN) + I (in-
variant proportion) + Gamma (G) was selected. The parame-
ters were α=0.6610, A=0.2274, C=0.2838, G=0.2381, and
T=0.2507 for the gamma distribution. The statistical valida-
tion at each node was determined by 500 bootstrap replicates.
Saccharomyces cerevisiae was used as the outgroup for tree
rooting.

Definition of ITS genotypes and diversity estimation

Sequencher 4.1 software (Gene Codes, Ann Arbor, MI)
was used to delimit groups at 90 %, 95 %, 97 %, and
99 % ITS rDNA sequence similarity, with an expecta-
tion of at least 40 % sequence overlap for global de-
limitation. Genotypes defined at 97 % ITS similarity
were considered as species, based upon comparisons
between phylogenetic relationship, and identity was
assigned on the basis of morphological traits (Socca-
Chafre et al. 2011). Species accumulation curves, boot-
strap estimates of total richness, and the Fisher’s,
Shannon, and Simpson’s diversity indices were inferred
with EstimateS v8.2 (Colwell 2005).

In vitro antimicrobial activity

Five mycelial plugs (0.5×0.5 cm) were taken from agar cul-
ture incubated at 28 °C for 7 days on PDA and inoculated into
a 1 L Erlenmeyer flask containing 200 mL Czapek malt broth
(15 g malt extract, 30 g sucrose, 1 g KH2PO4, 2 g NaNO3,
0.5 gMgSO4, 0.5 g KCl, 0.010 g FeSO4, and distilled water to
1 L total volume). Following incubation at 28 °C with agita-
tion (120 rpm) for 3 weeks, the flask content was filtered and
the mycelium-free supernatant was extracted three times
(30 min each time with agitation at 120 rpm) with 200 mL
dichloromethane to obtain an organic phase (culture extract).
The mycelia were frozen in liquid nitrogen, crushed to obtain
a white powder, and extracted three times with 200 mL
dichloromethane/methanol (1:1) mixture (Calcul et al. 2013).
The supernatant and the mycelial extracts were separately
concentrated under vacuum at 45 °C to obtain a powder,
which was weighed and dissolved in dimethylsulfoxide
(DMSO) at a final concentration of 100 mg mL−1. The solu-
tions were stored at −20 °C until assayed.

Aliquots (50 μL) of the concentrated extracts
(100 mg mL−1) were used to evaluate the antimicrobial activ-
ity by the Kirby-Bauer method (Bauer et al. 1966). The target
strains were the Gram-negative bacteria Pseudomonas
aeruginosa ATCC 27853 and Escherichia coli ATCC
35218, the Gram-positive bacteria Staphylococcus aureus
ATCC 25923 and Enterococcus faecalis ATCC 29212, and
the opportunistic pathogen yeasts Candida glabrata
CBS138 and Candida albicans ATCC 10231. Aliquots of
20 μL penicillin (50 μg mL−1) or amphotericin B
(50 μg mL−1) were used as positive controls for the antimi-
crobial activity test against the target bacteria and fungi, re-
spectively, while 50 μL of the dissolvent (DMSO)was used as
a blank control for the same tests.

Enzymatic activities and phosphate solubilization

The assays for amylase, pectinase, chitinase, and chitosanase
activities were performed in Castañeda medium: 0.156 g
KH2PO4, 0.093 g Na2CO3, 0.093 g NaCl, 0.062 g MgSO4·
7H20, 4.5 g Noble agar in 250 mL distilled water. The sub-
strate concentrations (w/v) were 2 % starch, 1 % pectin, 10 %
chitin, and 5 % chitosan. The cellulase and xylanase activities
were tested on Congo Red Agar: 0.5 g K2HPO4, 0.25 g
MgSO4·7H2O, 2 g gelatine, 18 g Noble agar, 0.02 g Congo
red, and 1.8 g cellulose or xilan in 1 L distilled water. The
solubilization of inorganic phosphate was determined on
Pikovskaya medium: 10 g Ca3(PO4)2, 5 g (NH4)2SO4, 0.5 g
KCl, 0.1 g MgSO4·7H2O, 0.5 g yeast extract, 20 g Noble agar
in 1 L distilled water. A PDA plug (2×2 mm) containing
1-week-old mycelia of fungal isolate was used to inoculate
the plates containing medium corresponding to each assay,
and then plates were incubated at 28 °C for 3–5 days.

Ann Microbiol (2016) 66:991–1002 993

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.atgc-montpellier.fr/phyml
http://www.atgc-montpellier.fr/phyml


Amylase activity was determined by the presence of a clear
zone around a colony after immersing the fungal colonies in
iodine solution (1 %, w/v). Positive pectinase activity was
recognized by the presence of a clear ring around a colony
following immersion in cethyl trimetyl ammonium bromide
solution (5%, w/v). A positive degradation of chitin, chitosan,
cellulose, and xylan, as well as phosphate solubilization, was
identified by the presence of a clear or semitransparent ring
around a given colony.

Statistical analysis

Principal component analysis (PCA) was performed with the
Software ade4 (Dray and Dufour 2007) in R ® (Development
Core Team 2015; https://www.r-project.org/) to assess the
correspondence among the genotypes (28 levels), plant
tissues (three levels: leaf, trunk, and root), and sampling
sites (two levels: 500 m.a.s.l. and 1000 m.a.s.l.) as the
variables. A multivariate analysis (MANOVA) was made to
evaluate the distinctive fungal communities among the plant
tissues and between the sampling sites. MANOVA was per-
formed using distance matrices and the software ‘vegan’
(Oksanen et al. 2015) in R.

Results

Isolation and morphological identification of fungi

Overall, 45 endophytic fungal isolates (Table 1) were recov-
ered from 240 pieces of plant tissues. Among these fungi, 13
were from leaves (IR=0.162), seven from trunk bark (IR=
0.087), and 25 from root bark (IR=0.312). Sampling site 1
contributed 23 isolates, including 3 from leaves, 7 from stem
bark, and 13 from root bark, whereas site 2 provided 22 iso-
lates, of which 10 were from leaves and 12 were from root
bark. No fungus was recovered from trunk bark at site 2.

Microscopic observation revealed that 15 isolates were
able to form asexual spores (conidia; Fig. 1), whereas the
complementary 30 isolates were mycelia sterilia. Based on
morphological characteristics, the 15 conidia-producing iso-
lates were identified as members of the genera Colletotrichum
(2), Alternaria (3), Corynespora (1), Fusarium (7),
Paecilomyces, and Stemphylium (Table 1).Microscopic obser-
vations showed 27 hyaline and 18 pigmented mycelia. The
morphological features of the 15 conidia-producing isolates
are shown in Supplementary Table S1.

Molecular identification and diversity of fungi

PCR amplification returned the expected amplicon size (600–
900 bp) corresponding to the ITS rDNA for 42 isolates. Since
identical sequences were found between the isolates HER3-4

and HER3-4P, and between HEH4-1 and HEH7-1, only 40
ITS sequences were deposited in the GenBank database. Due
to unknown reasons, amplification failed in three isolates
(HETI-5, HER8-1, and HER8-5). In the phylogenetic tree,
the 42 isolates were identified into 28 genotypes with 97 %
sequence similarity (Fig. 2, Table 1). Upon comparison with
the ITS sequences extracted from the GenBank database (90
named and 14 unnamed), all of the isolates were identified as
Ascomycetes belonging to 14 genera in nine orders:
Botryosphaeriales, Capnodiales, Chaetosphaeriales,
Diaporthales, Eurotiales, Glomerellales, Hypocreales,
Magnaporthales, and Pleosporales (Fig. 2, Table 1).
Phomopsis (16 isolates) and Fusarium (seven isolates) were
the most abundant groups, while one to three isolates present-
ed in each of the other 12 genera.

The definitions of 28 genotypes in our endophytic fungi
captured 76 % of the fungal species in D. arboreus (species
accumulation curve available as Supplementary Fig. S1), sug-
gesting that more fungal species may be recovered from
D. arboreuswith further isolation efforts. The species richness
of 39.43, together with the diversity indices of Shannon
(3.19), Simpson (26.29) and Fisher (46.49), also indicated
the existence of diverse endophytic fungi in this tree.

Enzymatic and antimicrobial activities

Table 2 shows the enzymatic activities found in the fungi
recovered from D. arboreus. A significant number of the iso-
lates showed activity by xylanase (66.6%), cellulase (57.1%),
pectinase (51.2 %), and amylase (20.9 %). Only the isolate
Paecilomyces sp. HER3-5 showed chitinase and chitosanase
activities, and only the unnamed strain HET1-5 was able to
solubilize inorganic phosphate. Stemphylium sp. HER7-1 and
two unidentified isolates, HER8-1, HER8-5, were not includ-
ed in Table 2, since they grew too poorly in the medium
(Czapek malt broth) for enzymatic assays and did not present
antimicrobial activity.

Antimicrobial activity against at least one of the target
strains, S. aureus ATCC 25923, C. albicans ATCC 10231,
andC. glabrataCBS138, was found in culture extracts of nine
isolates belonging to Phomopsis, Paraconiothyrium,
Corynespora, Endomelanconiopsis, Thozetella, and a
Dothideomycetes isolate (Table 2). None of the culture ex-
tracts inhibited E. coli ATCC 35218, P. aeruginosa ATCC
27853, or E. faecalis ATCC 29212. In addition, none of the
extracts obtained from mycelia inhibited the growth of any of
the target microorganisms.

Correspondence analysis

The correspondence analysis (Fig. 3) represented 58.5 % of
the variance of the data (see Supplementary Table S2 for de-
tails). Considering all of the isolates, the distribution of
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endophytic fungi showed significant correlation with the ori-
gin of plant tissues (P<0.01), but not to the elevation of the
sampling site (Supplementary Table S3). The fungal isolates
were clearly divided into three groups (Fig. 3). Group I cov-
ered 14 genotypes associated with leaves and trunk bark at site
1, as well as with leaves at site 2. This group included

Paraconiothyrium sp. (AA), Corynespora sp. (AB),
Colletotrichum sp. (W), Phomopsis sp. (D), the Pleosporales
isolate (V), Phomopsis sp. (B), Colletotrichum spp. (J, K),
Mycoleptodiscus (F), Alternaria sp. (E), Pyrenochaeta sp.
(G), Phomopsis sp. (H), Diaporthe sp. (I), and Guignardia
sp. (L). Group II comprised six genotypes recovered from root

Table 1 Endophytic fungi isolated from different tissues of Dendropanax arboreus and their relevant information

Isolate no.a Phylogenetic relative (name,
sequence accession number)

Identity
(%)

Morphological
identification

Genotypeb Identification

Pleosporales

HEH6-1, HEH6-I, HEH9-0 Alternaria alternara, GU594744 90-92 Alternaria spp. E/H Alternaria spp.

HET1-3 Corynespora citrícola, FJ852594 89 Corynespora sp. AB Corynespora sp.

HET1-1 Paraconiothryrium brasilense,
EU295634

89 Montacnulaceae AA Paraconiothryrium sp.

HET1-2 Pleosporales, GQ923982 94 Not identified V “Paraconiothryrium” sp. I

HEH4-1, HEH7-1 Pyrenochaeta cava, AY8553248 90/90 Not identified G Pyrenochaeta sp.

HER7-1 Stemphylium vesicarium, GU065719 93 Sthemphylium sp. Y Stemphylium sp.

Diaporthales

HET4-1, HER0-1 Diaporthe helianthi, AY746005 96 Not identified D Phomopsis sp. I

HER8-2 Diaporthe helianthi, AY746005 90 Not identified M Phomopsis sp. II

HEH10-1 Phomopsis sp. CML 1935, 96 Not identified I Phomopsis sp. III

HER1-1, HER4-2, HER4-3,
HER3-3, HER4-4, HER5-1,
HER6-3

Fungal endophyte (AF373049) 95-97 Not identified A “Phomopsis” sp. IV

HER9-1 Endophytic Diaporthales AF373049 92 Not identified U “Phomopsis” sp. V

HEH3-II, HEH6-II, HET2-3 Phomopsis sp. EU715618/ EU715618 96 Not identified B Phomopsis sp. VI

HER8-4 Phomopsis sp. EU715618 94 Not identified S Phomopsis sp. VII

Hypocreales

HER2-1 Fusarium oxysporum HQ691412 94 Fusarium sp. O Fusarium sp. I

HER2-2, HER3-1, HER6-1 Fusarium oxysporum HQ691412 98 Fusarium sp. C F. oxysporum

HER6-2 Fusarium solanI GU355666 93 Fusarium sp. R Fusarium sp. II

HER9-4 Fusarium solani GU355666 92 Fusarium sp. N Fusarium sp. III

HER8-3 Fusarium sp. AY729073 92 Not identified T Fusarium sp. IV

Glomerellales

HEH5-1 Colletotrichum gloesporoides HM222947 97 Colletotrichum sp. K Colletotrichum
gloesporoides

HEH5-II Colletotrichum gloesporoides HM222947 90 Colletotrichum sp. J Colletotrichum sp.

HET2-2 Glomerella septospora GU935911 97 Not identified W Glomerella septospora

Capnodiales HER1-1-A Uncultured Dothideomycetes JF519601 95 Not identified Z Dothideomycetes

Magnaporthales HEH3-1 Mycoleptodiscus indicus GU980698 89 Not identified F Mycoleptodiscus sp.

Botryosphaeriales

HER4-1 Endomelanconiopsis microspora
EU683655

96 Not identified Q Endomelanconiopsis sp.

HEH8-10 Guignardia mangiferae GU060440 97 Not identified L Guignardia sp.

Chaetosphaeriales

HER3-4, HER3-4P Thozetella havanensis EF029184 97 Not identified X Thozetella havanensis

Eurotiales HER3-5 Paecilomyces lilacinus EU553303 96 Paecilomyces sp. P Paecilomyces sp.

Unidentified

HET1-5, HER8-1, HER8-5 Not amplified Not identified Mycelia Unknown

a The first two letters “HE” mean endophytic fungi; the third letter “H, T and R” represent the tissue of origin: leaf, trunk and root, respectively
bGenotype was defined based upon the threshold 97 % of the internal transcribed spacer (ITS) sequence similarity
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bark at site 2, and included Fusarium spp. (M, N, R, T, and U)
and Phomopsis sp. (S). Group III contained eight genotypes,
including Phomopsis sp. (A), Fusarium spp. © and O),
Paecilomyces (P), Endomelanconiopsis sp. (Q), Thozetella
(X), Stemphylium sp. (Y), and Dothideomycetes (Z), which
were all associated with root bark at site 1.

Discussion

Diversity of endophytic fungi

Based on morphological traits, ITS rDNA genotypes, and ITS
rDNA phylogeny, we studied the taxonomic placement, rich-
ness, and diversity of fungal endophytes associated with
D. arboreus at “El Cielo” Biosphere Reserve. All 45 recov-
ered fungi were Ascomycetes belonging to 14 genera, and
three unclassified isolates (Table 1, Fig. 2). The predominance
of Ascomycota found in this study is typical of endophytic
mycota (Rubini et al. 2005), which might imply that this fun-
gal phylum has co-evolved with plants (Lane et al. 2000). The
species richness and coverage value (about 76 %;
Supplementary Fig. S1) attained in this study suggested that
this tree harbors a diverse fungal microbiota, similar to those
reported previously for other plants (Lv et al. 2010; Larran
et al. 2002; Park et al. 2012).

Among the endophytic fungi associated with D. arboreus,
Phomopsis, Colletotrichum, Fusarium, Alternaria, and
Stemphylium have been described as endophytes and/or plant
pathogens (Larran et al. 2002; Arnold and Lutzoni 2007; Lv
et al. 2010). Of the abundant genera found in D. arboreus,
Phomopsis (16 isolates), Fusarium (7 isolates), Alternaria,
and Colletotrichum were also the predominant endophytic
groups found in Panax ginseng (Park et al. 2012), another
member of the family Araliaceae. However, these dominant
endophytic groups were different from those found in wheat
(Larran et al. 2002) and wild rubber trees (Gazis and Chaverri
2010). Therefore, some specificity may exist between
D. arboreus trees and their endophytic fungi. Additionally,
fungi, such as Guignardia (Rodrigues et al. 2004) and
Thozetella (Reyes-Estebanez et al. 2011), may be potential
biocontrol agents.

Endophytic features and potential importance
of the endophytic fungi

In general, xylanase, cellulose, and pectinase are cell-wall
degrading enzymes related to the virulence of phytopathogens
(Knogge 1996). The occurrence of pectinase, cellulase, and
xylanase in both the pathogenic (Pyrenochaeta, Fusarium,
Colletotrichum, and Mycoleptodiscus) and the non-pathogenic
fungi (Thozetella strains HER3-4 and HER3-4P) in the
present study (Table 2) may imply that these enzymes

e

ff g

Macro

Con

d

b caFig. 1a–g Colony morphology
and conidia formed in
microculture. a–d Colony
morphology of Alternaria sp.
(HEH9-0), Corynespora sp.
(HETI-3), Paecilomyces sp.
(HER3-5), and Fusarium
oxysporum HER2-2. e–g Spore
morphology of Colletotrichum
sp. (HEH5-II), Stemphylium sp.
(HER7-1), and Fusarium
oxysporum HER3-1. Conidia
(Con) and macroconidia (Macro)
are marked, respectively
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are related not only to pathogenicity, but also to endophytic
colonization. According to Schulz and Boyle (2005), endo-
phytes secrete cell-wall-degrading enzymes in order to

penetrate and colonize plant cells, but without causing infection
symptoms, such as induction of callus or papillae in plants.
Nevertheless, these enzymes may also help endophytic
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transcribed spacer (ITS) rDNA data for 42 sequenced Ascomycetes
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fungi become saprophytes when the host plant dies
(Promputtha et al. 2007). Amylase activity is associated with
starch degradation at the plant senescence stage, whereas phos-
phate solubilization activity acts as a plant growth promoter
(Kuklinsky-Sobral et al. 2004; Alpinia et al. 2012). Since only
nine endophytes showed amylase activity and only one isolate
(HET1-5) showed phosphate solubilization activity, these activ-
ities may not be the determinants of the fungal endophytes of
D. arboreus.

Chitinases and chitosanases play important roles as biocon-
trol agents against phytophagous nematodes and pathogenic
fungi, and as bioactive compounds for plant production
(Govinda Rajulu et al. 2011). The detection of these two

enzymes in Paecilomyces sp. HER3-5 may be related to the
entomopathogenic activities recognized in some species in
this genus (Castillo Lopez et al. 2014).

Many novel compounds with distinctive biological activi-
ties have been isolated from endophytic fungi (Aly et al.
2011). Since many antibiotics commonly possess other useful
biological activities, the search for this activity has been used
as a primary screen in several prospecting studies with endo-
phytes (Lv et al. 2010; Aly et al. 2011). In the present study,
the detection of antimicrobial activities in the culture extracts
of eight isolates (Table 2) determined the potential of
searching D. arboreus endophytes for bioactive compounds.
Some of the species found in this study have been isolated
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from other plants and recorded as producers of antimicrobial
compounds, including Phomopsis (Silva et al. 2006).
Corynespora (Zhao et al. 2015), and Paraconiothyrium

( P au l e t a l . 2007 ) . Rega rd i ng th e i s o l a t e s o f
Endomelanconiopsis, Thozetella, and Diothideomycetes
(HER1-1-A), no reports on antimicrobial activity were found,

Table 2 Enzymatic, phosphate solubilization and antimicrobial activities of endophytic fungi. DMSO Dimethylsulfoxide

Isolate no. Enzyme activity ofb P solubilization Antimicrobial activity toc

Pectinases Celullases Xylanases Amylases Staphylococcus
aureus

Candida
albicans

Candida
glabrata

Alternaria spp. HEH6-1,
HEH9-0

- + + - - - - -

HEH6-I - - - - - - - -

Paraconiothryrium spp. HET1-1,
HET1-2a

- + + - - + - -

Pyrenochaeta spp. HEH4-1,
HEH7-1

+ + + + - - - -

Corynespora sp. HET1-3a - - + + - - - ++

Phomopsis spp. HER4-2 - - - - - - - -

HER3-3, HET1-4, HER4-4a,
HER5-1

+ - - - - + + ++

HER1-1, HER9-1a - + - - - - + -

HER4-3, HEH10-1, HEH0-1 - - + - - - - -

HER8-2 NG + + - - - - -

HER8-4 - + + - - - - -

HEH3-II, HEH6-IIa, HET2-3 + - + - - - - ++

HER6-3a NG NG NG NG NG + ++ -

Fusarium spp. HER6-1 NG + + - - - - -

HER6-2, HER9-4, HER2-1 + + + + - - - -

HER8-3 NG + + - - - - -

HER3-1 + + + - - - - -

HER2-2 + NG NG - - - - -

Glomerella septospora HET2-2 + - - - - - - -

Colletotrichum spp. HEH5-1,
HEH5-II

+ + + + - - - -

Paecilomyces sp. HER3-5 NG + + - - - - -

Guignardia sp. HEH8-10 - + - + - - - -

Endomelanconiopsis sp.
HER4-1a

- - + - - + + -

Thozetella spp. HER3-4a,
HER3-4P

+ + + - - - + -

Mycoleptodiscus sp. HEH3-1 + + + - - - - -

Diothidomycetes HER1-1-Aa + - - - - - - +

Unidentified HET1-5 - - - - + - - -

Control positive (Penicillin) ++ - -

Control positive (Amphotericin B) - ++ ++

Control negative (DMSO) - - -

Origin of tissue L, T, R L, T, R L, T, R L, T, R T T, R R T, R

Positive isolates /tested isolates 20/39 24/42 28/42 9/43 1/43

% 51.2 57.1 66.6 20.9 2.3

a Strains presenting antimicrobial activity
b +, presence of activity; −, absence of activity; NG, no growth; Paecilomyces sp. HER3-5 was the only isolate with activities of chitinases and
chitosanases
c Strains used in analysis: S. aureus ATCC 25923, C. glabrata CBS138 and C. albicans ATCC 10231; no inhibition was observed against Escherichia
coli ATCC 35218, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. -, growth not inhibited; +, growth inhibited; ++,
growth strongly inhibited
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making these particularly attractive to future investigation for
novel antimicrobial molecules.

These results showed that a high proportion (17.8 %) of the
D. arboreus endophytic fungi possessed antifungal activity.
Additionally, the specific activity against certain target mi-
crobes may be advantageous for potential uses (such as in
human patients). For example, Corynespora sp. HET1-3 and
Phomopsis sp. HEH6-II strongly inhibited C. glabrata, but
did not affect C. albicans and bacteria, while Phomopsis sp.
HER6-3 only inhibited C. albicans, but not C. glabrata. For
these reasons, the mycobiota of this plant may be a valuable
resource in the search for novel antifungal drugs. Currently,
fungal infections are common diseases. Although there have
been some drugs capable of treating fungal infections, new
agents, including those targeting yeast infections, are still
needed.

The existence of high proportions of antifungal activities in
the endophytic fungi might explain the medicinal applications
of D. arboreus (Bourdy et al. 2000), since both S. aureus and
Candida are common infectious pathogens that are inhibited
by many endophytic fungi from this tree (Table 2). The ab-
sence of chitinase and chitosanase activities in the antifungal
isolates implies that the anti-yeast activities of these fungi
should be based on the synthesis of other compounds
(Vandeputte et al. 2012). The absence of antimicrobial activ-
ity, but presence of activities for all of the four other tested

enzymes in the isolates Pyrenochaeta spp. HEH4-1 and
HEH7-1, Fusarium spp. HER6-2, HER9-4, and HER2-1, as
well as Colletotrichum spp. HEH5-1 and HEH5-II (Table 2)
also suggested that the antimicrobial activities and the tested
enzyme activities are not related to each other, which is not
surprising, given that many antimicrobial compounds are
products of secondary metabolism.

Distribution and specificity of endophytic fungi in plant
tissues/sampling sites

The identity of fungal isolates recovered from leaves, trunk
bark, and root bark of D. arboreus was distinctive (Table 1,
Fig. 3), similar to earlier studies (Petrini and Fisher 1986). All
of the isolates of Alternaria, Colletotrichum, Corynespora,
G l om e r e l l a , Gu i g n a rd i a , My c o l e p t o d i s c u s ,
Paraconiothyrium, Pyrenochaeta, and two of Phomopsis cov-
ering the isolates HEH3-II, HEH6-II, HET2-3, and HEH10-1,
were recovered from the leaves and/or trunks of D. arboreus.
These fungi are also common to the aerial tissues of other
plants (Larran et al. 2002; Lumyong et al. 2009; Lin et al.
2011; Han et al. 2012; Ortega et al. 2013). The isolates of
Dothideomycetes HER1-1-A, Endomelanconiopsis,
Fusarium, Paecilomyces, Stemphylium, and Thozetella, as
well as some ofPhomopsis, were only recovered from the root
bark of D. arboreus. These fungi were also reported as root
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Fig. 3 Correspondence analysis
showing the distribution of
genotypes for different tissues and
elevations (sites). Three groups
were formed: group I included
fungi from the aerial parts
sampled at the two sites, group II
covered fungi from root tissues
sampled at site 2, and group III
was composed of fungi from root
tissues sampled at site 1
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endophytes in other plants (Paulus and Hyde 2004; Paul et al.
2007; Baral et al. 2011; Fu et al. 2011; Khan et al. 2012).
Endomelanconiopsis is a phytopathogen described previously
(Rojas et al. 2008), but the present work is the first record of its
classification as a root endophyte. Our results in combination
with previously cited reports suggest that: (1) the endophytic
fungal community in leaves is clearly different from that
found in roots, but the trunk can be a transit habitat between
leaves and roots for some fungi; and (2) some genera identi-
fied in this study are widespread endophytes in other plant
types.

Further studies are needed to understand the effects of other
environmental factors on the incidence of certain endophytic
fungi of D. arboreus. Notably, the correspondence analysis
indicated that the root endophytes form two groups according
to the sampling site (Fig. 3), which may be related to variable
environmental conditions, such as soil characteristics (Photita
et al. 2001).

Conclusions

Forty-five endophytic fungi isolated from D. arboreus were
identified as Ascomycota belonging to 14 different genera. In
general, the abundance of fungi was superior in root bark
relative to stem bark, and was lowest in the leaves. The cor-
respondence analyses showed clear specificity of some fungal
genotypes (species) with the plant tissues and sampling sites
(elevation). Many endophytes of D. arboreus produced cell-
wall-degrading enzymes. Antifungal and antibacterial activity
was found in cu l tu re ex t rac t s o f Corynespora ,
Endomelanconiopsis, and Thozetella strains, three fungi
whose metabolites have been little studied or have not been
studied at all. These fungi may be valuable resources for
searching novel compounds.
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