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Abstract Bioprospecting is an umbrella term describing the
process of search and discovery of commercially valuable
new products from biological sources in plants, animals, and
microorganisms. In a way, bioprospecting includes the ex-
ploitative appropriation of indigenous forms of knowledge
by commercial actors, as well as the search for previously
unknown compounds in organisms that have never been used
in traditional ways. These resources may be used in industrial
applications, environmental, biomedical, and biotechnologi-
cal aspects. Bacillus species are one of the most studied or-
ganisms from different perspectives and diverse environ-
ments, namely for industrial and environmental applications
owing to the adaptations and versatile molecules they pro-
duce. The ability of different species to ferment in the acid,
neutral, and alkaline pH ranges, combined with the presence
of thermophiles in the genus, has lead to the development of a
variety of new commercial enzyme products with the desired
temperature, pH activity, and stability properties to address a
variety of specific applications. Unlike other microbial species
Bacillus species have been isolated from different sources
both natural and artificial sources some being extreme in na-
ture, for bioprospecting studies to exploit them to fabricate
novel biomolecules or functions. Solar salterns are among
the least documented environments as a source of Bacillus
species due to their unique nature comprisingmultiple extrem-
ities of varying degrees, namely temperature, pH, andminimal
nutrients along with saturating salinity. Haloalkaliphilic
Bacillus species are the group specifically adapted to grow

optimally under moderate halophilic and alkaline conditions.
Artificial solar salterns are not evenly established as a habitat
because they are created and maintained by humans. Hence,
the present paper makes an attempt to review the potential of
haloalkaliphilic Bacillus species from manmade solar salterns
for bioprospecting studies.
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Introduction

The seas that cover nearly 70 % of the surface of planet Earth
contain about 35 g/L−1 dissolved salt. Hypersaline environ-
ments are easily formed when seawater dries up in coastal
lagoons and salt marshes, as well as in manmade evaporation
ponds of saltern systems built to produce common salt by
evaporation of seawater. There are also inland saline lakes in
which the salt concentrations can reach close to saturation.
Well-known examples are the Great Salt Lake, UT, USA, a
lake in which the ionic composition of the salts resembles that
of seawater, and the Dead Sea on the border between Israel
and Jordan, a lake dominated by magnesium rather than by
sodium as the most abundant cation. Furthermore, there are
extensive underground deposits of rock salt that originated by
the drying of closed marine basins. All of these environments,
as well as others such as saline soils, provide a habitat for salt-
adapted microorganisms, obligate halophiles, as well as
halotolerant organisms that can adjust to life over a wide range
of salt concentrations.

Solar salterns are hypersaline water bodies located along
the sea-coast and are the main source of salt generated through
the evaporation of seawater. They are generally composed of a
system of shallow ponds with salinities ranging from of
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seawater to supersaturated brines. These elevated saline
concentrations represent extreme environmental condi-
tions leading to the growth of only a few specialized
groups of microorganisms: the halophiles. These halophil-
ic microbial communities (Oren 2006; Pedrós-Alió 2006)
are adapted to life at high salt concentrations and to the
high osmotic pressure of their environment resulting from
the high salinity. In addition, other factors such as tem-
perature, pH, oxygen, nutrient availability, and solar radi-
ation prevailing in these environments also limit the
growth of microorganisms. Most of the solar salterns tend
to be alkaline in nature due to carbonates, and only a
negligible number are acidic in nature (those are near
acidic or sulphur mines). Artificial solar salterns are
unique polyextremophilic environments characterized by
saturating salinities (15–35 %), moderate alkalinity pH
(9.0), and mesophilic temperatures (45–50 °C), which
are the conditions most prevalent in industrial processes.
Another reason that artificial solar salterns are a source of
potential prokaryotes is they are the dominant population
when compared with eukaryotic groups such as fungi or
algae (Syed et al. 2012).

Apart from Haloarchaea, Bacillus species are prominently
found in the less saline zones of solar salterns, particularly in
saturation ponds, which have 15–25 % salinity. Bacillus spe-
cies continue to be dominant bacterial workhorses in microbi-
al fermentations. Bacillus subtilis is the key microbial partic-
ipant in the ongoing production of large-scale hydrolytic en-
zyme production, and some Bacillus species are on the Food
and Drug Administration's GRAS (generally regarded as safe)
list. The capacity of selected Bacillus strains to produce and
secrete large quantities (20–25 g/L) of extracellular enzymes
has placed them among the most important industrial enzyme
producers. The Bacillus strains isolated from solar salterns
have properties such as temperature and alkalinity tolerance
of considerable level. Thus, the special natural adaptations of
the Bacillus species from solar salterns render them ideal can-
didates for multiple application bioprospecting studies. This
review attempts to consolidate the recent applications of
haloalkaliphilic Bacillus species to inspire extensive study of
the same to the fullest.

Halophiles

Halophiles are able to survive in salty conditions through cel-
lular and molecular adaptations, including adjusting the cell
turgor to different external salinities by controlling the con-
centration of protective molecules such as ectoine, betaine,
and amino acids (glutamine, glutamate, proline, and glycine)
by producing them intracellularly or taken up from the envi-
ronment, and by concentration regulation of compatible sol-
utes such as chloride and sodium/potassium in intracellular

environments, depending on external salinity (Müller and
Köcher 2011) (Fig. 1) (Marco and Erhard 2011). Because
water tends to flow from areas of high solute concentration
to areas of lower concentration, a cell suspended in a very
salty solution will lose water and become dehydrated unless
its cytoplasm contains a higher concentration of salts than its
environment. Halophiles contend with this problem by pro-
ducing large amounts of an internal solute or by recollecting a
solute extracted from outside (Garabito et al. 1998). Halophily
refers to the ionic requirements for life at high salt concentra-
tions. Although these phenomena are physiologically distinct,
they are environmentally associated with other physiological
parameters. Thus, a halophile must cope with osmotic stress
(Oren 2006). Halophiles include a range of microbes, but
some Archaea, cyanobacteria, and the green alga Dunaliella
salina can withstand periods in saturated NaCl. For instance,
an Archaean known as Halobacterium salinarum concen-
trates potassium chloride in its interior. As might be expected,
the enzymes in its cytoplasm will function only if a high con-
centration of potassium chloride is present, but proteins in
Halobacterium salinarum cell structures that are in contact
with the environment require a high concentration of NaCl.

Haloalkaliphiles

Alkaliphiles consist of two main physiological groups of mi-
croorganisms, alkaliphiles and haloalkaliphiles. Alkaliphiles
require an alkaline pH of 9 or more for their growth and have
an optimal growth pH of around 10, whereas haloalkaliphiles
require both an alkaline pH (>pH 9) and high salinity (up to
33 % (w/v) NaCl) (Horikoshi 1996). The environments or
sources for this group of microorganisms are both natural
and artificial in nature (Oren 2002a).

Adaptation strategies for haloalkaliphiles

Haloalkaliphiles possess adaptation mechanisms, which in-
clude production of high density lipids with branched chains
and increased content of cell wall components (glutamic acid,
diaminopimelic acid, muramic acid, and glucosamine) along
with the presence of poly-γ-L-glutamic acid along with Na+/
H+ antiporters as internal pH homeostasis for survival in high-
ly saline and alkaline pH (Horikoshi 2011; Krulwich et al.
2011). These properties make them interesting not only for
fundamental research, but also for industrial application
(Margesin and Schinner 2001; Purohit et al. 2014). So far,
moderately haloalkaliphilic bacteria have been isolated from
the different saline and alkaline environments (Ventosa et al.
1998; Patel et al. 2005; Xu et al. 2007).

Extremophiles adopt two distinct approaches to living
within extreme environments; they adapt to function within
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the physical and chemical bounds of their environment or they
maintain mesophilic conditions intracellularly, guarding
against the external pressures. Among them, halophiles are
an interesting class of extremophilic organisms that have
adapted to harsh, hypersaline environments (Oren 2002b).

Applications of haloalkaliphiles

Stable alkaline conditions are caused by an unusual combina-
tion of climatic, geological, and topological conditions. Soda
lakes represent the most stable high-pH environments on earth
and commonly have pH values above 11.5. These environments
are associated with a low Mg2+, Ca2+ geology together with
rates of evaporation that exceed any inflow. Transient alkalinity
in microhabitats arising through biological activity such as am-
monification or sulphate reduction is a widespread feature of
heterogeneous environments such as soils. This is presumably
the reason for the widespread presence of alkaliphiles in such
environments that would be considered neutral or even acidic
on the basis of bulk pH measurements (Imhoff et al. 1979).

These hypersaline alkaline brines provide the most extreme
environment with a pH of around 12 and are relatively high in
organic content, presumably due to evaporative concentration.
Originally assigned to two genera, Natronobacterium and
Natronococcus, these organisms turn out to have just as much
diversity as their counterparts in pH-neutral hypersaline envi-
ronments, and there are currently six genera, Natronococcus,
Natronobacterium, Natrialba, Halorubrum, Natronorubrum,
andNatronomonas that harbour haloalkaliphilic representatives
living in these environments. The only other aerobes to have
been cultivated from these environments are haloalkaliphilic
Bacillus sp., which was distinct in having a minimum require-
ment of at least 15 % NaCl for growth. As might be expected
from the nutrient-rich environments that they inhabit, the ma-
jority of the soda lake isolates are biochemically reactive with
an arsenal of extracellular hydrolytic enzymes including

proteinases, cellulases, xylanases, and lipases (Asha et al.
2012). Two different cellulases from Gram-positive soda lake
isolates are currently marketed for use in laundry and textile
processes (Jones et al. 1994; Grant 2006).

Haloalkaliphilic Bacillus sp.

Halophilic microorganisms require very high salt (2 to 5 M
NaCl) concentrations for growth and are found in salterns and
hypersaline lakes. Many extreme and moderate halophiles
have been isolated and investigated for possible
biotechnological applications. Early literature on organisms
from salted foods and solar salt interjects a running debate
on the nature of adaptation to hypersaline environments.
Smith (1938) reviewed the arguments, which center on wheth-
er halophilism is an evolutionary consequence or simply the
adaptation of a single generation. A group of media used for
enrichments of moderately halophilic and halotolerant bacte-
ria (Bacillus, Halobacillus, Halomonas, Salibacillus,
Salinibacter) has approximately 10 % salinity (Quesada
et al. 1983; Caton et al. 2004; Sass et al. 2008).

A large body of evidence suggests that Bacillus species
were isolated from various haloalkaline environments such
as soda lake Van in Turkey and Inner Mongolian Bear soda
lake (Ma et al. 2004). Recently, Tambekar and Dhundale
(2012) reported the phenotypic analysis of B. flexus, B.
cellulosilyticus, B. pseudofirmus, B. clausii , B. krulwichiae,
B. pumilus, B. lehensis, B. halodurans, B. circulans, B. cereus,
B. agaradhaerens, B. sphaericus, B. fusiformis, B. asahii, B.
pseudalcalophilus, B. okuhidensis, and B. gibsonii.

Potential applications of Haloalkaliphilic Bacillus sp.

The biological diversity of the marine environment, in partic-
ular, offers enormous scope for the discovery of novel natural

Fig 1 The core of osmostress
response of Bacilli. Schematic
overview of the initial and
sustained cellular stress responses
to high salinity through the uptake
of K+, synthesis and import of
various compatible solutes and
the active export of K+ and Na+

ions. Non-selective expulsion of
ions and organic solutes occur in
response to sudden osmotic
downshifts via mechanosensitive
channels (Msc)
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products, several of which are potential targets for biomedical
developments. Extremophiles have been recognized as valu-
able sources of novel bioproducts and this may well include
antimicrobials (Horikoshi 1999; Das et al. 2014; Wu et al.
2014). These groups of prokaryotes have received consider-
able interest because of their potential applications in various
biotechnological and industrial aspects, such as biomedical
and chemical sciences, food, leather, laundry detergent, and
pharmaceutical industries (Rothschild and Mancinelli 2001).
Moreover, some bacterial metabolites, such as proteins, extra-
cel lular enzymes, osmotical ly active substances,
exopolysaccharides, and special lipids have potential industri-
al applications (Schiraldi and De Rosa 2002; Ara et al. 2014).
They appear to be a very good source of various biomolecules
and can open the dimensions for the development of novel
value based products because of unique properties, which can
withstand at harsh environment (Saju et al. 2011; Prakash and
Gopal 2014) Fig. 2.

Enzymes/biocatalysts

Haloalkaliphilic Bacillus sp., have the capability to produce
multiple enzymes applied in multifaceted industries from food
and related sectors to bioremediation of polluted environ-
ments (Fergus 1977; Adams et al. 1995). The biocatalysts
from the haloalkaliphilic Bacillus sp. have optimal activity at
moderately extreme conditions requiring presence of Na+-Cl−

for ion induced stability of the enzymes, where normal en-
zymes would deactivate and cease to function (Bajaj et al.

2014). The enzymes from this genus include both α and β
amylases, proteases both alkali and acidic, nucleases and
phosphatase, and bacteriolytic enzymes, which are able to
function optimally at higher temperatures (40–60 °C), salinity
(0.5–1.5 M), and alkalinity (7.0–8.5) compared with those
from normal organisms (Oren 2002a; Ibrahim and El-
diwany 2007; Syed et al. 2013a, b; Singh and Bajaj 2014;
Annamalai et al. 2014) (Table 1).

Organic acids

During the cultivation of alkaliphiles, the pH values of culture
media often decrease sharply due to the production of organic
acids, which are produced by growth on carbohydrates.
Paavilainen et al. (1994) reported comparative studies of or-
ganic acids produced by alkaliphilic bacilli. Four bacilli,
Bacillus sp. strain 38–2 (ATCC 21783), B. alkalophilus sub
sp. Halodurans (ATCC 27557), B. alcalophilus (ATCC
27648), and Bacillus sp. strain 17–1 (ATCC 31007), were
cultured in the presence of various concentrations of sugars
(1 % w/v) and related compounds such as sugar alcohols. All
these alkaliphiles produced acetic acid (4.5 to 5.0 g/L at the
maximum), while formic acid was produced by only one of
the strains. In contrast, among neutrophilic Bacilli, acetoin,
butanediol, and ethanol were not detected and are essentially
produced as an adaptive response for fluctuating salinity gra-
dients (Oren 2002a). Moderate amounts of isobutyric,
isovaleric, α-oxo-isovaleric, α-oxo-β-methylvaleric, α-oxo-

Fig 2 Potential applications of
Haloalkaliphilic Bacillus sp.
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Table 1 Different Enzymes from
the genus Bacillus* Enzyme Species Comments

Agarase Bacillus sp. Hydrolyzes the (β-1,4 linkage of agarose

α-Amylase B. amyloliquefaciens

B. caldolyticus, B. coagulans

B. licheniformis, B. macerans

B. stearothermophilus

B. subtilis, B. subtilis var.
amylosacchariticus

Endohydrolysis of the α-1,4-glucosidic
linkages in polysaccharides; different
species produce enzymes with different
properties

β-Amylase B. cereus, B. megaterium

B. polymyxa

Alkalophilic Bacillus spp.

Exohydrolysis of the α-1,4-glucosidic
linkages in polysaccharides yielding
β-maltose

Cellulase B. brevis, B. firmus,B. polymyxa

B. pumilus, B. subtilis

Hydrolysis of carboxymethyl cellulose to
cellobiose

Chitinase B. circulans Four enzymes induced by growth on
crab-shell chitin

β-1,3-glucanase B. circulans, B. polymyxa

B. subtilis,Alkalophilic Bacillus
sp.

Endohydrolysis of the β-1,3-glycosidic
linkages in laminarin and related
glucans

Isoamylase B. amyloliquefaciens

B. polymyxa

Hydrolysis of theα-1,6-glycosidic branch
linkages in glycogen, amylopectin, etc.

Pectate lyase B. circulans, B. polymyxa

B. pumilus, B. sphaericus

B. stearothermophilus

B. subtilis,

Alkalophilic Bacillus sp.

Endocleavage of polygalacturonic acid by
an eliminative reaction

Pullulanase Alkalophilic Bacillus sp. Endohydrolysis of the α-1,6 linkage of
pullulan

Xylanase B. amyloliquefaciens

B. firmus, B. polymyxa

B. subtilis, B. subtilis var.
amylosacchariticus

Hydrolysis of xylans; specificity of the
enzymes has not been studied in detail

Proteases

Alkalophilic protease Alkalophilic Bacillus sp. Serine enzymes from alkalophilic species
with very high pH optima

Aminopeptidase B. licheniformis, B. subtilis

Esterase B. subtilis Serine enzyme with high esterolytic and
low proteolytic activity

Halophilic protease Bacillus sp. Produced optimally in media containing
1.0 M NaCl

Metal protease B. amyloliquefaciens

B. cereus, B. licheniformis

B. megaterium, B. polymyxa

B. subtili, B. subtilis var.
amylosacchariticus

B. thermoproteolyticus

B. thuringiensis

Enzymes require Ca+ for stability

and Zn2+ for activity; pH optimum at or
near neutral

Serine protease B. amyloliquefaciens

B. licheniformis, B. pumilus

B. subtilis, B. subtilis var.
amylosacchariticus

The subtilisins; alkaline pH optima, serine
residue at or near the active site

Penicillinases

β-Lactamase B. anthracis, B. cereus

B. licheniformis, B. megaterium

B. subtilis

Hydrolysis of the amide bond in the
β-lactam ring of penicillins and
cephalosporins

Ann Microbiol (2016) 66:1315–1327 1319



isocaproic, and phenylacetic acids were generated by three of
the alkaliphiles (Meyer et al. 2014).

Bacteriorhodopsin

Certain extremely halophilic and haloalkaliphilic bacteria con-
t a i n membrane bound r e t i n a l p i gmen t s c a l l ed
Bacteriorhodopsin (BR) and Halorhodopsin (HR) (Lanyi
1993). The applications comprise holography, special light
modulators, artificial retinas, neural networks, optical comput-
ing, and volumetric and associative memories. Recently, clon-
ing and functional expression of the archea rhodopsin gene
from Halorubrum xinjiangense was successfully achieved in
E. coli, where the purple membrane was fabricated into films
and photoelectric responses depending on light-on and light-
off stimuli were observed (Mosin and Ignatov 2014). The
presence of extreme halotolerant Bacillus sp. creates a great
opportunity to use them as cell factories for the production of
these optical pigments with less economic burden (Garabito
et al. 1998).

Lantibiotics/lipopeptides

Lantibiotics or lipopeptides are small lipid molecules associ-
ated with linear or cyclic oligopeptides and other compounds
and used in medicines and cosmetics for the transport of com-
pounds to specific target sites in the body. Lipopeptides have

received considerable attention for their antimicrobial, cyto-
toxic, anti-tumour, immunosuppressant, and surfactant prop-
erties (Pirri et al. 2009; Raaijmakers et al. 2010; Fuchs et al.
2011; Yuan et al. 2012). The lipopeptides from Bacillus sp.
have broad spectrum anti-microbial activity (Ongena and
Jacques 2008). The ability of the Bacillus sp. to use different
carbon sources (including cheaper ones such as paddy straw
and potato peels) makes them potent candidates for
lipopeptide production (Das and Mukherjee 2007; Zhu et al.
2012). Production of lipopeptides such as iturins is limited to a
few species such as B. subtilis and B. amyloliquefaciens, but
that of surfactin and fengycin is widespread among many
Bacillus sp., and in that too diversity of lipopeptides and re-
lated compounds is tremendous (Mukherjee, and Das 2005;
Price et al. 2007).

Biosurfactants

Biosurfactants enhance the remediation of oil-contaminated
soil & water and have potential for pollution treatment in
marine and coastal region (Al-Wahaibi et al. 2014; Martinez
et al. 2014). Bacillus sp. from a variety of environments rang-
ing from halophilic to haloalkaline are able to produce
biosurfactants of multiple applications including antimicrobi-
al, anti-adhesive agents, and enhanced oil recovery agents
(Jenneman et al. 1983; Simpson et al. 2011; Joshi et al.
2012; Donio et al. 2013; Sarafin et al. 2014). Biosurfactants

Table 1 (continued)
Enzyme Species Comments

Nucleases and phosphatases

Alkaline phosphatase B. amyloliquefaciens

B. cereus, B. subtilis

Alkalophilic Bacillus sp.

Often cell-bound, the enzyme is
extracellular in these species

Deoxyribonucleaseribonuclease B. amyloliquefaciens,

B. cereus

B. pumilus, B. subtilis

A large number of DNases, RNases, and
phosphodiesterases with individual
properties have been purified

3-Nucleotidase B. subtilis Active on both ribonucleotides and
deoxyribonucleotides

5-Nucleotidase Cell-bound enzyme in these species

Bacteriolytic enzymes

Endo-N-acetylglucosaminidase B. licheniformis, B. subtilis

Exo-N-acetylglucosaminidase B. subtilis

Endo-N-acetylmuramidase B. subtilis True lysozyme

Exo-N-acetylmuramidase B. subtilis

N-acetyl-muramylL-alanine
amidase

B. licheniformis B. subtilis Acell-bound enzyme; themajor autolysin

Lipase B. licheniformis Hydrolysis of triacylglycerol to
diacylglycerol and a fatty acid anion

Phospholipase C B. anthracis B. cereus B.
thuringiensis

Responsible for the Begg-yolk^ reaction

Thiaminase B. thiaminolyticus

* Source-Priest (1977)
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from Bacillus species are also used for in situ Microbial
Enhanced Oil Recovery (MEOR), but the production cost is
a limiting factor for exploitation of these biosurfactants
(Souayeh et al. 2014). To further the applications of
biosurfactants, the substrates, which are cheaper, abundant,
and easily available, have to be used along with statistical
modelling of optimal conditions (Joshi et al. 2007; Barros
et al. 2008).

Exopolysaccharides

Exopolysaccharides (EPS) are biopolymers resulting from ac-
tive bacterial secretion, shedding of cell surface material, cell
lysis materials, and from adsorption of organics from the en-
vironment (Wingender et al. 1999). They are composed of a
variety of organic substances: carbohydrates and proteins be-
ing major constituents, with humic substances, uronic acids,
and nucleic acids in smaller quantities (Liu and Fang 2002).
Halophilic exopolysaccharide (EPS) producers could be inter-
esting source for MEOR, where polymers with appropriate
properties act as emulsifiers, biosorbents for metal removal
or recovery, and mobility controllers (Salehizadeh and
Shojaosadati 2003; Comte et al. 2006). The exopolymer poly
D-glutamic acid (PGA) can be used as a biodegradable thick-
ener, sustained release material (Zhang et al. 2014), or drug
carrier in the food or pharmaceutical industries (Raliya et al.
2014). Hezayen et al. (2000) first described a PGA-producing
extremely halophilic archaeon related to the genus Natrialba.
Bacillus sp., in particular B. subtilis, B. cereus, B. pumilis,
B. coagulans, and B. lincheniformis, are potent producers of
EPS materials as they are widely known to cope with fluctu-
ating physiological conditions including temperature and sa-
linity outside their cell membranes (Maugeri et al. 2002;
Morikawa 2006; Marvasi et al. 2010).

Food biotechnology

Halotolerant microorganisms play an important role in various
fermentation processes, occurring in the presence of salt and
producing compounds that give characteristic taste, flavour,
and aroma to the resulting products. In the production of
pickles (fermented cucumbers), brine strength is increased
by gradual increase of NaCl from 5 to 15.9 % (w/v). Certain
species of halophiles; Halobacterium salinarum, Halococcus
sp., Bacillus sp., Pseudomonads, and Coryneform bacteria are
used in the production of an Asian (Thai) fish sauce, in which
fish is fermented in concentrated brine (Esteban-Torres et al.
2015; Cui et al. 2015). Also related to the food industry is the
commercial production of the flavoring agents 5′-guanylic
acid (5′-GMP) and 5′-inosinic acid from RNA, using the hal-
ophilic nuclease H of Micrococcus varians subsp. halophilus
(Kamekura and Onishi 1974). Canthaxanthin is used in cos-
metics to decrease the necessary exposure time in sunlight to

acquire a tan and to intensify the tan as the compound attaches
to the subcutaneous layer of fat (Margesin and Schinner
2001).

Metabolites produced by alkaliphilic Bacillus

Hamasaki et al. (1993) found that a large amount of 2-
phenylethylamine was synthesized by cells of the alkaliphilic
Bacillus sp. strain YN-2000. Most of this amine was secreted
in the medium during cell growth as extracellularly released
compounds where they can be extracted easily. Aono and
Horikoshi (1991) reported that alkaliphilic Bacillus sp. strains
A-40-2, 2B-2 and 57–1 produce yellow pigments in the cells
and that these are triterpenoid carotenoids. Gascoyne et al.
(1991) isolated a siderophore-producing alkaliphilic bacterium
that accumulated iron, gallium, and aluminium. Enrichment cul-
tures initiated with samples from a number of alkaline environ-
mental sources yielded carotenoids (Shindo and Misawa 2014).

Bioplastics

Polyhydroxyalkanoates (PHA) is intracellularly accumulated
bacterial storage molecules. Because of the unique character-
istics of polyhydroxybutyrate (PHB), such as biodegradable
thermo-polyester that can be produced from renewable re-
sources and has properties similar to those of petroleum-
derived plastics, they are used to replace the conventional
plastics. Many Bacillus sp., including B. thuringiensis,
B. cereus B. brevis, B. sphaericus, B. circulans, B. subtilis,
B. licheniformis, and B. coagulans are well known PHB pro-
ducers (Yilmaz et al. 2005; Kumar et al. 2009). The produc-
tion of PHB is essentially driven by the carbohydrate content
in the medium leading to the expensive nature of its produc-
tion (Yilmaz et al. 2005). Bacillus sp. are able to survive on a
variety of carbon sources such as industrial waste, bio-wastes,
and agri-wastes and are potential candidates for PHB produc-
tion (Santimano et al. 2009; Quillaguamán et al. 2010).
Currently, cheaper carbon and nitrogen sources, such as used
vegetable oil, and low sugar carbohydrates, such as molasses
and fruit peels, are employed to design novel cost effective
models for production of these bioplastics (Koller et al. 2005;
Verlinden et al. 2007).

Degradation of aromatic (phenols and phenolics)
compounds

Hypersaline environments have both surface extension and
ecological significance. As with all other ecosystems, they
are impacted by pollution. However, less information is avail-
able on the biodegradation of organic pollutants by halophilic
microorganisms in such environments. In addition, it is esti-
mated that 5 % of industrial effluents are saline and hypersa-
line. Environmental pollution due to anthropogenic activity
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has affected all types of ecosystems. Phenols and phenolic
compounds are major pollutants of industrial wastes since
they are commonly used in many industries such as oil
refining, coke conversion, pharmaceuticals, and resin
manufacturing plants. Contamination and biodegradation
in extreme environments has received little attention, al-
though many contaminated ecosystems present high or
low temperatures, extreme acidic or alkaline pH, high
pressure, or high salinity (Margesin and Schinner 2001).
Biodegradation of phenol in hypersaline wastewaters was
described by Woolard and Irvine (1994), who used a hal-
ophilic bacterial biofilm isolated from a saltern at the
Great Salt Lake. More than 99 % of the phenol was re-
moved from synthetic waste water containing 0.1 to
0.13 g/L of phenol and 15 % (w/v) NaCl in a batch-
sequenced reactor. The bacteria present in the biofilm
and responsible for biodegradation were not identified.
Hinteregger and Streischsberg (1997) studied the biodeg-
radation capacity of a new phenol-degrading Halomonas
sp. strain isolated from the Great Salt Lake. Several stud-
ies have demonstrated bacterial degradation of aromatic
compounds in saline conditions (Peyton et al. 2002).
Bacillus sp., such as B. subtilis, B. stearothermophilus,
Bacillus brevis, and Bacillus sp., have shown to possess
the ability to degrade phenol by using it as a carbon
source (Gurujeyalakshmi and Oriel 1989; Arutchelvan
et al. 2006). The ability of halophiles/halotolerants to ox-
idize hydrocarbons in the presence of salt is useful for the
biological treatment of saline ecosystems, which are con-
taminated with petroleum products (Margesin and
Schinner 2001). However, the ecological studies
concerning the ability of these microorganisms to degrade
different aromatic compounds are still in their infancy.

Degradation of petroleum hydrocarbons

Petroleum hydrocarbons and their products are the origin of
important pollution in almost all types of ecosystems.
Atmosphere, soils, superficial and underground waters, and
marine environments have been continuously affected by
pollution produced during the extraction, combustion,
refining, transport, and use of petroleum. There is a
significant amount of literature regarding hydrocarbon
biodegradation by marine microorganisms, starting with the
classical reviews, such as Atlas (1981) and Colwell (1977), or
more recent reviews (Swannell 1999; Harayama et al. 2004;
Head et al. 2006; Chandankere et al. 2014). However, infor-
mation on hydrocarbon degradation in the presence of high
salt concentrations is scarce. As mentioned above, hydrocar-
bon biodegradation in the presence of high salt concentrations
is important for the bioremediation of oil-polluted salt marshes
and treatment of industrial wastewater (Fathepure 2014;
Sabina et al. 2014).

Few studies of hydrocarbon degradation at high salt con-
centration have been carried out using axenic cultures.
Bacteria as Rhodococcus, Micrococcus, and Arthrobacter
were able to grow in a wide salinity range of 0.5 to 25 %
NaCl, but hydrocarbon metabolisation was observed only up
to 15 % of NaCl (Kulichevskaya et al. 1992; Zvyagintseva et
al. 2001). Extreme halophilic archaea have been reported as
able to metabolize hydrocarbons. Halobacterium sp. shows a
high capacity to degrade C10 - C30 n-alkanes in a medium
containing 30 % NaCl. Hydrocarbon co-metabolization has
been reported for H. salinarium, H. volcanii, and
H. distributum (Kulichevskaya et al. 1992).

Biosorption of heavy metals

Contamination of the environment by heavy metals is a con-
sequence of technological and industrial processes (Volesky
and Holan 1995; Abbas et al. 2010). This has led to increasing
concern about the effects of toxic metals as environmental
contaminants. Thus, heavy metal pollution represents an im-
portant environmental problem due to the toxic effects of
metals, and their accumulation throughout the food chain
leads to serious ecological and health problems (Goyer and
Chisholm 1972; Nriagu 1988; Fang et al. 2014; Liu et al.
2014). Biosorption of heavy metals by microorganisms is an
attractive and economical alternative method that consists of
removing toxic metals from aqueous solutions based on the
property of certain types of biomasses to bind and accumulate
these pollutants by different mechanisms such as physical
adsorption, complexation, ion exchange, and surface micro-
precipitation (Kratochvil and Volesky 1998; Gutnick and
Bach 2000; Ahluwalia and Goyal 2007; Mansour 2014).
Halophilic and halotolerant microorganisms are suitable can-
didates for bioremediation processes, since they are able to
grow on a wide range of salt concentrations (Hassen et al.
1998; Kratochvil and Volesky 1998; Wongsasuluk et al.
2014). The haloalkaliphiles and their products including
exopolymers are used for heavy metal biosorption as they
comprise charged molecules (Rudd et al. 1984; Nieto et al.
1989; Mullen et al. 1989; Rani et al. 2000; Bai et al. 2014).
Syed and Paramageetham (2015) reported that the Bacillus sp.
from solar salterns were able to remove 90 % of lead from
aqueous solution.

Degradation of reactive dyes

Synthetic dyes are widely used in such industries as textile,
cosmetic, printing, drug, and food processing units
(Padamavathy et al. 2003). The release of coloured waste
water is a problematic reality for a variety of industrial sectors.
Among these are effluents released from textile and printing
processes, dry cleaning, tanneries, food industries, manufac-
ture of paints and varnishes, manufacture of plastics, and a
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variety of chemical processes. Insufficient treatment of wastes
or effluents released from the production process of textiles
can cause grave environmental pollution, sometimes to levels
that can threaten human health, livestock, wildlife, aquatic
life, and collapse the entire ecosystem (Pearce et al. 2003).

Conventional treatment methods such as activated sludge
process, chemical coagulation, electro-chemical treatment,
chemical oxidation, carbon absorption, photo decomposition,
reverse osmosis, or hydrogen peroxide catalysis are difficult,
ineffective, or economically disadvantageous methods for the
decolourization of reactive dyes (Gong et al. 2005; Shah et al.
2013a, b, c). Hence, the treatment of dyes focus on the in-
volvement of some microorganisms that are able to degrade
and biosorb dye in waste water. Bacillus species particularly
haloalkaliphilic in nature are rigorously employed in the
decolour isa t ion process (Wong and Yuen 1996;

Vijayaraghavan and Yun 2008; Shyamala et al. 2014;
Maulin et al. 2014). Different bacillus species applied in bio-
remediation and biodegradation of different environmental
pollutants are presented in Table 2.

Future perspectives and concluding remarks

Haloalkaliphilic microorganisms, particularly Bacillus sp., of-
fer a multitude of actual or potential applications in various
fields of biotechnology. Not only do many of them produce
compounds of industrial interest, but they also posses useful
physiological properties; this can facilitate their exploitation
for commercial purposes. Thus, microbial communities in nat-
ural haloalkaliphilic environments have attracted attention for

Table 2 Different Bacillus sp. in biodegradation and bioremediation studies of environmental pollutants

Bacillus species Biodegradation and/or Bioremediation of Effective conditions Reference

B. subtilis ETL-221 Azo dye decolourisation
(crystal violet)

pH 8.0, 40 ° C Shah et al. (2013a, b, c)

Bacillus sp. VUS Brilliant blue G pH 9.0, 50 ° C Jadhav et al. (2008)

Bacillus sp. Razomol balck B Shah et al. (2013a, b, c)

Bacillus sp. Brown 3 REL Dawkar et al. (2008)

Bacillus fusiformis Disperse Blue 79 and
Acid Orange 10

Kolekar et al. (2008)

Bacillus cereus Cibacron black PSG and Cibacron red P4B Ola et al. (2010)

B. stearothermophilus Phenol Gurujeyalakshmi and Oriel (1989)

Bacillus sp., Bacillus brevis Phenol Arutchelvan et al. (2006)

Bacillus sp. polycyclic aromatic
hydrocarbons (PAH)

pH 7.0, 60-70 ° C Feitkenhauer et al. (2003)

B. subtilis, B. cereus, Bacillus cereus,
Bacillus sphaericus, B. fusiformis,
and B. pumilus

Diesel oil Bento et al. (2005)

Bacillus sp., Hydrocarbons Ghazali et al. (2004)

Bacillus species Phenanthrene Doddamani and Ninnekar (2000)

Bacillus species Polycyclic aromatic hydrocarbons and
long chain alkanes

60–70 ° C Feitkenhauer et al. (2003)

B. subtilis, B. licheniformis, Bacillus sp, Heavy Metals Volesky and Holan (1995)

B. subtilis Cadmium Boyanov et al. (2003)

B. subtilis Lead Singh et al. (2012)

Bacillus licheniformis Chromium Zhou et al. (2007)

Bacillus sphaericus and B. thuringiensis Cadmium Allievi and Mariano (2011)

Bacillus marisflavi Chromium Mishra and Doble (2008)

Bacillus sp, Manganese Hasan et al. (2012)

Bacillus cereus Arsenic Giri et al. (2011)

Bacillus sp. Mercury Green-Ruiz (2006)

Bacillus subtilis Mercury Wang et al. (2010)

Bacillus sp, Lead and Copper Tunali et al. (2006)

Bacillus cereus Arsenic Giri et al. (2013)

Bacillus subtilis Arsenic Yang et al. (2012)
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their possible biotechnological use of enzymes, metabolites,
and metabolic processes.
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