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Microorganisms as a source of tyrosinase inhibitors: a review
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Abstract Tyrosinase is the main enzyme responsible for
enzymatic browning of fruits post-harvest and melanogenesis
in mammals, an undesirable phenomenon. This encouraged
researchers to seek potent tyrosinase inhibitors for application
in the food and cosmetics industries. Despite an increased
knowledge of tyrosinase inhibitors from plants and synthetic
sources in the past few years, inhibitors of microbial origin are
under-explored. Thus, this article surveys tyrosinase inhibitors
produced by microorganisms and hence, serves as an updated
database of tyrosinase inhibitors from microbial sources.
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Introduction

Over the past several years, tyrosinase (EC 1.14.18.1) has
been studied extensively in a wide area of research.
Tyrosinase enzyme is ubiquitous in nature, found in both
prokaryotes as well as eukaryotes. There are several examples
of well-characterized tyrosinases from prokaryotes. The first
well-described tyrosinase was reported in Streptomyces sp.
(Lerch and Ettinger 1972; Katz et al. 1983); however, this
enzyme has also been reported from other genera, such as
Bacillus megaterium, Rhizobium sp., Symbiobacterium
thermophilum, Pseudomonas maltophilia, Sinorhizobium
meliloti, Marinomonas mediterranea, Thermomicrobium

roseum, Bacillus thuringiensis, Pseudomonas putida F6 and
Ralstonia solanacearum (Liu et al. 2004; Ruan et al. 2005;
Claus and Decker 2006; Dalfard et al. 2006; Hernández-
Romero et al. 2006; McMahon et al. 2007; Shuster and
Fishman 2009). In eukaryotes, they serve several other func-
tions apart from melanin production. They are important for
wound healing and serve as primary immune response in
plants, sponges, and many invertebrates (Van Gelder et al.
1997; Cerenius and Söderhäll 2004; Müller et al. 2004), and
are also involved in sclerotization in arthropods (García‐
Borrón and Solano 2002).

Recently, enzyme inhibitors have been gaining attention as
indispensable tools, not only for the study of the respective
enzyme structure but also for their potential in pharmaceuticals
and agriculture (Imada 2004). Tyrosinase plays a key role in
melanogenesis in mammals and enzymatic browning in fruits
and fungi, through a series of reactions leading to the formation
of a dark pigment, melanin (Chang 2009). Although melanin
plays an important role in the phytoprotection of human skin
from UV rays, depigmentation is an esthetic problem in a wide
range of human populations (Solano et al. 2006; Brenner and
Hearing 2008). In addition, browning of fruits and mushrooms
post-harvest is undesirable, as it reduces the commercial value
of the product. The development of tyrosinase inhibitors has
also become a better alternative in controlling insect pests, as
the enzyme also plays an important role in developmental and
defensive functions in insects (Sugumaran 2002). Due to these
varied applications, tyrosinase inhibitors have been gaining
importance as the best alternative for these approaches.

Tyrosinase inhibitors have been discovered and reviewed
from various natural and synthetic sources (Kim and Uyama
2005; Khan 2007; Parvez et al. 2007; Schurink et al. 2007;
Likhitwitayawuid 2008; Lin et al. 2008; Chang 2009, 2012a;
Loizzo et al. 2012; Chan et al. 2014; Chen et al. 2015;
Kilimnik and Dembitsky 2016). However, limited literature
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has been reviewed about tyrosinase inhibitors produced by
microorganisms. Microorganisms produce several bioactive
compounds and have potential as important new sources of
tyrosinase inhibitors. Hence, this article reviews several tyros-
inase inhibitors produced by microorganisms in the literature
for use in the depigmentation of hyperpigmented skin and
other applications.

Biochemical characteristics of tyrosinase

In this section, we give a brief overview of tyrosinase from
bacteria, plants and fungi, with more emphasis on mushroom
tyrosinase. Because of difficulties in producing tyrosinase from
humans in large quantities, its three-dimensional structure is
still unknown. Tyrosinase is a polyphenol oxidase enzyme
which uses molecular oxygen to catalyze sequential reactions,
such as (i) hydroxylation of monophenols to o-diphenols,
followed by (ii) oxidation of o-diphenols to o-quinones. The
quinones self-polymerize or react with other substances to form
melanin. They belong to a large group of proteins, namely type
3 copper proteins, responsible mainly for the first step in
melanin synthesis. Both copper atoms are coordinated by
conserved three histidine residues. In melanin synthesis, three
types of tyrosinase, namely oxy, met, and deoxy, with different
binuclear copper structures are involved. The resting form of
tyrosinase consists of a mixture of met and oxy forms, with
85% of the met form (Sánchez-Ferrer et al. 1995; Kim and
Uyama 2005; Claus and Decker 2006).

The first crystal structure of tyrosinase was determined from
Streptomyces castaneoglobisporus (Matoba et al. 2006). The
low sequence homology between tyrosinase of different
sources can be related to the differences in their structure and
function. In fungal tyrosinases, one histidine residue is linked
by thioether bond to the side chain of a cysteine residue. This
feature is not found in bacterial tyrosinase. Haudecoeur et al.
(2014) reported that there was some similarity and difference
between the binding sites of tyrosinase from different origins
using the same set of molecules. Selinheimo et al. (2007) also
compared the characteristics of fungal and plant tyrosinases and
suggested that the enzymes showed different features in terms
of substrate specificity, stereo-specificity, inhibition, and ability
to crosslink the model protein; however, they had similar reac-
tion mechanisms to produce identical quinone radicals. In a
recent study, it was found that, although monophenols and
diphenols bind and orient identically at the active site, only
monophenols rotate during the reaction, thus enabling enzymes
with only diphenolase activity to have two constraints to pre-
vent monophenolase activity. They also proposed a conserved
water molecule at the active site that mediates deprotonation of
monophenol at the active site (Goldfeder et al. 2014). Kanteev
et al. (2015) also suggested that the active site flexibility and
substrate deprotonation is crucial for the monophenolase

activity of type 3 copper proteins. Asn and Glu residues
are highly conserved in type 3 copper proteins and are
assumed to play a role in the activation of the conserved water
molecule. We have listed in Table 1 tyrosinases from different
microbial sources.

Melanogenesis in mammals

Melanin is an important pigment in mammals, synthesized and
distributed in the skin and hair bulbs, that absorb free radicals
generated within the cytoplasm and also protect the host from
various types of ionizing radiation (Seiberg et al. 2000;
Schaffer and Bolognia 2001). In mammals, a mixture of two
types of melanin, eumelanin (brown or black pigment) and
pheomelanin (red or yellow pigment), are found. The for-
mation of melanin occurs through a series of oxidative
reaction, where tyrosine is converted to dihydroxyphenylalanine
(DOPA) and, further, to dopaquinone by tyrosinase.
Dopaquinone is further auto-oxidized to dihydroxyindole or to
dihydroxyindole-2-carboxylic acid (DHICA) by dopachrome
tautomerase and DHICA oxidase to form eumelanin.
Subsequently, pheomelanin is formed (Raper 1928; Kobayashi
et al. 1995; Borges et al. 2001).

Melanogenesis is regulated by three different signaling path-
ways: protein kinase C-mediated pathway, cAMP-mediated
pathway, and mitogen-activated protein kinase (MAPK) path-
way. Although there are three enzymes active in the process of
melanogenesis, tyrosinase plays the key role in the formation of
melanin, whereas the rest adjust the type of pigment formed
(Kobayashi et al. 1995). Microphthalmia-associated transcrip-
tion factor (MITF) is phosphorylated by MAPK, which is
essential for its activation as well as degradation. cAMP serves
as a starting point of several interacting signaling cascades in
melanin synthesis as well as regulating melanin production and
PI3K. Stimulation with cAMP inhibits PI3K signaling, thereby
increasing the synthesis of melanin via increased transcription
of tyrosinase and TRP-1 (tyrosinase-related protein 1).
Therefore, the activation of PI3K or protein kinase B (AKT)
signaling reduces melanogenesis via the downregulation of
MITF expression, as AKT is an effector of PI3K (Bertolotto
et al. 1998; Hemesath et al. 1998; Meinkoth et al. 1991; Xu
et al. 2000; Hennessy et al. 2005).

Due to the increased treatments for skin fairness, there has
been a demand for the prevention of skin pigmentation in the
cosmetics industry. This has lead to an increased interest on
potent tyrosinase inhibitors, to prevent melanogenesis.
Although several tyrosinase inhibitors have been reported
from natural and synthetic sources, only a few of them are
used as skin-whitening agents. Solano et al. (2006) suggests
that, although tyrosinase inhibition is the most common
approach, a new innovative combined approach improved
the transdermal delivery system and enabled efficient
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Table 1 Tyrosinase of different origins

Source Molecular weight (kDa) pI References

Gram-positive bacteria
Streptomyces glaucescens 30.9 – Lerch and Ettinger (1972); Kim and Uyama (2005)
Streptomyces antibioticus 30.6 7.17 Katz et al. (1983); Claus and Decker (2006)

14.9 6.54
Streptomyces avermitilis 33.5 9.33 Claus and Decker (2006)

13.6 6.64
Streptomyces nigrifaciens 18 – Nambudiri et al. (1972); Claus and Decker (2006)
Streptomyces castaneoglobisporus 31 6.20 Matoba et al. (2006)

13 6.42
Streptomyces coelicolor 33.1 9.66 Claus and Decker (2006)

19.3 7.15
Streptomyces galbus 31.3 9.33 Claus and Decker (2006)

12.9 6.69
Streptomyces griseus 35.5 8.90 Claus and Decker (2006)

13.7 11.8
Streptomyces lincolnensis 30.7 6.84 Michalik et al. (1975); Claus and Decker (2006)

14.2 7.10
Streptomyces lavendulae 31 6.8 Claus and Decker (2006)

17 11.9
Streptomyces tanashiensis 31.3 6.84 Claus and Decker (2006)

12.5 9.39
Streptomyces sp. KY-453 29 9.9 Yoshimoto et al. (1985); Claus and Decker (2006)
Streptomyces michiganensis 32 9.0 Philipp et al. (1991); Claus and Decker (2006)

34.5
Bacillus cereus 28.5 5.47 Claus and Decker (2006)
Bacillus thuringiensis 16.8 4.87 Liu et al. (2004); Ruan et al. (2005)
Corynebacterium efficiens 46.4 5.16 Claus and Decker (2006)
Bacillus megaterium 31 – Shuster and Fishman (2009)

Gram-negative bacteria
Marinomonas mediterranea 74.5 4.84 Claus and Decker (2006)
Marinomonas mediterranea 53.1 4.85 Claus and Decker (2006)
Marinomonas mediterranea 28.6 9.89 Claus and Decker (2006)
Nitrosomonas europaea 53.9 5.26 Claus and Decker (2006)
Rhizobium etli (Rh.e.) 67.4 7.28 Claus and Decker (2006); Cabrera-Valladares et al. (2006)
Sinorhizobium meliloti 54.1 4.65 Claus and Decker (2006)
Ralstonia solanacearum 44 8.44 Hernández-Romero et al. (2005); Claus and Decker (2006)
Stenotrophomonas maltophilia 18.6 9.27 Claus and Decker (2006)
Pseudomonas melanogenum – – Yoshida et al. (1974); Claus and Decker (2006)
Thermomicrobium roseum 43 4.9 Kong et al. (2000); Claus and Decker (2006)
Vibrio tyrosinaticus 38.5 – Pomerantz and Murthy (1974); Claus and Decker (2006)

41
Fungi
Pycnoporus sanguineus 45 4.5–5.0 Halaouli et al. (2005); Halaouli et al. (2006)
Trichoderma reesei 43.5 9.0 Selinheimo et al. (2006)
Aspergillus oryzae 67 – Ichishima et al. (1984); Halaouli et al. (2006)
Lentinula edodes 54–55 4.3–4.7 Kanda et al. (1996); Halaouli et al. (2006)

15–50
Neurospora crassa 46 8.3–8.5 Lerch (1983); Halaouli et al. (2006)
Agaricus bisporus 13.4 4.7–5.0 Solomon et al. (1996)

43
Mammals
Human melanocyte 66.7 – Solomon et al. (1996)
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screening tests for validating their efficacy and safety.
Currently, arbutin, gentisic acid, hydroquinone, and aloesin
isolated from plants as well as 4-n-butylresorcinol,
deoxyarbutin, kojic acid, ascorbic acid, and azelaic acid are
used in the cosmetics industry, with strong inhibition against
tyrosinase (Solano et al. 2006; Parvez et al. 2007; Lin et al.
2008; Gillbro and Olsson 2011).

Enzymatic browning of plant-derived foods

The browning of fruit and vegetables is of great concern in the
food industry, as it reduces its economic value. Browning
occurs due to various reasons, such as microbial spoilage,
mechanical damage and enzymatic reactions. Due to their thin
and epidermal layer, the respiration rate of vegetables and
fruits is high; hence, they tend to lose their quality post-har-
vest. Enzymatic browning is a major concern in damaged
fruits during post-harvest handling and processing, where
tyrosinase enzyme plays a key role (Mayer 1987). Tyrosinase
causes oxidation of the phenolic compounds in fruits, causing
undesirable changes in color, flavor and texture, thereby
reducing its marketability. The extent of browning depends on
various factors, such as concentration of the enzyme and sub-
strate, oxygen availability, pH and temperature (Zheng et al.
2008). Tyrosinase catalyzes the hydroxylation of phenolic
substrate tyrosine to DOPA via its monophenolase activity,
which is further oxidized to dopaquinone by its diphenolase
activity. Further, these quinones are powerful electrophiles,
which can be attacked by water, other polyphenols, amino
acids, peptides and proteins, leading to Michael-type addi-
tions. This is further converted to melanin through a series
of reactions (Busch 1999).

The appearance of a product has been an essential attribute
in the food industry and, therefore, several methods have been
incorporated to reduce or stop enzymatic browning, such as
blanching, microwave, autoclaving, application of chemicals,
modified atmospheric packing, controlled atmospheric
control, etc. (Singh et al. 2010; Ioannou and Ghoul 2013).
However, these processes alter the quality, texture, and nutrient
content of the product. Several enzyme inhibitors, namely
citric acid, ascorbic acid and kojic acid, have been used for
the prevention of browning (Loizzo et al. 2012; Ioannou and
Ghoul 2013). However, since safety is the main concern in the
food industry, the search for a considerably safe tyrosinase
inhibitor from a natural source is an eminent topic of research.

Tyrosinase inhibitors

Tyrosinase inhibitors are widely used in cosmetology and
agriculture. There are several tyrosinase inhibitors derived
from natural and synthetic sources (Parvez et al. 2007; Lin

et al. 2008). Some authors use Bmelanogenesis inhibitors^ as
the terminology for tyrosinase inhibitors; however, this is
attributed to the inhibition of melanin synthesis, regardless
of its mode of action. Thus, tyrosinase inhibition could be
due to one of the following reasons, which could mislead
the definition of an enzyme inhibitor:

1. Reducing agents causing chemical reduction of
dopaquinone, e.g., ascorbic acid

2. o-Dopaquinone scavengers which react with dopaquinone
to form a colorless product, e.g., thio-containing
compounds

3. Alternative substrate with good affinity for the enzyme
forming a different product, e.g., phenolic compounds

4. Non-specific enzyme inactivators such as acids and bases
which inactivate the enzyme

5. Specific enzyme inactivators or suicide substrates
6. True inhibitors which bind to the enzyme and inhibit its

activity

The true inhibitors can be subdivided further into three
categories based on their mode of inhibition, such as compet-
itive inhibitors, mixed type inhibitors, and non-competitive
inhibitors (Chang 2009, 2012b). The inhibitors mainly com-
prise copper-binding agents and compounds binding on active
sites (Mayer and Harel 1979; Robb 1984). Substrate ana-
logues include numerous aromatic acids, phenols and their
derivatives, and a few non-aromatic compounds, which main-
ly behave as competitive inhibitors (Walker and McCallion
1980; Menon et al. 1990; Nicolas et al. 1994). As the enzyme
is a metalloenzyme, metal chelaters such as carbon monoxide,
cyanide, azide ions, thiourea derivatives, kojic acid, tropolone,
etc. could inhibit its activity. Inhibitors from natural sources
have been preferred over synthetic sources, with microbial
sources being an important area for exploration of some novel
and safe inhibitors for application in various sectors.

Tyrosinase inhibitors from fungi

Fungi produce diverse bioactive compounds, including
antibiotics, enzymes, enzyme inhibitors, growth promoters,
etc., exploited in the agriculture, food, and pharmaceutical
industries. Fungi from different genera have been found to
demonstrate anti-tyrosinase activity. One of the genera,
Aspergillus, was found to produce several compounds having
tyrosinase inhibitory activity (Fig. 1). Kojic acid (5-hydroxy-
2-(hydroxymethyl)-gamma-pyrone), a well-studied tyrosinase
inhibitor, was reported from A. albus (Saruno et al. 1979),
A. candidus (Wei et al. 1991), A. niger (Vasantha et al. 2014),
andPenicillium sp., a good chelator and also a scavenger of free
radicals. Saruno et al. (1979) reported kojic acid with 80%
inhibition by A. albus, whereas Vasantha et al. (2014) reported
A. niger S16 producing kojic acid that showed 84%
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competitive inhibition of mushroom tyrosinase with an IC50

value of 61.9 μM. Based on several studies, kojic acid at a
minimum level of exposure or consumption was found to have
negligible toxicity to humans (Burdock et al. 2001; Nohynek
et al. 2004). Apart from kojic acid, the Aspergillus genus pro-
duces diverse compounds with anti-tyrosinase activity.
Aspergillus niger produces metallothioneins, which are strong
tyrosinase inhibitors having strong avidity to chelate copper at
its active site (Goetghebeur and Kermasha 1996). An inhibitor
of melanin formation, decumbenone A, was isolated from

P. decumbens and A. sulphureus; in addition, the Aspergillus
genus also produced a new potent decaline derivative,
decumbenone C, showing cytotoxic activity against human
melanoma cells with an IC50 value of 0.9 μM (Fujii et al.
2002; Zhurayleva et al. 2012). Terrein was isolated for the first
time from A. terreus, which inhibited melanin synthesis by the
downregulation of MITF via the induction of ERK activity and
inhibition of MITF promoter activity (Raistrick and Smith
1935; Kim et al. 2007, 2008). A melanogenesis inhibitor iso-
lated from Penicillium sp. 20135 was also identified as terrein,
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Fig. 1 Structures of tyrosinase inhibitors from Aspergillus sp. (n.d not defined)
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which inhibited melanin formation in B16 melanoma cells;
however, neither inhibited mushroom tyrosinase nor demon-
strated cytotoxic activity in a cell-based assay (Park et al.
2004; Kim et al. 2005). In addition, Chang et al. (2007) report-
ed seven isoflavones from soygerm koji fermented with
A. oryzae BCRC 32288 having anti-tyrosinase activity. Five
compounds, 6,7,4′-trihyroxyisoflavone (IC50 = 9 μM),
daidzein (IC50 = 203 μM), glycitein (IC50 = 218 μM),
daidzin (IC50 = 267μM), and genistin (IC50 = 343μM), showed
inhibitory activity against the monophenolase activity of tyros-
inase by competitive inhibition. The other two compounds,
7,8,4′-trihyroxyisoflavone and 5,7,8,4′-tetrahydroxyisoflavone,
irreversibly inhibited both monophenolase with IC50 values of
191 μM and 184 μM, respectively, as well as diphenolase ac-
tivity with IC50 values of 181 μM and 212 μM, respectively, of
tyrosinase. Additionally, dietary daidzein, a phytoestrogen com-
ponent of soy, did not show toxicity to the female reproductive
tract in rats (Lamartiniere et al. 2002). Tyrosinase inhibition
activity (56.18%) was also found in rice bran fermented with
A. oryzae (Razak et al. 2015).

Another genus found to produce diverse compounds having
anti-tyrosinase activity is Trichoderma (Fig. 2). Lee et al.
(1995) reported a particular strain of T. harzianum MR304 to
produce a melanin synthesis inhibitor, MR304-1, identified as
an isocyanide compound, which inhibited melanogenesis in-
hibition in S. bikinienesis, B16 melanoma cells [minimum
inhibitory concentration (MIC) = 0.05μg/mL], andmushroom
tyrosinase (IC50 = 0.25 μg/mL). Trichoderma harzianum iso-
lated from soil was also reported to produce several melanin
synthesis inhibitors. Two new tyrosinase inhibitors, MR566A
(IC50 = 1.72 μM) and MR566B (IC50 = 47 μM), along with a
new oxazole compound MR93B (IC50 > 6000 μM), six
known isocyanide compounds, and MR93A (IC50 >
6000 μM), were isolated showing inhibition against mush-
room tyrosinase, melanogenesis inhibition in S. bikinienesis,
and B16 melanoma cells. The isocyanide compounds were
identified as 1-(1,4,5-trihydroxy-3-isocyanocyclopenten-2-
enyl)ethanol , 2-hydroxy-4- isocyano-α-methyl-6-
oxabiocyclo[3.1.0]hex-3-ene-3methanol, 4-hydroxy-8-
isocyano-1-oxaspiro[4.4]cyclonon-8-en-2-one, MR304A,
methyl-3-(1,5-dihydroxy-3-isocyanocyclopent-3-enyl)prop-2-
enoate, and an unidentified compound with IC50 values of 3.6,
4.9, 0.089, 47, 1.72, and 0.0014 μM, respectively (Lee et al.
1997a, b). Lee et al. (1997a, b) proposed that the isocyano
group in the compounds plays a vital role in inhibiting the
activity of mushroom tyrosinase enzyme. Imada et al. (2001)
reported mushroom tyrosinase inhibitor produced by
Trichoderma sp. H1-7 isolated from a marine environment as
having 1000–2500 U/mL inhibitory activity. A competitive
inhibitor of tyrosinase (5.4 × 105 U/mL) similar to the structure
of homothallin II was isolated from T. viridae strain H1-7 from
marine sediments which inhibited the enzyme by binding to
the copper active site. In addition, this strain produced seven

different melanogenesis inhibitors, with not all of them show-
ing inhibition of tyrosinase (Tsuchiya et al. 2008).

Marine fungi live in a unique environment with stressful
conditions of pH, temperature, salinity, oxygen nutrients, and
light, and, therefore, serve as promising candidates for novel
bioactive compounds. On investigation, few known and novel
compounds with tyrosinase inhibition activity have been re-
ported from marine-derived fungi (Fig. 3). Two derivatives of
kojic acid, kojic acid dimethyl ether and kojic acid
monomethyl ether, as well as phomaligol A, were identified
from broth of marine-derived fungi Alternaria sp. isolated
from marine green algae having tyrosinase inhibitory activity
(Li et al. 2003). Similarly, two compounds, 6-n-pentyl-α-
pyrone and myrothenone A, identified from marine-derived
fungi Myrothecium sp. MFA 58 isolated from algae were
stronger than kojic acid (IC50 = 7.7 μM), with IC50 values of
0.8 and 6.6 μM, respectively (Li et al. 2005). Zhang et al.
2007 reported a pyrone derivative, 6-[(E)-hept-1-enyl]-α-
pyrone, exhibiting anti-tyrosinase activity (IC50 = 4.5 μM)
isolated from Botrytis sp. Two sesquiterpene compounds were
isolated from a marine-derived fungi Pestalotiopsis sp. Z233,
isolated from algae, 1β,5α,6α,14-tetraacetoxy-9α-
benzoyloxy-7βH-eudesman-2β,11-diol and 4α,5α-diacetoxy-
9α-benzoyloxy-7βH-eudesman-1β,2β,11-tetraol, having ty-
rosinase inhibitory activity. These compounds were induced
by abiotic stress elicitation by CuCl2 with IC50 values of
14.8 μM and 22.3 μM, respectively (Wu et al. 2013).

Apart from marine fungi, several other fungal groups are
reported for anti-tyrosinase activity (Fig. 4). Azelaic acid (1,7-
heptanedicarboxylic acid) produced by yeast, Pityrosporum
ovale, has a cytotoxic effect on the melanocytes of primary cu-
taneous melanoma. It is a straight chain, saturated dicarboxylic
acid which inhibits tyrosinase by competing for the α-
carboxylate binding site of the L-tyrosine substrate of the en-
zyme (Schallreuter and Wood 1990). Nevertheless, azelaic acid
is a known compound that has been previously reported as non-
toxic (Töpert et al. 1989). In addition, yeasts also produce cyto-
solic proteins, metallothioneins characterized by the selective
binding of a large amount of heavy metal ions and high cysteine
content. Neurospora crassa is also reported to produce a copper
metallothionein, which serves as ametal donor for apotyrosinase
(Lerch 1981). Tanaka et al. (1996) reported an anti-melanoma
compound from Talaromyces sp. FO-3182, which reduced the
melanin content of B16 melanoma cells. Melanocin Awas iso-
lated from the fermentation broth and mycelia extract of
Eupenicillium shearii F80695, showing inhibition against mush-
room tyrosinase (IC50 = 0.009 μM) and B16 melanoma cells
(MIC = 0.9 μM) due to the presence of isocyanide group in the
compound (Kim et al. 2003). Two steroids were isolated from
the fungus Cunninghamella elegans, 17α-ethynyl-11α,17β-
dihyroxyandrost-4-en-3-one (IC50 = 5950 μM) and 17α-ethyl-
11α,17β-dihyroxyandrost-4-en-3-one (IC50 = 1720 μM), hav-
ing tyrosinase inhibition activity (Choudhary et al. 2005).
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Entomopathogenic fungi are a source of several potential bioac-
tive compounds. Three new polyphenolic tyrosinase inhibitors
were isolated from an entomopathogenic fungi Paecilomyces
gunnii, paecilomycones A, B, and C, having IC50 values of
110, 170, and 140 μM, respectively, which compete for the
active binding site of the enzyme and, in addition, the number
of hydroxyl groups present in these compounds also plays a vital
role in its inhibitory activity (Lu et al. 2014).

There have been several studies of secondary metabolites
from Basidiomycetes with different biological activities, with
few studies on tyrosinase inhibition and depigmentation of

skin. We have reviewed compounds serving as tyrosinase or
melanogenesis inhibitors isolated from mycelia or fruiting
bodies of mushrooms (Fig. 4). Two tyrosinase inhibitors
have been isolated, purified, and characterized from the
mushroom Agaricus hortensis with competitive and non-
competitive inhibition, respectively (Madhosingh and
Sundberg 1974). Similarly, two isomeric compounds hav-
ing tyrosinase inhibitory activity were isolated from the
lipophilic fractions Albatrellus confluens and identified as
neogrifolin (IC50 = 25 μM) and grifolin (IC50 = 760 μM),
the activities of which are affected by the position of the
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farnesyl group on the aromatic ring (Misasa et al. 1992).
Neogrifolin was also isolated from mushroom Polyporus
confluens, which showed 100% tyrosinase inhibition at
50 ppm (Minosasa et al. 1991). Melanogenesis inhibitor,
2-amino-3H-phenoxazin-3-one was identified from the
mushroom A. bisporus (Lu et al. 2002). Sharma et al.
(2004) reported the methanolic extract of an edible mushroom
Dictyophora indusiata non-competitively inhibiting mushroom
tyrosinase activity and was identified as 5-hydroxymethyl-2-
furfural (HMF). However, the carcinogenic potential of HMF
in food was found to be contradictory due to limited data from
toxicity studies and, therefore, there is a need for improvement
in the risk assessment for HMF (Abraham et al. 2011;
Capuano and Fogliano 2011). Two tyrosinase inhibitors,
5-hydroxymethyl-2-furaldehyde (IC50 = 720 μM) and
protocatechualdehyde (IC50 = 2.896 μM), were isolated
from the fruiting body of a medicinal mushroom
Phellinus linteus. Protocatechualdehyde competitively
binds to the copper active site with its hydroxyl group

and possibly chelating the copper in tyrosinase, whereas
5-hydroxymethyl-2-furaldehyde is a non-competitive in-
hibitor which may form a Schiff base with primary amino
groups in the enzyme, rather than binding to the active
site (Kang et al. 2004). A chromene type compound,
daedalin A (IC50 = 194 μM), was reported from the
mycelia culture broth of the mushroom Daedalea
dickinsii, which competitively inhibited tyrosinase, for
its substrate L-tyrosine. Further studies on the application
of this compound in an in vitro human skin model sub-
stantiated its activity on suppressing melanogenesis with-
out affecting cell viability by directly inhibiting tyrosinase
activity in melanocytes (Morimura et al. 2007, 2009).

Tyrosinase inhibitors from bacteria

Bacterial metabolites represent a diverse array of chemical
compounds with different biological activities. Several reports
of tyrosinase inhibition by bacteria have been discussed in this
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article (Fig. 5). Among them, Streptomyces sp. serves as a
potential source of several bioactive compounds, including

enzyme inhibitors (Umezawa 1972). There have been several
reports on tyrosinase inhibition from the genus Streptomyces.
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Melanostatin isolated from the fermentation broth of
S. claviver N924-2 inhibited melanin formation in B16 mela-
noma cells (IC50 > 703.34 μM) (Ishihara et al. 1991). Three
compounds, OH-3984 K1, OH-3984 K3, and albocycline K3,
a macrocyclic compound isolated from Streptomyces sp. OH-
3984, inhibited melanogenesis of B16 melanoma cells at con-
centrations of 7.5, 3.8, and 15 μg/mL respectively; however
the mechanism of action is unknown (Takamatsu et al. 1993,
1996). Arai et al. (1997) reported melanogenesis inhibitor
produced by Streptomyces sp. KP-3052, which was identified
as amphistin with IC50 = 6.8 μM against the growth of B16
melanoma cells. Amphistin is a pseudotripeptide with activity
similar to melanostatin and feldamycin, which inhibits tyros-
inase through post-translational modification of the enzyme or
other modulatory proteins. Imada et al. (2001) screened and
reported two bacterial isolates, one being actinobacteria pro-
ducing tyrosinase inhibitor, having 19 and 6 U/mL inhibitory
activity, respectively. Chang and Tseng (2006) isolated and
screened actinobacteria from forest soil for anti-tyrosinase ac-
tivity; one bacterial strain, Streptomyces sp. TI-B10, showed
the highest tyrosinase activity (46 U/mL), which was further
improved to 73 U/mL when cultured in YMG medium at
pH 8.0 and 30 °C. Chang et al . (2008) reported
S. hiroshimensis TI-C3 isolated from soil, showing anti-
tyrosinase activity (498 U/mL) with enhanced activity (905
U/mL) using glucose and malt extract as the sole carbon and
nitrogen sources, respectively. Streptomyces roseolilacinus
NBRC 12815 produced two compounds, 12815 A (IC50 =
9 μM) and B (IC50 = 1086 μM), showing anti-tyrosinase ac-
tivity against mushroom and mammalian tyrosinases.
However, 12815 A was further identified as streptochlorin,
which was found to be a competitive inhibitor of tyrosinase
with anti-nematode activity and cytotoxicity (Nakashima et al.
2009). This study also suggested that compound 12815 A
produced by S. roseolilacinus and its companions could be a
common feature in related species.

Several studies on melanogenesis inhibitors have been re-
ported from Gram-negative bacteria. Takahashi et al. (2007)
reported an Enterobacter sp. B20 isolated from soil produced
a novel potent melanogenesis inhibitor, byelyankacin, which
inhibited tyrosinase (IC50 = 0.0021 μM) by binding its
isocyanide group to the copper active site of the enzyme,
and also inhibited melanogenesis of B16-2D2 melanoma cells
(IC50 = 0.03 μM). Burkholderia cepacia TKU025, a Gram-
negative bacteria isolated from soil, also produced tyrosinase
inhibitor (2890 U/mL) in nutrient broth, which was maxi-
mized after cultivation in 1% squid pen as a sole C/N source
to 5000 U/mL. The inhibitor was stable at varying pH condi-
tions (pH 2–12) and thermostable at 100 °C for 60 min. The

partially purified methanol extract of the metabolite exhibited
an IC50 value of 2 μg/mL (Hsu et al. 2014; Liang et al. 2015).
In addition, tyrosinase inhibitors are reported from a marine
Gram-negative bacterium, Thalassotalea sp. PP2-459 isolated
from amarine bivalve and identified as thalassotalic acid A, B,
and C, with IC50 values of 130, 470, and 280 μM, respective-
ly. Thalassotalic acids are N-acyl dehydrotyrosine derivatives
produced by this bacterium, thalassotalic acid A being compa-
rable to the inhibitory activity of arbutin and could be used as a
whitening agent or in preventing browning of foods. They
suggest that the presence of a carboxylic acid and a straight
aliphatic chain increased enzyme inhibition within this struc-
tural class of inhibitors (Deering et al. 2016).

Probiotics such as Lactobacillus sp. and Bifidobacterium
sp. have been used in several fermented food products. In
addition, the fermented by-products of such probiotic bacteria
have been recently explored for bioactive compounds with
applications in cosmetics. Several investigators have reported
fermented substrates that inhibit tyrosinase activity and mela-
nogenesis. Lactobacilli and bifidobacteria are the two major
bacteria involved in fermentation, resulting in producing me-
tabolites suppressing melanogenesis. Lactobacillus helveticus
produced a novel tyrosinase inhibitor, identified as a cyclic
tetra peptide, cyclo(-L-Pro-L-Tyr-L-Pro-L-Val-), by
Kawagishi et al. (1993). Lactobacillus plantarumM23 isolat-
ed from raw milk showed better tyrosinase inhibitory activity
as compared to commercial lactic acid bacteria, showing
52.1% tyrosinase inhibition and 32% inhibition of melanoma
B16 cells. Tyrosinase inhibition activity was enhanced to
84.05% in fermented milk by the addition of yeast extract
and grape, incubated at 37.1 °C for 14.8 h (Heo et al. 2007;
Lim and Kim 2012). In addition, Kuwaki et al. (2012) report-
ed a plant-based paste fermented by a lactic acid bacteria and
yeast, and extracted with PBS, which demonstrated anti-
tyrosinase activity with an IC50 value 58.5 mg/mL.
Bifidobacterium adolescentis culture filtrate was found to de-
crease melanogenesis of melanoma cell by inhibiting tyrosi-
nase activity mediated by its antioxidant property (Huang and
Chang 2012). Tsai et al. (2013) reported L. rhamnosus spent
culture supernatant showing 71.3% tyrosinase inhibitory ac-
tivity, where the supernatant showed no difference in ac-
tivity on heating at 100 °C for 30 min. Chen et al. (2013)
reported extracts from L. plantarum TWK10 fermented soy
milk to inhibit tyrosinase activity (38.33%) and melanin pro-
duction in B16F0 melanocytes (27.56%) compared to non-
fermented soy milk, structurally elucidated as an aglycone iso-
flavone similar to daidzein, equol, or genistein. These
isoflavones have been known to be non-toxic to the reproduc-
tive tract of female rats (Fritz et al. 1998; Lamartiniere et al.
2002). Chen et al. (2013) further report the inhibition of mela-
nogenesis by suppressing tyrosinase activity and expression
through a positive regulator, microphthalmia-associated tran-
scription factor (MITF) and p38MAPK inactivation. Daidzein

�Fig. 5 Structures of tyrosinase inhibitors from bacterial source (n.d not
defined)
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and equol reduced the melanin content by suppressing gene
encoding melanocortin receptor-1, interfering with phosphor-
ylation of p38 MAPK, phosphorylation of extracellular signal
regulated kinase and glycogen synthase kinase, and decreasing
the expression of tyrosinase, TRP-1, and TRP-2 (Chang
and Tsai 2016). Kim et al. (2015) further report a cell wall
component of L. plantarum, lipoteichoic acid, to inhibit
melanogenesis in B16F10 mouse melanoma cells by re-
ducing the activity and expression of tyrosinase and, also,
likely by degrading MITF via the regulation of signaling
and RNA stability of proteins involved in melanogenesis.
Interestingly, the metabolite had no effect on mushroom
tyrosinase. Lactobacillus plantarum TWK10, an organism
responsible for fermenting soy milk, contained a metabolite
exhibiting anti-melanogenesis in B16F0 mouse melanoma
cells, where the melanogenic inhibitor was identified as
uracil. Its activity was found to be due to the downregu-
lation of a transcription gene encoding melanocortin 1
receptor, decreasing phosphorylation of cAMP response
element-binding protein, and repressing the expression of
MITF (Chang et al. 2015). Exopolysaccharides (EPS) isolated
from L. sakei Probio 65 have also been reported, with tyrosi-
nase inhibiting activity in the range 13.17–62.85% (Bajpai
et al. 2016). Wang et al. (2016) reported tyrosinase inhibition
activity in walnuts, Moutan Cortex Radicis, and asparagus root
extract fermented by B. bifidum with IC50 values of 420, 380,
and 260 μg/mL, respectively. The study also reports the
fermented extract to have low cytotoxic activity as com-
pared to unfermented extracts.

Conclusions

Tyrosinase plays a vital role in the enzymatic browning of
food and depigmentation disorders in humans. Thus, targeting
tyrosinase inhibitors could be the best solution in preventing
such problems. Natural product research still has an enormous
unexplored potential with microorganisms representing prom-
ising sources producing anti-tyrosinase metabolites in high
yields with feasible extraction methods at a reasonable cost.
Thousands of bacterial metabolites have been reported with
wide application in varied sectors. However, the chemical
diversity in the metabolites produced by microorganisms re-
mains an unparalleled resource for the discovery of new com-
pounds for application in the agriculture, cosmetics, and phar-
maceutical industries. This review, therefore, compiles an up-
dated database of tyrosinase or melanogenesis inhibitors re-
ported from microbial sources. Tyrosinase inhibitors isolated
from natural sources comprise a small group, with the majority
of the compounds identified from plant sources and marginally
frommicrobial sources. Although tyrosinase inhibitors isolated
from plant sources are diverse, belonging to the family of
polyphenol, benzaldehyde derivatives, anthraquinones, lipids,

and steroids, inhibitors isolated from fungi are structurally
comparable to those from plant sources. Tyrosinase inhibitors
from fungi are derivatives of isoflavones and pyrones, along
with terpenes, steroids, and alkaloids, which may reversibly or
irreversibly inactivate the enzyme. In contrast, tyrosinase
inhibitors from bacteria comprise a smaller group, belonging to
alkaloids, macrolides, and polyphenols, which competitively
inhibit the enzyme. However, profound work on the mecha-
nism of these compounds needs to be established. To conclude,
the information provided could serve as leads in the search for
new inhibitors from microorganisms with increased efficiency
and safety in the food and cosmetics industries.
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