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Abstract
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochem-
ically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identi-
fication of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened
based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose
(CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced,
annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial
isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher
endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation
on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic
activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin.
Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed
a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl
hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-
derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the
degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharifica-
tion processes.
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Introduction

The depletion of fossil fuels and environmental concerns has
driven global politics towards the development of renewable
energy resources. Lignocellulosic biomass represents the larg-
est reservoir for renewable energy and value-added chemical
production (Gomez et al. 2008; Himmel et al. 2010; Van Dyk
and Pletschke 2012). The term lignocellulosic biomass refers
to nonfood materials available from plants, including rice
straw, cotton straw, corn stover, sugarcane bagasse, wood,
grass, and others (Gomez et al. 2008; Sanderson 2011; Van
Dyk and Pletschke 2012).

The transformation of the lignocellulosic biomass into fer-
mentable sugars and biofuel production is a challenging pro-
cess. Generally, lignocellulosic biomasses are composed of
variable contents of cellulose, hemicellulose, and lignin.
These polymers are highly organized and interlinked among
themselves into recalcitrant structure (Gomez et al. 2008;
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Himmel et al. 2010). However, in nature ecosystems, ligno-
cellulosic biomass is constantly converted by microorgan-
isms, which efficiently degrade lignocellulosic material
(Himmel et al. 2010; McGuire and Treseder 2010; Koeck
et al. 2014). The biomass-degrading microorganisms are
found in various environments, including hot spring pool
(Hamilton-Brehm et al. 2010; Brumm et al. 2015), cow rumen
(Hess et al. 2011), biogas reactor (Hanreich et al. 2013;
Tomazetto et al. 2015), and soil (Zhou et al. 2014; Jiménez
et al. 2016; López-Mondéjar et al. 2016). These environments
represent resource for isolation of novel microorganisms and
enzymes involved on plant biomass conversion. For instance,
Streptomyces have been reported to play an important role in
the carbon cycle and plant biomass deconstruction in soils
(Chater et al. 2010; Bontemps et al. 2013; Větrovský et al.
2014; Book et al. 2016). Indeed, Streptomyces species ge-
nomes have revealed several carbohydrate-active enzymes
(CAZymes), including cellulases, hemicellulases, and lytic
polysaccharide monooxygenases (Book et al. 2014, 2016;
Pinheiro et al. 2016). Moreover, a recent study described three
Streptomyces strains (pl6, pl88, and pr55) isolated from soil
capable to metabolize polysaccharides and poplar lignin
(Větrovský et al. 2014).

Although several Streptomyces strains have been described
as plant biomass decomposer, the molecular and biochemical
understanding on how these microorganisms degrade ligno-
cellulosic biomass remain rather fragmented and restricted to a
few strains, e.g., I1.2 (Pinheiro et al. 2016), SirexAA-E,
SDPB6 (Book et al. 2014), ATexAB-D23, and LaPpAH-95
(Book et al. 2016).

In this sense, soil samples from distinct locations were used
as inoculum on Streptomyces selective-agar plates for isola-
tion of their species. Isolates obtained were screened based on
their cellulolytic and hemicellulolytic capacities by enzymatic
plate assays using carboxymethylcellulose (CMC) and
beechwood xylan as sole carbon source. Among the 80 bac-
terial isolates, two Streptomyces strains demonstrated ability
to secrete a wide range of enzymes against plant-based poly-
saccharides. To further investigate the mechanisms of ligno-
cellulosic biomass degradation, the genomes of both strains
were sequenced and analyzed regarding their CAZymes pro-
files. Their genomes encode several CAZymes confirming the
cellulolytic and hemicellulolytic phenotypes. In addition, ge-
nomic analysis indicated that both strains presented gene clus-
ter related to lignin degradation.

Material and methods

Streptomyces strains isolation

Eighty bacterial isolates were isolated from soil samples col-
lected from different places at Brazil (São Paulo, Brazil:

22°49′8.861″ S, 47°3′39.085″ W; Minas Gerais, Brazil:
19°57′08.1″ S, 44°12′55.7″ W; Minas Gerais, Brazil: 20°36′
29.624″ S, 46°2′30.739″ W, Table S1). Briefly, soil samples
corresponding to the upper 10 cm were collected and
transported to the laboratory into sterile bags. These samples
were mixed with calcium carbonate (1:1), groundwith a pestle
and air-dried (El-Nakeeb and Lechevalier 1963). For each
sample collected, 4 g of air-dried soil was mixed with
40-mL sterilized water and stirred vigorously. Several dilu-
tions (10−1 to 10−4) were spread on isolation medium ISP 4
agar plates (Shirling and Gottlieb 1966) and incubated at
30 °C for 3 days. Single colonies were transferred to medium
ISP 2 agar plates (Shirling and Gottlieb 1966) and grown at
30 °C for 6–8 days. The procedure was repeated until pure
cultures were obtained. The isolated strains were stored at −
80 °C as mixtures of mycelial fragments in 20% (v/v) glycerol
or in medium ISP 2.

Qualitative and quantitative screening

To screen cellulolytic and hemicellulolytic microorganisms
among the isolate ones, they were cultivated on Bushnell
Haas Broth (BHB, Sigma Aldrich®) mineral salts medium
agar plates (g/L: K2HPO4 1, KH2PO4 1, CaCl2·2H2O 0.02,
NH4NO3 1, FeCl3 0.05, MgSO4·7H2O 0.2, and agar 15,
pH 7.0) supplemented with 0.5% (w/v) of beechwood xy-
lan or carboxymethylcellulose (CMC). After incubation at
30 °C for 48–72 h, agar plates were stained with Congo red
and destained with 1-M NaCl (Teather and Wood 1982).
Colonies showing clear halos were selected as indicative
for the CMC (endoglucanase activity) and xylan
(endoxylanase) degradation. Of the 80 strains screened,
48 showed a visual enzymatic activity (Table S1). The 14
strains exhibiting the highest enzymatic activities index
(E.A.I) were selected for further analysis described as
follows.

These strains were selected and initially grown on me-
dium ISP 2 agar plates at 30 °C for 7 days. Each culture
was inoculated 106 spores mL−1 (1%, v/v) into 25 mL of
BHB medium and supplemented with beechwood xylan or
CMC (0.5%, w/v) and incubated at 30 °C for 6 days in a
shaker (New Brunswick Scientific, New Jersey, USA) at
180 rpm. Supernatants were taken daily to monitor the
corresponding enzymatic activity (Table S2) using the
DNS method as descr ibed in the sect ion below
(BEnzymatic assays^ section). All experiments were done
in biological triplicates.

Cultivation and enzymatic production

Based on endoglucanase and endoxylanase activity results,
the two strains exhibiting the highest enzymatic activities,
namely F1 and F7, were cultivated on steam-pretreated
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sugarcane bagasse (SCB) as a sole carbon source for en-
zyme production. SCB was pretreated by steam explosion
at 200 °C for 15 min, as described by Rocha et al. (2012).
The strains were grown on medium ISP 2 agar plates at
30 °C for 7 days, and then 106 spores mL−1 (1%, v/v) was
inoculated into 80 mL of BHB medium supplemented with
1.0% (w/v) steam-pretreated SCB. The flasks were incubat-
ed at 30 °C for 10 days in a rotary shaker at 180 rpm.
Samples of the culture supernatants were taken daily to
evaluate their enzymatic activity against plant-based poly-
saccharides as described below.

Enzymatic assays

The enzymatic activity (International Units, U) was per-
formed using distinct substrates. All the polysaccharides
were purchased from Sigma-Aldrich or Megazyme
[beechwood xylan, rye arabinoxylan, β-glucan (barley),
sugar beet arabinan, debranched arabinan, carboxymethyl-
cellulose, tamarind xyloglucan, starch, icelandic moss
lichenan, chitin from shrimp shells, arabinogalactan, man-
nan (ivory nut), and citrus pectin]. The enzymatic reactions
were carried out in a miniaturized fashion by mixing 20 μL
of culture media supernatant, 50 μL of the distinct sub-
strates (0.5%, w/v), and 30 μL of sodium phosphate buffer
(0.1 M) at pH 6. Reactions were incubated at 50 °C in a
Thermostat® (Eppendorf, Hamburg, Germany) for 30 min or
18 h and stopped with the addition of 100 μL of 3,5
dinitrosalicylic acid (DNS) following immediately by boiling
for 5 min at 99 °C (Miller 1959). The solutions were analyzed
at 540 nm using the Infinite M200®spectrophotometer
(Tecan, Switzerland) to measure the release of reducing
sugars. One unit (1 U) of enzymatic activity corresponded to
the formation of 1 μmol of reducing sugar equivalent per
minute under the assay conditions. Total protein was mea-
sured using microtiter plates with Bio-Rad protein assay re-
agent (Bio-Rad Laboratories, USA), employing a procedure
based on Bradford’s method (Bradford 1976). Bovine serum
albumin was used as standard. All experiments were done in
biological triplicates.

Identification of Streptomyces strains

The strains F1 and F7 were grown in ISP 2 broth at 30 °C in
flasks agitated at 180 rpm for 3 days, and their cells harvested
by centrifugation at 10,000 rpm for 10 min. The cell pellets
were washed twice with sterile water. Genomic DNA was
isolated using FastDNA SPIN Kit for soil (MP Biomedicals,
Irvine, CA) according to the manufacturer’s instructions. The
quality of the total DNAwas assessed by electrophoresis in a
0.8% agarose gel stained with ethidium bromide and visual-
ized using UV transilluminator. The DNA concentration was
measured by fluorimetry (Qubit® 2.0 Fluorometer-Life

Technologies. Carlsbad, California, EUA) using the BR
Qubit® dsDNA Assay (Life Technologies, Carlsbad,
California, EUA).

To determine the relatedness of strains with their closest
described relative Streptomyces, 16S rRNA gene sequences
were amplified using polymerase chain reaction (PCR) with
primers 27f (5′ AGAGTTTGATCMTGGCTCAG 3′) and
1492r (5′ TACCTTGTTACGACTT 3′). All PCR reactions
were performed in 50 μL containing 50 ng of individual ge-
nomic DNA, 1-mM dNTP, 10 pmoL each primer, 2-mM
MgCl2, and 1 U of Taq DNA polymerase (Thermo Fischer
Scientific, Waltham, USA). The PCR conditions consisted as
follows: an initial denaturation at 94 °C for 3 min, followed by
30 cycles of 94 °C for 60 s, 55 °C for 60 s, and 72 °C for
2 min, and a final extension at 72 °C for 4 min. PCR products
were purified using Illustra GFX PCR DNA and Gel Band
Purification kit (GE Healthcare Bio-Sciences, Pittsburgh,
USA) and sequenced using a DNA ABI PRISM 377
Genetic Analyzer system (Applied Biosystems, USA).
BLASTn search analysis revealed that strains F1 and F7
shared more than 97% 16S rRNA gene sequences identity
with members of the genus Streptomyces.

Genome sequencing, assembly, and annotation

Genomic DNA of both strains was used for the construction of
libraries using Nextera® DNA Library Preparation Kit
(Illumina, San Diego, CA), according to the manufacturer’s
protocol. The genomic libraries were sequenced on Illumina
HiSeq sequencing platform at NGS sequencing facility at
CTBE, generating approximately 8 and 6 million 2 × 100-bp
reads, respectively.

Raw fastq files were quality checked using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and processed with Trimmomatic version 0.32
(Bolger et al. 2014) to quality trimming, adaptor removal,
and minimum length filtering. High-quality reads were fur-
ther analyzed using ProDeGe (Tennessen et al. 2015) to
remove possible contaminants and then assembled using
Spades version 3.6.2 (Bankevich et al. 2012), applying
several kmers (k = 21, 27, 33, 55, 77) and careful mode
option as parameters.

The draft genome sequences of strains F1 and F7 were
uploaded into the IMG/ER annotation pipeline (Markowitz
et al. 2009) for automatic prediction of genes using Prodigal
(Hyatt et al. 2010). Functional annotation of predicted proteins
was obtained using Prokka automatic pipeline (Seemann
2014). Briefly, it uses hierarchical searches against different
databases such as bacterial proteins from RefSeq genomes,
UniProt, Pfam, and TIGRFAM models. The Aragorn tool
(Laslett and Canback 2004) was used to predict tRNA genes
whereas rRNA genes were identified using RNAmmer 1.2.
Signal peptides, and transmembrane helices were predicted
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by SignalP and TMHMM, respectively. To determine the
carbohydrate-active enzymes (CAZYmes) profiles for strains
F1 and F7, putative protein sequences were annotated using
dbCAN database version 4 (Yin et al. 2012) using
HMMER3.1b package. Results obtained were manually
assessed based on their functional annotation prediction and
conserved protein domains to identify the corresponding best
matching CAZymes.

Phylogenetic analysis

The taxonomic assignment of strains F1 and F7 within
Bacteria domain was determined based on 16S rRNA se-
quence analysis and multilocus phylogenetic analysis.
Phylogenetic tree was reconstructed based on 16S rRNA
gene sequences of strains isolated and closest related spe-
cies with validly published name. All sequences were
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Fig. 1 Enzymatic activities
detected in the supernatants from
strains F1 and F7 grown on
steam-pretreated sugarcane
bagasse (SCB) as the carbon
source. a Bar graph showing the
maximum enzymatic activity of
each substrate tested. b Variation
of the endoglucanase and
endoxylanase activities in the
supernatants from strains F1 and
F7 cultivated for 10 days on SCB.
The data represent the means ±
standard errors from three
technical replicates; lowercase
letters indicate values statistically
different between strains (Tukey’s
multiple comparisons test:
p < 0.01). Abbreviations: CMC,
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aligned using the ClustalX tool (Larkin et al. 2007) and
manually refined. From those aligned, pairwise distances
were calculated using the maximum composite likelihood
approach, and phylogenetic tree was constructed applying
the neighbor-joining method, as implemented in MEGA
version 6 (Tamura et al. 2013). Bootstrap tests with 1000
replications/iterations were calculated to assess the node
confidence level.

Multilocus phylogenetic analysis was done as previous
described Book et al. (2014). Briefly, TIGRFAM models
were used to search for single-copy genes conserved
among 172 Streptomyces genome sequences available at
RefSeq database, and the genome of Kitasatospora setae
was considered as an out group. The sequences recovered
from each genome were aligned using Mafft v7.299 (Katoh
and Standley 2013) and the resulting alignment was
concatenated using FASconCAT-G v1.02 (Kück and
Longo 2014). The phylogenetic tree was generated using
FastTree version 2.1.8 (Price et al. 2010) under WAG as a
substitution model and the final tree was visualized using
iTOL version 3 (Letunic and Bork 2007).

In addition, the relatedness among strains F1 and F7 and
their closest relative Streptomyces strains was determined
based on average nucleotide identity (gANI) and the fraction
of orthologous genes (Aligment Fraction, AF) calculated with
the MiSI (Microbial Species Identifier) method (Varghese
et al. 2015).

Statistical analysis

Statistical analysis of enzymatic activities was performed
using parametric analysis of variance (ANOVA) with
Tukey’s multiple comparisons test (α = 0.05). Calculation
was made by Minitab v18 (Minitab Inc., PA, USA).

Nucleotide sequence accession number

The draft genome sequences of strains F1 and F7 are available
at the NCBI with the accession numbers FKJI03000000 and
FKJH01000000, respectively.
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Results and discussion

Strain screening and enzymatic activity evaluation

Of the 80 bacterial isolates from soil samples grown on
CMC—or beechwood xylan-agar plates, 48 exhibited degra-
dation halos around them indicating endoglucanase and
endoxylanase activities (Supplementary file 1: Table S1).
Among them, 14 strains exhibiting the largest degradation
halos were selected for further analysis using submerged
fermentation.

Overall, the supernatant of the 14 Streptomyces isolates
obtained from submerged fermentations containing CMC
or beechwood xylan showed endoglucanase and
endoxylanase activities (Supplementary file 1: Table S2).
Endoglucanase ac t iv i ty var ies be tween 0.18 to
0.40 U mL−1 and endoxylanase 1.97 to 10.78 U mL−1

using xylan as sole carbon source, and endoglucanase ac-
tivity between 0.10 to 0.17 U mL−1 and endoxylanase 0.12
to 0.28 U mL−1 using CMC as carbon source. Considering
the enzymatic activities (Table S2), two strains (F1 and F7)
exhibited the highest endoglucanase and endoxylanase ac-
tivities and they were selected for enzymatic production
and genomic analysis.

Enzymatic assays of the strains F1 and F7 supernatants
obtained from cultivation on SCB revealed that these mi-
croorganisms were capable to secrete a set of enzymes
involved in the hydrolysis of distinct polysaccharides,
including arabinan, rye arabinoxylan, β-glucan, starch,
CMC, xylan, and chitin (Fig. 1a). The strain F7 was also
able to secrete enzymes for pectin, mannan, and lichenan
degradation. Overall, the supernatant of strain F7 exhib-
ited higher enzymatic activities for degradation of plant-
based polysaccharides than strain F1 during 10 days of
the submerged fermentation on SCB (Figs. 1b and 2). No
enzymatic activity was detected for degradation of
arabinan sugar beet, xyloglucan, and arabinogalactan in
both strains, even though the majority of genes encoding
enzymes involved in these polysaccharides were predict-
ed (see BCAZYme profiles^ section), which could be be-
cause SCB was not capable to induce the expression of
these enzymes.

Table 1 Genome statistics for strains F1 and F7

Strain

Attribute F1 F7

Genome size (bp) 8,142,296 7,327,391

DNA coding (bp) 7,100,494 6,492,599

DNA G + C (bp) 5,915,378 5,326,280

GC content (%) 72.65 72.69

DNA contigs 69 66

Total genes 7355 6548

Protein-coding genes 7262 6463

RNA genes 93 86

Genes with function prediction 4093 3478

Genes with Pfam domains 5526 5172

Genes with signal peptides 447 439

Genes with transmembrane helices 1641 1577

CRISPR repeats 2 2
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Streptomyces sp. F1 (MG916811)
Streptomyces misionensis JCM 4497T (EF178678)

Streptomyces phaeoluteichromatogenes NRRL B-5799T (AJ391814)
Streptomyces glaucescens NBRC 12774T (AB18484)

Streptomyces violaceorubidus LMG 20319T (AJ781374)
Streptomyces tendae ATCC 19812T (D63873)

Streptomyces collinus NBRC 12759T (AB184123)
Streptomyces ambofaciens NBRC 12836T (AB18418)

Streptomyces griseoflavus LMG 19344T (AJ781322)
Streptomyces griseorubens NBRC 12780T (AB184139)

Streptomyces griseoincarnatus LMG 19316T (AJ781321)
Streptomyces variabilis NRRL B-3984T (DQ4442551)

Streptomyces viridodiastaticus NBRC 13106T (AY999852)
Streptomyces sp. F7 (MG916900)

Streptomyces atrovirens NRRL B-16357T (DQ026672)
Streptomyces longispororuber NBRC 13488T (AB184440)

Streptomyces iakyrus NBRC 13401T (AB184877)
Streptomyces lusitanus NBRC 13464T (AB184424)

Streptomyces bellus NBRC 12844T (AB184849)
Streptomyces coerulescens ISP 5146 (AY999720)

Streptacidiphilus albus (BBPL01000138)

Fig. 3 Phylogenetic analysis of
16S rRNA gene sequences of
strains F1 and F7 (printed in bold)
relative to the most closely related
strains of the genus Streptomyces.
The phylogenetic tree was
constructed using neighbor-
joining (NJ) algorithm. Bootstrap
values higher than 60% are shown
(1000 replications for
bootstrapping were done).
Genbank accession numbers are
shown in parentheses and type
strain with superscript BT .̂ The
sequence of Streptacidiphilus
albus was used as an out group
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Our findings corroborated with previous studies and
the cellulolytic and hemicellulolytic potential of
Streptomyces spp. (Chater et al. 2010; Bontemps et al.
2013; Book et al. 2014; Pinheiro et al. 2016). In a recent-
ly study using comparative genomic, transcriptomic, and

biochemical analysis (Book et al. 2016), 29 Streptomyces
strains have shown a relatively high rate of cellulose
degrading activity. Pinheiro et al. (2016) reported that
Streptomyces spp. were able to secrete a set of enzymes
involved in degradation of distinct natural carbohydrates,
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Fig. 4 Multilocus phylogenetic analysis of Streptomyces genus. The
multilocus phylogenetic tree was generated from a concatenated
alignment of 288 conserved genes across all genomes of Streptomyces.

Bootstrap values (expressed as percentages of 1000 replicates) higher
than 0.8 are shown at branch nodes
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including cellulose, xylan, mannan, starch, chitin, pectin,
and β-glucan.

General features and phylogenetic analysis

Based on cellulolytic and hemicellulolytic profiles of strains
F1 and F7, we decided to genetically characterize both strains
to uncover their metabolic pathways dedicated to biomass
degradation. The genomes of both strains were sequenced
on the Illumina HiSeq system using the 2 × 100-pb sequenc-
ing strategy. The genomes of strains F1 and F7 resulted in
69 and 66 contigs, respectively, ranging from 10,212 to
760,841 bases (Table 1). Strain F1 consists of an 8.1
megabase pair (Mb) chromosome coding 7262 protein-
coding sequences (CDS). The strain F7 genome is
7.33 Mb in size and contains 6463 CDSs. The genomes
display a similar GC content of 72%.

The 16S rRNA gene sequence analyses placed strains F1
and F7 within the genera Streptomyces (Fig. 3). Pairwise anal-
ysis revealed that strain F1 was closely related to Streptomyces
misionensis NRRL B-3230T sharing 99% 16S rRNA gene
sequence identity. Whereas, strain F7 showed 100% 16S
rRNA gene sequence identi ty with Streptomyces
viridodiastaticus IFO 13106T. It is important to underline that
the percentage of identity obtained from 16S rRNA gene se-
quences alignment was calculated disregarding a gap (26 and
31 nucleotides) that are present only in strains F1 and F7.

Previous studies reported that 16S rRNA gene sequence
analysis is not suitable to distinguish closely related
Streptomyces species since several Streptomyces type strains
share completely identical 16S rRNA gene sequences (Guo
et al. 2008; Antony-Babu et al. 2017). Therefore, to refine
the phylogenetic relationship of the strains isolated within
Streptomyces genus, a multilocus phylogenetic tree was
constructed based on 288 single-copy conserved genes
found across strains F1, F7, and 172 Streptomyces ge-
nomes available at RefSeq database (Fig. 4). Indeed,
multilocus analysis indicated a phylogenetic relationship
different from the analysis based on 16S rRNA gene se-
quences. While, strain F1 forms a monophyletic clade with
Streptomyces griseofuscus NRRL B 5429T, which is a type
species of this genus, strain F7 is closely related to species
with currently not validly published names.

In addition, gANI and AF among strains F1 and F7 and
their closest related species were calculated to support the
clades. Strains F1 and F7 shared a maximum pairwise simi-
larity of 90.28% and 94.30% ANI and AF of 0.73 and 0.82
across Streptomyces strains within their respectively clades
(Supplementary file 1: Table S3). Considering the threshold
at minimum of 95 or 96.5% of ANI, which corresponds to
70% DNA-DNA hybridization, and AF above 0.6 between
two whole genome as strong evidence for same species
(Goris et al. 2007; Varghese et al. 2015), values of ANI and

AF for strains F1 and F7 alongside the multilocus tree con-
firmed that both strains represent novel species with genus
Streptomyces.

CAZYme profiles

The CAZymes (Cantarel et al. 2009) present in Streptomyces
strains F1 and F7 were identified using dbCAN web resource
(Yin et al. 2012). Both strains have similar profile of CAZymes
genes in their genomes (Table 2). Strain F1 genome encodes 85
glycoside hydrolyses (GH), 31 glycosyltransferases (GT), 18
carbohydrate esterases (CE), one polysaccharide lyases (PL),
31 carbohydrate-binding motifs (CBM), and nine classified as
auxiliary activities (AA), which are CAZymes with redox ac-
tivities (Tables 3 and S4). Whereas, strain F7 genome pos-
sesses 100 GHs, 22 GTs, 26 CEs, five PLs, 26 CBMs, and
nine AAs. A detailed CAZymes gene prediction indicated that
strains F1 and F7 genomes encode 33 and 44 different types of
GH families, respectively, which are potentially involved in
degradation of starch, chitin, hemicellulose, and cellulose
(Table 3 and Supplementary file 2: Table S1). However, only
strain F7 genome encodes pectin-, arabinogalactan-, lichenan-,
and mannan-degradation from families PL1, PL3, GH35,
GH64, GH5, and GH2, respectively.

As expected, Streptomyces strains F1 and F7 do not encode
cellulosomes, which are the enzymatic complex composed of
cohesins and dockerins modules and several lignocellulolytic
enzymes with CBMs domains (Smith and Bayer 2013).
However, both strains possess GHs connected to CBMs,
which is not surprising since lignocellulolytic enzymes

Table 2 Comparison of CAZyme genomic profile between strains F1
and F7

F1 F7

Genome size (Mb) 8.14 7.32

Protein-coding genes 7262 6463

No. of CAZymes proteins 175 193

% CAZymes proteins a 2.36 2.92

Total GH b 85 100

Total PL c 1 5

Total GT d 31 22

Total CE e 18 26

Total AA f 9 9

Total CBM g 31 31

a Carbohydrate-active enzymes
bGlycosyl hydrolases
c Polysaccharide lyases
d Glycosyltransferase
e Carbohydrate esterase
f Auxiliary activity
g Carbohydrate-binding modules
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connected to CBMs are broadly found in Bacteria domain
(Tomazetto et al. 2015; López-Mondéjar et al. 2016;
Pinheiro et al. 2016). The F7 genome encodes different
CAZymes associated with CBMs domains, including
endoglucanases, chitinase, xylanases, and α-amylase
(Supplementary file 2: Table S1). Whereas, strain F1 genome
was found to encode CBMs associated with only chitinase and
endoglucanase. CBMs domains bind to plant cell wall poly-
saccharides and facilitating GHs activity (Campos et al. 2016).
In addition, both strains contain genes encoding lytic

polysaccharide monooxygenases (LPMOs) belonging to fam-
ily AA10 (Supplementary file 2: Table S1). Chitinolytic and
cellulolytic AA10 genes are frequently found in Streptomyces
genomes (Book et al. 2014). Nevertheless, strains F1 and F7
genomes have only AA10 genes related to chitin degradation.

Aromatic compound degradation pathways

Several bacteria have been reported to metabolize lignin, re-
leasing aromatics compounds that are imported into the cell

Table 3 Summarizes of CAZyme profile encoded by strains F1 and F7

Substrate Main known activity CAZYme family EC number1 Number of genes predicted

F1 F7

Pectin Pectinesterase 3.1.1.11 0 1

Pectate lyase PL1 4.2.2.2 0 2

Pectate lyase PL3 4.2.2.2 0 1

Alpha-L-rhamnosidase AA10 3.2.1.40 0 1

Starch Alpha-amylase GH13 3.2.1.1 5 4

Alpha-glucosidase GH13 3.2.1.20 3 4

Alpha-glucosidase GH31 3.2.1.20 1 1

4-Alpha-glucanotransferase GH77 2.4.1.25 0 1

Starch phosphorylase GT35 2.4.1.1 1 1

Chitin Chitinase GH18 3.2.1.14 3 4

Chitinase GH19 3.2.1.14 0 1

Beta-N-acetylhexosaminidase GH3 3.2.1.52 2 2

Hexosaminidase GH20 3.2.1.52 3 3

N-acetylglucosamine 6-phosphate deacetylase CE9 3.5.1.25 0 1

Arabinogalactan Endo-beta-1,4-galactanase GH35 3.2.1.89 0 1

Lichenan Endo-1,3-beta-glucanase GH64 3.2.1.39 1 2

Xyloglucan (hemicellulose) Alpha-D-xyloside GH31 3.2.1.177 1 1

Arabinan (hemicellulose) Alpha-L-arabinofuranosidase GH62 3.2.1.55 1 0

Alpha-L-arabinofuranosidase GH51 3.2.1.55 1 1

Xylan (hemicellulose) Endo-1,4-beta-xylanase GH10 3.2.1.8 4 5

Endo-1,4-beta-xylanase GH11 3.2.1.8 1 2

Xylan 1,4-beta-xylosidase GH39 3.2.1.37 0 1

Beta-xylosidase GH43 3.2.1.37 1 2

Alpha-N-arabinofuranosidase GH51 3.2.1.55 1 1

Alpha-L-arabinofuranosidase GH54 3.2.1.55 4 0

Alpha-glucuronidase GH67 3.2.1.139 0 1

Mannan (hemicellulose) Endo-1,4-beta-mannosidase GH5 3.2.1.78 0 1

Beta-mannosidase GH2 3.2.1.25 0 1

Cellulose Beta-glucosidase GH1 3.2.1.21 4 5

Beta-glucosidase GH3 3.2.1.21 1 3

Endoglucanase GH5 3.2.1.4 1 1

Endoglucanase GH6 3.2.1.4 2 3

Cellulose 1,4-beta-cellobiosidase GH6 3.2.1.91 0 1

Endoglucanase GH9 3.2.1.4 0 1

Cellulose 1,4-beta-cellobiosidase GH12 3.2.1.91 1 0

1 Enzyme commission number
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for catabolism (Bugg et al. 2011; Brown and Chang 2014).
Among the lignin-degrading bacteria, few Streptomyces
strains were described to degrade lignin or lignin-derived
compounds, such as catechol, protocatechuate, and gentisate
(Ishiyama et al. 2004; Gottschalk et al. 2008; Davis et al.
2013; Větrovský et al. 2014). In this context, the correspond-
ing metabolic pathways in strains F1 and F7 were manually
reconstructed from their genome sequence data.

The genomic analyses of strains F1 and F7 revealed several
genes involved on protocatechuate and gentisate catabolism
(Fig. 5 and Supplementary file 2: Table S2). For gentisate
catabolism, identical gene clusters consisting of four genes
were found in both strains genomes. Sequence analysis pre-
dicted four encoding genes, including DNA-binding tran-
scriptional regulator (IclR family), gentisate 1,2 dioxygenase,
fumarylacetoacetate hydrolase, and maleylpyruvate isomer-
ase. For protocatechuate catabolism, all genetic determinants
for this aromatic degradation were found only in strain F1.
These seven genes are organized in a cluster and flaked by

transcriptional regulators. It is important to mention the pres-
ence of transcriptional regulator in all these clusters. For in-
stance, the protocatechuate cluster in Streptomyces F7 genome
consists of four genes involved on aromatic degradation pre-
ceded by a transcriptional regulator. Members of IclR family
frequently control genes whose products are involved in the
degradation of aromatics (Molina-Henares et al. 2006). These
findings suggest that the clusters could be expressed and allow
the strains to use these aromatic compounds as carbon
sources.

Concluding remarks

This work disclose two novel Streptomyces strains isolated
from soil, able to grow on CMC, xylan, and steam-
pretreated SCB as sole carbon sources, and secrete a range
of hydrolytic enzymes. The enzymatic assays indicated that
strain F7 was more efficient in the degradation of natural

a

b

Fig. 5 a) Schematic representation of the gene clusters encoding the
gentisate and protocatechuate degradation and their corresponding
metabolism found in F1 and F7 genomes. A.1 and A.2, organization of
the gentisate and protocatechuate clusters, respectively. The putative
functions of the gene products are as follows: kdgR, transcriptional
regulator KdgR (MarR family transcriptional regulator); sdgD,
gentisate 1,2-dioxygenase; nagK, fumarylacetoacetate hydrolase
family; nagL, maleylpyruvate isomerase; nodD, nodulation protein

D (MarR Family); catD, 3-oxoadipate enol-lactonase; pcaB, β-
carboxymuconatecycloisomerase; pcaB,3-carboxy-cis,cis-muconate
cycloisomerase; pcaGH, protocatechuate 3,4-dioxygenase, α and β-
subunits; paaJ, 3-oxoadipyl-CoA thiolase; scoAB, 3-oxoacid CoA-trans-
ferase subunit A and B; hosA, transcriptional regulator (MarR family). b)
Metabolic pathways of the protocatechuate and gentisate degradation (B.1
and B.2, respectively). The enzyme names are shown above the arrows.
Abbreviation: TCA cycle, tricarboxylic acid cycle
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carbohydrates than strain F1. This observation was confirmed
by genomic analysis: the genome of strain F1 encodes 85 gly-
coside hydrolases (GHs) which comprise 33 different types of
GH families, and strain F7 harbors 100 GHs representing 44
GH families. Finally, the identification of gene clusters
encoding enzymes dedicate to aromatic compound degradation
suggests that the strains could also perform lignin degradation.
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