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Abstract

Mannheimia haemolytica is a leading causative agent of pasteurellosis in ruminants. Genome of M. haemolytica strains from
different hosts has been sequenced worldwide to understand its pathogenesis. There are only few reports on the isolation of
M. haemolytica in India with limited information on its molecular characteristics. The present study focuses on genome sequence
analysis of a M. haemolytica strain isolated from pneumonic sheep. Mannheimia haemolytica A2 strain NIVEDI/MH/1 was
isolated and identified by species and serotype-specific PCRs. Whole genome sequencing was performed using the Ion Torrent
Personal Genome Machine. A comparative genomic analysis was performed to understand the virulence determinants of the
Indian strain and its phylogenetic relationship with other global strains. Sequence data revealed a draft genome of 2,211,426 bp
size with 41.3% GC content, assembled into 17 contigs, and contained 2379 genes. Five genomic islands identified in the genome
showed high sequence identity with other respiratory pathogens of the Pasteurellaceae family. Phylogenetic analysis showed
M. haemolytica A2 NIVEDI/MH/1 is very close to a M. haemolytica A2 strain from pneumonic calf. Further, the analysis
revealed the presence of virulence, metal-, and multidrug resistance genes needed for pathogenesis and survival of the bacteria
during infection. Also, we identified the presence of type I-C and type II-C of CRISPR-Cas arrays in the present sequenced
genome. The study emphasizes the role of M. haemolytica in respiratory infections of ruminants in the Indian subcontinent and
indicates the role of vertical and horizontal gene pools in pathogenicity and survivability of the bacteria.
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Introduction

Mannheimia haemolytica is a Gram-negative, weakly hemo-
lytic coccobacillus (Highlander 2001). It is an important etio-
logical agent of pasteurellosis, also known as respiratory
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The virulence factors determine the pathogenicity of an
organism (Mohamed and Abdelsalam 2008). These viru-
lence factors of M. haemolytica include ruminant-specific
leukotoxin, anti-phagocytic capsule, lipopolysaccharide,
iron-regulated outer membrane proteins, lipoproteins,
sialoglycoprotease, neuraminidase, and two immunoglob-
ulin proteases (Highlander 2001). In addition, the emer-
gence of multi-antibiotic resistance to beta-lactams, tetra-
cycline, streptomycin, sulfonamides, macrolides, and sul-
famethazine in M. haemolytica has been reported
(Hormansdorfer and Bauer 1996).

Genomes of different serotypes of M. haemolytica were
sequenced to identify novel targets for diagnostics and vac-
cine development (Klima et al. 2016), and to understand the
phylogenetic relationship with other strains reported across
the globe (Moustafa etal. 2015). Genome sequence analysis
of M. haemolytica A1, strain ATCC BAA-410, from a lung
of a calf that died of BRD identified the presence of viru-
lence, natural competence, accessory, and transcription reg-
ulation genes and revealed widespread genes conserved in
M. haemolytica as with other members of the
Pasteurellaceae family. The study also explained the simi-
larity of M. haemolytica virulence proteins with Neisseria
meningitidis, suggesting a convergent evolution (Gioia
et al. 2006). Lawrence et al. (2010b) reported the presence
of phage regions and pseudogenes in the genome of
M. haemolytica serotype A2, indicating pathogenic islands
as a consequence of the horizontal gene transfer (HGT)).
HGT is an important factor in the emergence of the pathogen
by the evolution of the novel virulence genes and the spread
of antimicrobial and metal resistance genes (Keen 2012). A
previous study has substantiated the role of Mannheimia
genomic islands (GIs) and HGT in the expression and reg-
ulation of virulence factors (Rao and Jayakumar 2017).
Antibiotic and metal resistance genes were found to be as-
sociated with plasmids, chromosome (Watts et al. 1994),
and integrative conjugative elements (ICEs) (Eidam et al.
2015). M. haemolytica genome also contains the CRISPR-
Cas systems (clustered regularly interspaced short palin-
dromic repeats/CRISPR-associated proteins) (Klima et al.
2016), which act as an adaptive immune system for bacterial
protection against invading genetic elements like phages
and plasmids (Makarova et al. 2011).

There are fewer reports on the prevalence of
M. haemolytica in India (Sharma et al. 2011; Dar
et al. 2012; Kumar et al. 2015). However, no reports
are available on the genome sequencing and the molec-
ular characterization of M. haemolytica isolated from
India. Hence, the present study was focused on the
whole genome sequence analysis of M. haemolytica iso-
lated from a pneumonic sheep to unravel the genes in-
volved in the virulence and its phylogenetic relatedness
to the global isolates.
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Materials and methods

Sheep herd The sheep samples were collected from a private
herd at Chikkajala village, Urban Bengaluru, Karnataka. The
herd was maintained with a semi-intensive rearing method.
The animals were not vaccinated and a sudden death of six
sheep due to the respiratory infection was reported. The sam-
ple was collected from the sheep having the typical case of
uncomplicated pneumonia with symptoms including dyspnea,
pyrexia, and mucopurulent nasal discharge.

Isolation of M. haemolytica and extraction of genomic
DNA

M. haemolytica was isolated from the nasopharynx of the
sheep (Ovis aries) with a history of pneumonia. The isolate
was tentatively identified as M. haemolytica based on conven-
tional culture characteristics including colony morphology
and standard biochemical tests (Marru et al. 2013), and con-
firmed by species and capsule-specific PCR assays
(Alexander et al. 2008; Klima et al. 2017). The
M. haemolytica A2 isolate was designated as strain NIVEDI/
MH/1. The strain was initially cultured on tryptic soy agar
(TSA) supplemented with 5—7% sheep blood at 37 °C for
24 h and subsequently subcultured on brain heart infusion
agar (BHI) for genomic DNA extraction. DNA was extracted
using the DNeasy kit as per the manufacturer’s protocol
(Qiagen, Hilden, Germany). The quantity and quality of the
extracted DNA were determined by using NanoDrop2000
(Thermo Scientific, Waltham, USA) and by agarose gel
(0.8%) electrophoresis, respectively.

Genome sequencing, assembly, and annotation

The whole genome of M. haemolytica strain A2 NIVEDI/
MH/1 was sequenced using the Ion Torrent Personal
Genome Machine (Life Technologies, Carlsbad, CA). The
de novo assembly was performed using MIRA (Mimicking
Intelligent Read Assembly) version 3.9.18 (Chevreux et al.
1999). For the genome annotation, the assembled sequence
of M. haemolytica A2 NIVEDI/MH/1 was submitted to the
NCBI Prokaryotic Genomes Annotation Pipeline (NCBI
PGAP) (http://www.ncbi.nlm.nih.gov/ genome/ annotation
prok/ process/). Further, annotation was also performed by
using Rapid Annotations Subsystems Technology (RAST)
(Aziz et al. 2008). The rRNAs and tRNAs genes were predict-
ed using RNAmmer (Lagesen et al. 2007) and tRNAscan-SE
1.21 (Lowe and Eddy 1997), respectively. Protein-coding se-
quences were analyzed by the Cluster of Orthologous Group
(COG) database (Tatusov et al. 2000) on WebMGA (Wu et al.
2011). Graphical view of the genome was generated
using Artemis and DNAplotter. The total number of
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contigs, their predicted coding sequences in forward and
reverse direction, rRNA, and tRNA were plotted.

16S rRNA and genome-based phylogenetic analysis

The 16S rRNA gene from M. haemolytica A2 NIVEDI/MH/1
genome was identified using RNAmmer. The 16S rRNA
genes of other genome sequences were retrieved from the
NCBI RefSeq database (Supplementary Table S1). A phylo-
genetic tree based on the 16S rRNA genes was constructed
using Molecular Evolutionary Genetics Analysis (MEGA)
version 7 (Tamura et al. 2013) by the maximum likelihood
method with the default bootstrap value as 500. The whole
genome sequences of 62 M. haemolytica, 3 Mannheimia
varigena, and one each of Mannheimia granulomatis,
Mannheimia massilioguelmaensis, Mannheimia
succiniciproducens, and Mannheimia sp. were retrieved from
NCBI (Supplementary Table S1). These genome sequences
were compared with the genome sequence of
M. haemolytica A2 NIVEDI/MH/1. The Composition
Vector (CV) method (Qi et al. 2004) was used to generate
the distance matrix. The whole genome-based phylogenetic
tree was constructed using the Neighbor-Joining (NJ) method
and visualized using MEGA version 7.

Identification and prediction of virulent genes
and genomic islands

The virulence factors were predicted using the Virulence
Factor Database (VFDB) (Chen et al. 2016). The Genomic
Islands (GIs) were envisaged using Island viewer 4, a compu-
tational tool integrated with four different genomic island pre-
diction methods such as IslandPath-DIMOB, SIGI-HMM,
Islander, and IslandPick. The IslandPath-DIMOB is based
on several common characteristics of Gls such as abnormal
sequence composition and presence of mobility genes (Hsiao
et al. 2003). The SIGI-HMM is based on codon usage bias
with the Hidden Markov Model approach (Waack et al. 2006).
The Islander is based on mechanistic consequences of their
typical site-specific integration into tRNA/tmRNA genes
(Hudson et al. 2014), and the IslandPick is based on a com-
parative genomic approach (Langille et al. 2008). The Panseq
server (Laing et al. 2010) was used to find the novel regions in
the predicted GlIs of M. haemolytica A2 NIVEDI/MH/1 by
comparing with other existing genome sequences.

Prediction of the CRISPR-Cas system

The CRISPR-Cas system was predicted with the use of web
tools CRISPRFinder (Grissa et al. 2007) and CRISPRone
(Zhang and Ye 2017). CRISPRFinder, a web service tool,
was used to detect CRISPR-Cas array in the sequence and
define the direct repeats and spacers. CRISPRone was used

for the annotation of the predicted CRISPR-Cas system to
detect Cas genes and type of the CRISPR-Cas system present
in the M. haemolytica A2 NIVEDI/MH/1 genome.

Results and discussion

Mannheimiosis is an emerging infectious disease of small
ruminants in India. This study was focused on the isolation,
identification, and whole genome sequencing of the
M. haemolytica serotype A2 strain from a pneumonic sheep
aimed to unravel its genetic background circulating in Indian
terrain. The whole genome sequencing of M. haemolytica A2
NIVEDI/MH/1 using Ion Torrent PGM yielded a total of
1,556,783 reads with an average read length of 167 bp. The
total sequence output was ~ 260 Mbp, which is approximately
189-fold coverage. The de novo assembly using MIRA
yielded 17 contigs, and the largest contig was 586,935 bp
long. The draft genome of M. haemolytica A2 NIVEDI/MH/
1 was 2,211,426 bp with 41.32% GC content. Genome anno-
tation by RAST predicted a total of 2379 protein-coding re-
gions. Of these, 2023 genes were predicted with functions,
and 356 genes were annotated as hypothetical proteins.
RNAmmer and tRNAscan-SE 1.21 predicted a total of 17
rRNA and 58 tRNA genes, respectively (Fig. 1; Table 1).
The COG category of the predicted genes is shown in Table 2.
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Fig. 1 Circular representation of M. haemolytica A2 NIVEDI/MH/1
genome. From the outer circle to the inner circle, black indicates the
total base pair, red indicates forward strand, blue indicates reverse
strand, gray indicates a total number of contigs, pink indicates tRNA,
green indicates TRNA, gray and light blue indicate GCskew, and green
and pink indicate GCplot

e

@ Springer



Ann Microbiol (2019) 69:151-160

154
Table 1 Genome statistics of M. haemolytica A2 NIVEDI/MH/1
Attribute Value Percent®

Genome size (bp) 2,211,426 100

DNA G + C content (bp) - 41.32
Total genes 2460 100

RNA genes 81 3.29
rRNA genes 19 0.77
tRNA genes 58 2.36
ncRNAs 4 0.16
Protein-coding genes 2379 96.71
Genes with function prediction (protein) 2023 82.23
Genes assigned to COGs 2152 87.46
CRISPR arrays 2 0.09

# These values are based on either the size of the genome in base pairs or
the total number of genes in the annotated genome

The 16S rRNA gene sequence can be used for the species
identification and phylogeny analysis (Clarridge 2004).
However, the whole genome sequences are generally pre-
ferred to study the phylogenetic relatedness on the basis of
geographical origin, serotypes, and host predilection
(Moustafa et al. 2015). The 16S rRNA gene-based phyloge-
netic tree confirmed that the strain NIVEDI/MH/1 belongs to

the species M. haemolytica as it was clustered with other
strains of M. haemolytica in the same clade (Fig. 2). The
whole genome-based phylogenetic tree constructed using 70
Mannheimia strains showed that the strain M. haemolytica A2
NIVEDI/MH/1 was the closest neighbor of M. haemolytica
D35 serotype A2 (accession no. AUNKO00000000), which
was isolated from a pneumonic calf lung (Hauglund et al.
2015). Similarly, the M. haemolytica serotype A2 ovine strain
from a pneumonic lung (accession no. ACZX00000000)
(Lawrence et al. 2010a) was closely related to the
M. haemolytica A2 NIVEDI/MH/1 strain and clustered to-
gether in the same clade. The phylogenetic tree based on both
the 16S rRNA gene and whole genome sequence showed the
similarity of M. granulomatis with the M. haemolytica A1/A6
PLK10 strain (Supplementary Fig. S1) and three M. varigena
strains forming a separate clade but clustering with
Mannheimia sp.

A total of 33 virulent genes were predicted by the VFDB
database (Supplementary File S2). Of these, IpxA
(ODQ38859), IpxH (ODQ37174), IpxA (ODQ38611), IpxB
(0ODQ35950), rfak (ODQ38829), wecA(ODQ36883), waaQ
(ODQ37174), and IsgE (ODQ37931) are needed for the bio-
synthesis of lipopolysaccharide (LPS). Previous studies have
reported that all these genes are conserved among the mem-
bers of the Pasteurellaceae family (Xu et al. 2008; Peng et al.

Table 2 Number of genes

Percentage®

Description

associated with general COG COG class Value
functional categories
A 1 0.04
C 149 6.26
D 25 1.05
E 209 8.79
F 76 3.19
G 201 8.45
H 112 4.71
I 42 1.77
J 167 7.02
K 113 4.75
L 124 5.21
M 142 5.97
N 5 0.21
(¢} 102 429
P 136 5.72
Q 21 0.88
R 222 9.33
S 185 7.78
T 46 1.93
U 50 2.10
\% 22 0.92
W 2 0.08

RNA processing and modification

Energy production and conversion

Cell cycle control, cell division, chromosome partitioning
Amino acid transport and metabolism

Nucleotide transport and metabolism

Carbohydrate transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Translation, ribosomal structure, and biogenesis
Transcription

Replication, recombination, and repair

Cell wall/membrane/envelope biogenesis

Cell motility

Posttranslational modification, protein turnover, chaperones
Inorganic ion transport and metabolism

Secondary metabolites biosynthesis, transport, and catabolism
General function prediction only

Function unknown

Signal transduction mechanisms

Intracellular trafficking, secretion, and vesicular transport
Defense mechanisms

Extracellular structures

? Percentage of annotated genes. The total is based on the total number of protein-coding genes in the genome
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2016). LPS is an endotoxin responsible for the stimulation of
IL-1beta, IL-8, and neutrophil influx leading to inflammation
and damage of bovine pulmonary endothelial cells (Paulsen
et al. 1989; Yoo et al. 1995; Lafleur et al. 1998). The gene
kdkA (ODQ37905) is needed for the LPS glycoform genera-
tion (Peng et al. 2016). According to a previous study, LPS
enhances the cytolytic activity of leukotoxin, (repeats in-foxin
(RTX toxin)) of M. haemolytica (Lafleur et al. 1998). RAST
annotation identified 28 genes are having virulence potential
(Supplementary File S3). NCBI PGAP and RAST annotations
identified the leukotoxin-activating lysine-acyltransferase
LktC (ODQ39212) needed for the posttranslational acylation
of the leukotoxin protein encoded by LktA in the LktCABD
operon (Highlander et al. 1989).

The presence of NanA (0DQ39248), NanK (ODQ39247),
and a hypothetical protein (ODQ37835) having similarity
with sialidase (neuraminidase) are needed for the
sialometabolism that helps bacteria to colonize, persist, and
cause disease in mammalian species (Sakarya and Oncii 2003;
Steenbergen et al. 2005; Severi et al. 2007) were identified.
The gene for UDP-N-acetylglucosamine 2-epimerase
(ODQ37932.1), a rate-limiting enzyme in sialometabolism
(Klima et al. 2016), was identified in M. haemolytica A2
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NIVEDI/MH/1. Also, adhesin (ODQ39272) and a type IV
pilus biogenesis/stability protein PilW (ODQ38480) required
for adhesion and motility as noticed in Haemophilus
influenzae, Pseudomonas aeruginosa, and Neisseria sp. were
identified (Bakaletz et al. 2005). The genome contained the
TonB transport system, TonB-ExbB-ExbD (ODQ38608,
0ODQ38777, and ODQ38778) (Peng et al. 2016), ATP-
binding iron ABC transporter (ODQ38724, ODQ38726, and
0DQ38478), heme utilization proteins (HutZ and Hut W)
(ODQ38471, ODQ38473), and iron-binding protein (sitA)
(ODQ38479) needed for the iron acquisition. It also contained
a ferric uptake regulator (Fur family) (ODQ38822), a tran-
scriptional repressor required for regulation of iron acquisition
genes. Other putative virulence factors are superoxide dismut-
ase (ODQ38739), virulence protein (ODQ38476), antitoxin,
component of a toxin-antitoxin (TA) (ODQ38475), lipopro-
tein localization factor LolB (ODQ37719), S-ribosyl homo-
cysteine lyase, Lux S (ODQ38823), secretin, and ComE
(ODQ38752) (Yu et al. 2016; Klima et al. 2016).

Five Gls were predicted in the genome of M. haemolytica
A2 NIVEDI/MH/1 by the Island Viewer4, which codes for
100 genes. Among these, 67 were annotated as functional
genes and 33 for hypothetical proteins (Fig. 3). Comparison
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Fig. 3 Five GIs predicted in M. haemolytica A2 NIVEDI/MH/1 using
IslandViewer. The black circle represents the total base pair, the inner
circle represents the GC content, and the curved line indicates the total
number of contigs. Orange, blue, and red represent the predicted Gls as
per SIGI-HMM, IslandPath-DIMOB, and predicted by at least one
method (unstated) within the island viewer tool, respectively

of M. haemolytica A2 NIVEDI/MH/1 with other
M. haemolytica genome sequences using Panseq revealed that
the GI3, GI4, and GI5 are unique to NIVEDI/MH/1. Among
identified GlIs, three regions showed higher similarity with
Bibersteinia trehalosi, a bovine respiratory pathogen belong-
ing to the Pasteurellaceae family (Blackall et al. 2007). The
other two regions showed higher similarity with
Actinobacillus suis, a swine pathogen (Michael J. Yaeger
1996) and Ornithobacterium rhinotracheale, a poultry respi-
ratory pathogen (Thachil et al. 2009) (Table 3). Functional
genes identified in the Gls include the plasmid stabilization
system protein (ODQ39236), transposase (ODQ39232,
0ODQ38617), SprT family protein (ODQ38548), toxin MazF
(ODQ38536), and various transcriptional regulators. It was
found that GI2 has a gene for mercuric reductase
(ODQ39227) needed for the mercury resistance by reduction
of mercuric to elemental Hg (Freedman et al. 2012). Also,

multi-copper polyphenol oxidoreductase (ODQ37742) (Guo
et al. 2016), tellurite resistance methyltransferase TehB
(ODQ38795), arsenate reductase (ODQ37201) (Jackson and
Dugas 2003), and multidrug transporter (ODQ39218) genes
were present in the GIs. Presence of these resistance genes
enhances adaptability and helps the bacteria to survive in a
changing hostile environment during infection. Thus, the hor-
izontal transfer of genes among the members of the
polymicrobial community might be responsible for the con-
tinuous exchange of the gene pool among the respiratory tract
bacteria (Schroeder et al. 2017). HGT might lead to the
development of virulence (Ho Sui et al. 2009), antibiotic
resistance, and metal resistance (Hall 2010; Gilmore et al.
2013; Pagano et al. 2016).

The genome of M. haemolytica A2 NIVEDI/MH/1 also
contains CRISPR-Cas array. The CRISPR-Cas is the adaptive
immune system of the bacteria against invading phage and
plasmid, which comprises of conserved direct repeat (DR)
sequences, variable spacer sequences derived from the phage
DNA, and Cas proteins (Koonin and Makarova 2009;
Horvath and Barrangou 2010; Deveau et al. 2010). The
CRISPR-Cas system provides immunity to bacteria against
these external elements via the three-stage process of adapta-
tion, expression, and interference (Karginov and Hannon
2010; Makarova et al. 2011). Besides the adaptive immunity
against phages, the CRISPR-Cas system is also associated
with gene expression and regulation of cellular processes like
biofilm formation, spore formation, replicon maintenance and
segregation, and DNA repair-recombination
(Szczepankowska 2012). The CRISPR-Cas system is divided
into three types and further into a few subtypes. Cas proteins
adjacent to CRISPR sequences have the characteristic of the
nucleases, helicase, polymerase, and various RNA-binding
proteins (Jansen et al. 2002). Earlier, the presence of type I-
C/Dvulg CRISPR-Cas system in serotypes Al, A2, and A6 of
M. haemolytica were reported (Klima et al. 2016). With the
use of CRISPRfinder, we identified the presence of two con-
firmed and two questionable CRISPR-Cas arrays in the ge-
nome of M. haemolytica NIVEDI/MH/1. Contig 4 and contig
7 of the genome contained type I-C and type II-C of the con-
firmed CRISPR-Cas array system, respectively. CRISPRone
predicted the presence of various Cas proteins in CRISPR-Cas

Table 3  Identification of genomic islands (GIs) in M. haemolytica A2 NIVEDI/MH/1
Accession ID GI Island region GI (bp) Locus start Locus end Identity (%) HGT
MEHRO01000006 GIl 4294-17134 12,841 BHC25 09075 BHC25 08985 93 Actinobacillus suis
MEHRO01000001 GI2 283713-302447 18,735 BHC25 01545 BHC25 01465 93 Bibersteinia trehalosi
MEHR01000001 GI3 3720-10980 7261 BHC25 00065 BHC25 00025 88 Ornithobacterium
rhinotracheale
MEHR01000003 G4 167099-209087 41,989 BHC25 04710 BHC25 04925 93 Bibersteinia trehalosi
MEHR01000004 GI5 186571-193348 6778 BHC25_06380 BHC25 06425 81 Bibersteinia trehalosi
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CTATCCATAATCTGCTCTTTGCTCATCTCCAGCGA MEHR01000004.1 DR1 ATTTCAATATATATCGATGCGAAGATGGCTAC MEHR01000004.1
ATATCACAACCCCAAACGGCAAGAGAATTAAGA MEHR01000004.1 DR2 GTTTCAATACACAACCACGCATAGGTGGCTGC MEHR01000004.1
TCCGAATATCCCTCTTTTCGATGGCTTCTTGGAG MEHR01000004.1 DR3 GTTTCAATTCACAGCCACGCGTAGGTGGCTGC MEHR01000004.1
e T rctery | MWLl STAOGSGGRMSTRT
TAATGGATTTTGTGTATTTGGGGTTGAGATAAGAA MEHR01000004.1 DRS GTTTCAATTCACAGCCACGCAAAGGTGGCTGC MEHR01000004.1
AGGGTCAGATGCTCTACCATTCGCAGCTTGTATGA MEHR01000004.1 DR6 ATTGTAGCACTGCGAAATGAGAAAGGG MEHR01000007.1
ACCAAGCGATTAGTTCTTACGAGAACGGGTTTAGA MEHR01000004.1 OR ATTGTAGCACTGCGAAATGAAAAAGGG MEHRO1000007 1
CTGGCGGTTTTCTTTCAGGGCTTCACCTTTCGCAC MEHR01000004.1
GAGAGTACCGGCTTGCCGTTTGGCTCAGGGTGC MEHR01000004.1
ACAACACCCTCACCTTTTTCATTTACGCCATTAT MEHR01000004.1
AAAACAAGAGCGAAACAACTTGAAACACAAAAA MEHR01000004.1
TCTCGCTTAATGCGATCATAGTCTTTGACTAAACG MEHR01000004.1
TTTGATACTCCTTTAAGGGTGGTTGGTTGATAAAA MEHR01000004.1
GAAGGTTTGGTGCATTTAATGAAATTTAGATTGT MEHR01000004.1
TTGGGATATTGCGATTGGTATCAAAAATTGACGAA MEHR01000004.1

AGCTACAACCTATTTGATATGCGATTAGGCGTAAATAAA  MEHR01000007.1
AGCTACAACTGCGGCTACCGTTTTAACAAAGAAACGGCG ~ MEHR01000007.1
AGCTACAACTTATCAGACCAATTCGCATCACTCTATGCG MEHR01000007.1
AGCTACAACCTACTTGACCGCTTACCACCACGAAGATGA — MEHR01000007.1

Fig. 4 Schematic representation of the CRISPR-Cas system in the
M. haemolytica NIVEDI/MH/1 serotype A2. (a) CRISPR-Cas loci which

include CRISPR array of direct repeats, a spacer sequence, and a series of CRISPR array as shown in (a)

Cas proteins. (b) Sequence of seven unique direct repeats (DR) and 27
spacers present in the CRISPR-Cas system present in two confirmed
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array. Type I-C CRISPR-Cas array of M. haemolytica
NIVEDI/MH/1 consisted of Casl, Cas2, Cas3HD, Cas4,
Cas5, Cas7b, and Cas8c proteins and 23 spacers of phage
DNA with 5 different direct repeats. Type 1I-C CRISPR-Cas
array consisted of four spacers with direct repeats and Casl,
Cas2, and Cas9 proteins. Cas9 is the characteristic of the type
II system and is a large protein needed for the crRNA synthe-
sis and cleavage of the target DNA (Makarova et al. 2011). A
schematic representation of the CRISPR loci along with
spacers is shown in Fig. 4 (Supplementary File S4).

In summary, the whole genome of M. haemolytica serotype
A2 isolated from a pneumonic sheep in India was sequenced.
The phylogeny analysis showed that the M. haemolytica strain
NIVEDI/MH/1 is closely related to other pathogenic
M. haemolytica serotype A2 strains of bovine and ovine origin.
The genome contained various virulence factor determinants,
five GIs, and metal- and antibiotic resistance genes. Most of the
GIs have shown sequence identity with other respiratory path-
ogens belonging primarily to the family Pasteurellaceae.
Further, the strain contains type II-C of CRISPR-Cas array in
its genome, in addition to the earlier reported type I-C CRISPR-
Cas array. Overall, the presence of these elements substantiates
the virulence potential of this Indian strain and emphasizes the
role of HGT in the pathogenesis of an opportunistic respiratory
pathogen. Further studies are needed on the various serotypes
of M. haemolytica from different anatomical locations of the
multiple hosts to understand the genotypic and pathogenic var-
iants circulating in the Indian subcontinent.

Nucleotide sequence accession number

This Whole Genome Shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number
MEHRO00000000 with version MEHR01000000.
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