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Abstract
Global climate change may have a large impact on increased emission rates of carbon dioxide and methane to total greenhouse
gas emissions from terrestrial wetlands. Methane consumption by soil microbiota in alpine wet meadows serves as a biofilter for
the methane produced in the waterlogged soil below. Altered pH regimes changemicrobial community composition and structure
by exerting selection pressure on soil microorganisms with different ecological strategies and thus affect greenhouse gas emis-
sions resulting from the metabolic activity of soil microorganisms. However, responses of prokaryotic communities to artificial
pH shift under elevated methane concentration remain unclear. In this study, we assessed diversity and relative abundance of soil
prokaryotes in an alpine meadow under elevated methane concentration along an artificial pH gradient using laboratory incuba-
tion experiments. We established an incubation experiment treated with artificial pH gradient (pH 4.5–8.5). After 3 months of
incubation, 300 ml of methane at a concentration of 20,000 ppm was added to stimulate potential methanothrophs in topsoil.
Sequencing of 16S rRNA gene indicated increasing of relative abundances of Crenarchaeota, Chloroflexi, Bacteroidetes, and
Planctomycetes in soil after addition ofmethane, while the relative abundances of Actinobacteria and Gemmatimonadetes did not
significant change before and after methane treatment. Results of phylogenetic relatedness of soil prokaryotes showed that
microbial community is mostly shaped by deterministic factors. Species indicator analysis revealed distinct OTUs among various
pH and methane treatments. Network analysis revealed distinct co-occurrence patterns of soil prokaryotic community before and
after methane addition, and different correlation patterns among various prokaryotic taxa. Linear regression model revealed
significant decrease of methane oxidation along elevated pH gradient. Soil pH constituted a strong environmental filter in species
assembly of soil prokaryotic community. Methane oxidation rates decreased significantly with elevated pH. The interactive
effects of elevated methane concentration and pH are therefore promising topic for future research.
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Introduction

Soil microbiome and its associated functions, e.g., increased
methane emission or in contrast methane oxidation, are sensi-
tive to various aspects of environmental changes such as water
regime (Evans et al. 2014), temperature (Zhou et al. 2016),
and soil acidification or alkalization (Lauber et al. 2009;
Rousk et al. 2010; Heděnec et al. 2018). Both alkalization
and acidification may change diversity and abundance of soil
microbes by exerting selection pressure on soil microbiota
with different ecological strategies and thus affect greenhouse
gas emissions resulting from its metabolic activity (Heděnec
et al. 2018). However, little effort has been paid to investigate
effect of increased methane concentration on composition and
structure of soil prokaryotic communities in soils treated by
various pH.
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Global climate change may have a large impact on in-
creased emission rates of methane to total greenhouse gas
emissions from terrestrial wetlands (Yvon-Durocher et al.
2014). Alkalization or acidification changes prokaryotic com-
munity composition by selecting species or groups with differ-
entmetabolic and ecological strategies to optimize their fitness.
Study of Heděnec et al. (2018) showed altered methane emis-
sion along artificial pH gradient (4.5–8.5). The highest meth-
ane emissions were detected at pH 8.5 (2.2 nmol g−1 h−1) and
the lowest methane emissions were detected at pH 7.5
(1.98 nmol g−1 h−1) and 6.8 (1.87 nmol g−1 h−1) respectively
(Heděnec et al. 2018). However, little is known about the effect
of pH and increasedmethane concentration on change of meth-
ane oxidation rates under laboratory conditions.

Methane is a critical greenhouse gas contributing to global
climate change (Yvon-Durocher et al. 2014). It absorbs infra-
red radiation nearly 25 times more efficiently than carbon
dioxide (Ward et al. 2013). Alpine wetlands are a major source
of methane emissions globally (Yun et al. 2012; Gao et al.
2013). For example, wetlands represent one of the biggest
methane emission centers in China (Yun et al. 2012). The
annual methane emissions from this area have been estimated
to be between 0.56 and 1 Tg (Fang et al. 2011; Gao et al.
2013). In addition, these wetlands become extremely vulner-
able to acidification resulted from increased fertilizing of ag-
ricultural landscape (Kemmitt et al. 2006; Lue and Tian 2007;
Gao et al. 2013).

Methanotrophs are ubiquitous in soils and utilize methane
as carbon and energy source (Liu et al. 2014). Methanotrophs
mainly include type I (Gammaproteobacteria), type II
(Alphaproteobacteria), and uncultured microorganisms asso-
ciated with pxmA gene expression (Pandey et al. 2014; Kou
et al. 2017). Consumption of methane by soil microbes in
alpine wet meadows serves as a biofilter for the mitigation
of methane emissions into atmosphere (Conrad 2007;
Kögel-Knabner et al. 2010). Soil pH is a major factor affecting
the diversity and activity of soil microbiota at local (Heděnec
et al. 2018) and/or regional scale (Rousk et al. 2010). Soil pH
directly affects microbial physiological functions and the ac-
cessibility of nutrients and growth factors of soil microbiota
(Angel et al. 2010; Rousk et al. 2010).

Type I methanotrophs are more active under changing en-
vironmental conditions (Henckel et al. 2000), while type II
methanotrophs favor low pH, low O2 habitats, and high meth-
ane concentrations (Henckel et al. 2000; Putkinen et al. 2014;
Singh et al. 2007). Thus, the responses of prokaryotic com-
munity structure and activity (including methanotrophs) to
increased methane concentration may vary with soil pH.
However, it is still unclear how increased methane concentra-
tion impact on the diversity and structure of soil prokaryotes
along a pH gradient.

Microbial communities are simultaneously influenced by
deterministic (moisture, pH, and nutrient flow) and stochastic

factors (speciation, extinction, and ecological drift) (Tilman
2004; Vellend 2010; Stegen et al. 2012; Nemergut et al.
2013; Zhang et al. 2016). Deterministic theory proposes that
the abundance and distribution of a species is mainly driven by
a set of niche conditions that the species adapts, and resources
that the species utilize (Tilman 2004; Gilbert et al. 2012).

Stochastic models originally based on Hubbell’s neutral
theory (Hubbell et al. 2001) assume that community dynamics
are the consequences of individual stochastic events at spatial-
temporal scales, e.g., natality, mortality, and migration of in-
dividuals (Vellend 2010; Stegen et al. 2012; Nemergut et al.
2013). Usually, microbial communities shaped by determinis-
tic factors show stronger phylogenetic relatedness than those
dominantly shaped by stochastic factors (Kembel et al. 2011;
Stegen et al. 2012).

In this study, we assessed the diversity and relative abun-
dance soil of prokaryotes in an alpine meadow soil to elevated
methane concentration along an artificial pH gradient using
laboratory incubation experiments. We aimed to answer the
following questions. (i) How elevated methane concentration
changes community structure and diversity of soil prokaryotic
community along a pH gradient? (ii) Which factors affecting
soil microbial communities under increased methane concen-
tration and altered pH regime? (iii) How the changes of soil
pH affect methane oxidation rates?

Material and methods

Study site and description

The sampling site is a natural alpine meadow (not permanent-
ly waterlogged) in Hongyuan County, Sichuan Province,
China, which locates at the eastern edge of Qinghai-Tibetan
Plateau (33° 05′ N, 102° 35′ E). The average altitude of the
sampling site is 3462 m above sea level. The average annual
temperature is 1.4 °C, and annual rainfall is approximately
752 mm (Gao et al. 2013). The dominant plant species in this
region are perennial grassesClinelymus nutans and Roegneria
nutans, accompanied by Koeleria litwinowii, Agrostis
schneideri, Kobresia setchwanensis, and perennial herb
Anemone rivularis with average vegetation coverage over
90% (Gao et al. 2013). Soil is rich in organic matter and
classified as Mat-cry-gelic-cambisols based on Chinese soil
classification system (Gao et al. 2013). Soil moisture (mea-
sured gravimetrically) was 40%, pH 6.8 (measured using pH
meter at soil:water ratio of 1:5), conductivity 35 cm s−1 (mea-
sured simultaneously as pH at soil:water ratio of 1:5), and soil
organic matter (SOM) 12.2% (measured by dichromate diges-
tion method (Jenkinson and Powlson 1976)). Soil properties
were measured once again by the end of experiments. We did
not find any significant differences in SOM and conductivity
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among treatments at the start and the end of the experiment
(data not shown).

Experimental design

Soil samples were taken during vegetation season in
May 2014 (Heděnec et al. 2018). In total, five random soil
samples (1 kg) to a depth of 15 cm from the soil surface were
collected with iron soil corer (10 cm in diameter) and pooled
to one composite sample (5 kg) (Heděnec et al. 2018). This
was done to avoid having spatial variation within the site as a
factor in our subsequent statistical analyses. Soil samples were
sieved with 2-mm mesh to remove visible stones and plant
residuals. Fifty grams of fresh, sieved soil was weighted into a
glass bottle (310 ml) and sealed with a rubber stopper. Soil pH
was adjusted to final pH levels of 4.5, 5.5, 6.8, 7.5, and 8.5,
whereas soil at pH 6.8 represented the control treatment
(Heděnec et al. 2018). Each pH treatment consisted of four
independent replicates (bottles). The pH was further adjusted
each month during 3 months of pre-incubation to maintain
constant pH (Heděnec et al. 2018).

To manipulate soil pH, we first tested how much HCl
(0.1 M) or NaOH (0.5 M) solution was needed (Nelson and
Su 2010). To achieve pH 4.5 and 5.5, the 220 and 181 ml of
0.1 M HCl solution respectively were added to 780 and
819 ml of distilled water (Nelson and Su 2010; Heděnec
et al. 2018). To achieve pH 7.5 and 8.5, the 465 and 393 ml
of 0.5 M NaOH solution respectively were added to 535 and
607 ml of distilled water (Nelson and Su 2010; Heděnec et al.
2018). Then, we added 15 ml of diluted solution to the soil to
achieve a final 40% of water holding capacity (Heděnec et al.
2018). Bottles were incubated at 25 °C for 3 months in the
dark to promote long-term effect of various pH treatments. To
allow gas exchange, bottles were opened for 10 min and slow-
ly shaken every second day of pre-incubation. Methane emis-
sion rates under laboratory conditions ranged from 2 to
2.2 nmol g−1 h−1 (Heděnec et al. 2018).

Measurement of methane oxidation rates

After 3 months of incubation, 310 ml of air from headspace
was evacuated and immediately replaced by 300 ml lab air
containing 20,000 ppm of CH4. We incubated soils in glass
bottles at room temperature (25 °C) and extracted a 1-mL gas
sample from the headspace at 0, 2, 6, 24, 30, and 48 h after
bottle closure. Gas samples were manually injected into the
gas chromatograph (Shimadzu GC-2014 gas chromatograph
(GC), Shimadzu, Kyoto, Japan). The gas chromatograph was
equipped with a flame-ionization detector for methane set at
200 °C and the carrier gas was 100% ultrapure N2 with a flow
rate of 25 mL min−1. The column used for CH4 was a 60/80
Carboxen 1000 (15 ft., 1/8 in.) set in an oven at 40 °C.
Methane oxidation rates were estimated by fitting an

exponential function to the concentration behavior in the in-
cubation bottles over time: CH4 concentration = N0 e(−λt).
Where N0 is the initial concentration and lambda is the decay
constant. Methane oxidation was expressed as micromole per
gram per hour.

DNA extraction and MiSeq sequencing

Soil from the upper layer (1 g) was taken from incubation
bottles 1 h before and 48 h after methane addition. The
DNAwas extracted using Power Soil extraction kit (MOBIO
Inc., Carlsbad, USA) according to the manufacturer’s instruc-
tions. Quantification and quality control of the extracted DNA
was checked using NanoDrop 2000 spectrophotometer
(Thermo Scientific Inc., USA), diluted to 10 ng/μL and stored
at − 20 °C for downstream analysis. PCR amplification was
conducted using the universal bacterial 16S rRNA gene
primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
909R (5′-CCCCGYCAATTCMTTTRAGT-3′) with 12 bp
unique barcodes at 5′-end of 515F to amplify the V4–V5
hypervariable region of 16S rRNA gene (Yao et al. 2014).
The PCR mixture (25 μL) contained 1 × PCR buffer,
1.5 mM MgCl2, 0.4 μM deoxynucleoside triphosphate,
1.0 μM primers and 0.5 U ExTaq polymerase (TaKaRa,
Dalian), and 10 ng of soil genomic DNA. The PCR amplifi-
cation program included the following steps: initial denatur-
ation at 94 °C for 3 min, followed by 30 cycles of 94 °C for
40 s, 56 °C for 60 s, 72 °C for 60 s, and a final extension at
72 °C for 10 min (Li et al. 2014). The PCR replicates were
pooled, separated on 1.5% agarose gel using electrophoresis,
and purified using Sangon Gel Extraction Kit (Sangon
Biotech, Shanghai, China). All PCR products were pooled at
equimolar amounts and used for paired-end sequencing (2 ×
250 bp) using Illumina MiSeq sequencer at environmental
sequencing platform of Chengdu Institute of Biology,
Chinese Academy of Sciences.

Sequence data analysis

The QIIME Pipeline Version 1.7.0 was used to process the
sequencing data (Caporaso et al. 2010). All sequencing reads
were trimmed and demultiplexed according unique barcode
sequences. High-quality sequences (length > 300 bp, without
ambiguous base BN,^ and average base quality score > 30)
were used to process downstream analysis. Chimera check
was conducted using Uchime algorithm (Edgar et al. 2011).
All samples were randomly rarefied to the minimum library
size (7600 reads). Sequences were clustered according to tax-
onomic units (OTUs) at 97% identity using Uparse algorith
(Edgar 2013). OTUs were taxonomically classified using
QIIME’s implementation of a Naïve Bayesian classifier
against Ribosomal Database Project database 1.1.1. (Wang
et al. 2007). Rare OTUs occurring with less than three reads
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per sample were excluded to reduce computation efforts.
Phylogenetic maximum likelihood–approximation trees were
reconstructed using the generalized time-reversible model in
FastTree 2.1.1 (Price et al. 2010). The original sequence data
are stored at European Nucleotide Archive (https://www.ebi.
ac.uk/ena/data/view/PRJEB25417).

Processes shaping prokaryotic community

The mean nearest taxon index (mean NTI) and the mean
nearest relatedness index (mean NRI) were calculated for all
samples per treatment on average using Bmntd,^ Bmpd,^
Bses.mntd,^ and Bses.mpd^ in the Bpicante^ package in R
(Kembel et al. 2011). The mean NRI calculates the mean
pairwise distance between all species in each community.
Similarly, the mean NTI calculates the mean nearest taxon
distance, the mean distance separating each species in the
community from its closest relative. To evaluate the degree
of non-random phylogenetic community structure, OTUs and
their relative abundances were randomized across the tips of
phylogeny (null.model = B|taxa.labels^ in Bses.mntd,^
Bses.mpd^) (Stegen et al. 2012). The mean NTI and NRI,
taken across all treatments that were significantly different
from zero indicated clustering (|NTI|, |NRI| > 2; p < 0.05) or
overdispersion (|NTI|, |NRI| < 2; p > 0.05), on average
(Kembel et al. 2011; Stegen et al. 2012, 2013). The p value
describes the differences between phylogenetic distances in
the observed communities versus null communities generated
with randomization method (Kembel et al. 2011; Stegen et al.
2012). Closely related organisms are expected to be phyloge-
netically structured in the same or similar niche set of condi-
tions, shaped by deterministic factors (Tilman 2004; Stegen
et al. 2012). On the other hand, less closely related organisms
are considered as phylogenetically overdispersed, more con-
trolled by stochastic factors (Kembel et al. 2011; Stegen et al.
2012).

Statistical analysis

The effects of pH and methane addition on relative abun-
dances of prokaryotic taxa were calculated using hierarchical
(nested) ANOVA followed by Tukey’s test (Simecek and
Simeckova 2013). Alpha diversity indices, distance-based
(Bray–Curtis) redundancy analyses (dbRDA), and
PerMANOVA were performed using Bphyloseq^ package
(McMurdie and Holmes 2012, 2013). Effect of pH gradient
on methane oxidation rates was analyzed using linear regres-
sion model. To identify characteristic organisms for each pH
and methane treatment, we performed an indicator species
analysis (Timling et al. 2014). We used indicator value analy-
sis with the function Bindval^ from the R package labdsv to
find the significant indicators in our dataset (Timling et al.
2014). Then a heatmap based on those significant indicator

values was computed using the Bheatmap.2^ function of the
gplots package. Co-occurrence neural networks were used to
reveal co-occurrence patterns of soil microbial communities
before and after methane addition. Co-occurrence networks
were calculated from correlation matrix of main phyla and
classes using Bcor_auto^ (all correlations) and BFDR
network^ (significant correlation only) functions in package
Bqgraph.^ False discovery rate (FDR) correction was done
using the Bonferroni correction to adjust p value of multiple
correlations (Smith et al. 2006). All statistics and graphics
were performed in R program (www.r-project.org).

Results

Effects of increased methane concentration
on the diversity of soil prokaryotes along artificial pH
gradient

A total of 880,000 chimera-free sequences were obtained
using Miseq sequencing of 16S rRNA gene amplicons from
40 soil samples with at least 7600 sequences per sample. In
total, 2875 OTUs with relative abundances of more than
0.01% were obtained from all 40 samples. OTUs richness,
Chao1, Simpson index, and Simpson evenness did not show
any significant differences in soils after methane addition. In
addition, none of alpha diversity indices significant changed
along pH gradient (Table 1).

Composition of soil prokaryotic communities in soils after
methane addition clearly separate from those in soils before
methane addition based on PerMANOVA with Bray–Curtis
distance (Fig. 1). Furthermore, we investigated the changes
in soil prokaryotic compositions in soils at various pH
(Fig. 1). In contrast, prokaryotic community composition be-
fore and after methane addition was similar within individual
pH treatments (no interaction; Fig. 1).

The p value showing percentage of null model expectation
of the mean NTI indicated strong phylogenetic relatedness
and thus strong effect of deterministic factors on soil prokary-
otic community in soils before and after methane addition
along the artificial pH gradient (mean NTI > 0; p < 0.05,
Table S2). In contrast, neither artificial pH gradient nor meth-
ane addition showed any significant differences between
mean NTI (Table 1). Conversely, null model expectation of
NRI showed weak phylogenetic relatedness (dominant effect
of stochastic factors) of soil prokaryotic communities in soils
with neutral pH (mean NRI < 0; p > 0.05) while soils treated
pH 4.5, 5.5, 7.5, and 8.5 showed strong phylogenetic related-
ness (mean NRI > 0; p < 0.05, Table 1). In addition, null mod-
el expectation of mean NRI indicated strong phylogenetic
relatedness of soil prokaryotic communities in soils before
and after methane treatment. Finally, mean NRI did not show
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any significant difference between soils before and after meth-
ane addition as well as among pH treatments.

Effects of increased methane concentration
on the relative abundances of soil prokaryotes taxa
along artificial pH gradient

The relative abundances of Crenarchaeota, Chloroflexi,
Bacteroidetes, and Planctomycetes increased after methane
addition while the relative abundances of Actinobacteria and
Gemmatimonadetes did not significantly change between
soils before and after methane treatment (Table 2). In contrast,
relative abundance of Actinobacteria and Gemmatimonadetes
varied within individual pH treatments before and after meth-
ane addition (significant interaction; Table 2). Our results also
showed significant effects of artificial pH gradient on the

relative abundances of Chloroflexi and Gemmatimonadetes.
The relative abundance of Chloroflexi increased in acidic pH.
In contrast, the relative abundance of Gemmatimonadetes
showed higher abundance in soils with alkaline pH (Table 2).

Effects of artificial pH gradient on methane oxidizing
Proteobacteria

Our results showed significant effects of artificial pH gradient
on the relative abundance of Alphaproteobacteria. Soils treat-
ed by acidic pH showed lower relative abundance of
Alphaproteobacteria than soils with alkaline pH. The relative
abundances of Betaproteobacteria, Deltaproteobacteria, and
Gammaproteobacteria did not significantly change along our
artificial pH gradient (Table 3). However, relative abundance
of Betaproteobacter ia , Del taproteobacter ia , and
Gammaproteobacteria varied within individual pH treatments
before and after methane addition (significant interaction;
Tables 3 and 4). Furthermore, the relative abundances of
Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria,
and Gammaproteobacteria did not indicate any significant dif-
ferences between soils before and after methane addition.

Species indicators of increased methane
concentration in soils treated by various pH

Linear regression model revealed significant decreasing of
methane oxidation along elevated pH gradient (Fig. 2). Soils
treated by acidic pH showed significantly higher methane oxi-
dation than those soils treated by alkaline pH (Fig. 2). Species
indicator analysis revealed 18 OTUs (at genera level) associated
with various pH and methane concentration (Fig. 3).
Staphylococcus, Devosia, Propionibacterium, Finegoldia, and
Frankia affiliatedOTUs showed higher indicator value (fidelity)

Table 1 The effects of increased methane addition on the alpha diversity indices of soil prokaryotic communities along artificial pH gradient (two-way
ANOVA followed by Tukey’s test)

pH OTUs richness ± SD Simpson index ± SD Simpson evenness ± SD Chao1 index ± SD

4.5 789 ± 154 ns 402 ± 54 ns 0.522 ± 0.06 ns 1435 ± 139 ns

5.5 785 ± 132 ns 365 ± 54 ns 0.487 ± 0.05 ns 1435 ± 88 ns

6.8 720 ± 118 ns 320 ± 116 ns 0.422 ± 0.14 ns 1355 ± 395 ns

7.5 790 ± 114 ns 359 ± 89 ns 0.466 ± 0.1 ns 1453 ± 122 ns

8.5 801 ± 158 ns 356 ± 105 ns 0.467 ± 0.13 ns 1419 ± 115 ns

Methane addition

Ambient 798 ± 134 ns 346 ± 116 ns 0.46 ± 0.14 ns 1363 ± 268 ns

Methane 811 ± 205 ns 376 ± 42 ns 0.487 ± 0.05 ns 1476 ± 91 ns

Two-way ANOVA

pH F = 1.402; p = 0.256 F = 2.402; p = 0.127 F = 2.834; p = 0.09 F = 0.044; p = 0.835

Methane addition F = 2.307; p = 0.189 F = 2.316; p = 0.134 F = 1.444; p = 0.231 F = 4.356; p = 0.07

pH*methane addition F = 0.906; p = 0.458 F = 4.074; p = 0.059 F = 3.724; p = 0.059 F = 0.309; p = 0.58

ns means non-significant at p < 0.05 for the values in the same column

Fig. 1 Distance-based redundancy analysis (dbRDA) based on Bray–
Curtis distance showing the effects of increased methane concentration
on the structure of soil prokaryotic community along artificial pH gradi-
ent. PerMANOVA (pH R2 = 0.114, p = 0.001; methane addition R2 =
0.051, p = 0.001; pH ×methane addition R2 = 0.085, p = 0.078)
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in more acidic soils under ambient (normal) methane concentra-
tion. In contrast, Niastella and Synechococcus showed higher
indicator values in more alkaline soils under ambient methane
concentration. Genera Candidatus Nitrososphaera, Candidatus
Solibacter, Candidatus Koribacter, Nitrospira, Pirellula,
Planctomyces, Hyphomicrobium, and Burkholderia showed
higher indicator values in soils treated with various pH under
increased methane concentration. In contrast, genera Opitutus
and Rubrivivax showed higher indicator value in more acidic
soils under increased methane concentration.

Co-occurrence patterns of soil prokaryotic
communities

In total, artificial network connected 34 taxa at phylum and
4 at class level, respectively (Fig. 4). Taxa with close distance
showed high co-occurrence, while taxa with far distance

showed weak co-occurrence pattern. Network analysis re-
vealed different co-occurrence patterns among various pro-
karyotic phyla (Fig. 4). Phyla Thermotogae, Thermi and
Aquificae strongly co-occur before and after methane addi-
tion, while phyla AD3, OD1, and WS3 did not show any
co-occurrence pattern before and after methane addition.

In contrast, network analysis revealed increased number of
negative interactions (based on negative Pearson’s correlation
coefficient) among various prokaryotic phyla after methane
addition (Fig. 4). Network also uncovered different correlation
patterns among various prokaryotic taxa before and after
methane addition. More detailed analyses after FDR correc-
tions showed positive correlations of OTUs’ abundances
among Alphaproteobacteria, Betaproteobacteria, and
Deltaproteobacteria in soils incubated before methane addi-
tion. Conversely, false correlation network showed negative
correlation of OTUs’ abundances of Alphaproteobacteria,

Table 3 The effects of increased methane concentration on the relative abundances of soil prokaryotic phyla along the artificial pH gradient (two-way
ANOVA followed by Tukey’s test)

pH Actinobacteria ± SD Crenarchaeota ± SD Chloroflexi ± SD Bacteroidetes ± SD Gemmatimonadetes ± SD Planctomycetes ± SD

4.5 0.13 ± 0.04 ns 0.043 ± 0.02 ns 0.054 ± 0.01a 0.05 ± 0.01 ns 0.026 ± 0.007a 0.033 ± 0.008 ns
5.5 0.15 ± 0.03 ns 0.06 ± 0.03 ns 0.048 ± 0.009b 0.04 ± 0.02 ns 0.032 ± 0.01b 0.028 ± 0.008 ns
6.8 0.13 ± 0.05 ns 0.06 ± 0.04 ns 0.044 ± 0.01ab 0.05 ± 0.02 ns 0.026 ± 0.009a 0.023 ± 0.01 ns
7.5 0.14 ± 0.03 ns 0.05 ± 0.02 ns 0.046 ± 0.009b 0.04 ± 0.01 ns 0.035 ± 0.009b 0.031 ± 0.008 ns
8.5 0.14 ± 0.02 ns 0.05 ± 0.02 ns 0.045 ± 0.009b 0.05 ± 0.02 ns 0.039 ± 0.009b 0.032 ± 0.008 ns
Methane addition
Ambient 0.13 ± 0.04 ns 0.04 ± 0.03a 0.043 ± 0.01a 0.04 ± 0.02a 0.03 ± 0.01 ns 0.024 ± 0.008a
Methane 0.13 ± 0.03 ns 0.06 ± 0.02b 0.053 ± 0.009b 0.05 ± 0.01b 0.03 ± 0.01 ns 0.035 ± 0.007b

Two-way ANOVA
pH F = 0.121; p = 0.73 F = 0.892; p = 0.349 F = 4.607; p = 0.03 F = 1.188; p = 0.28 F = 8.543; p = 0.01 F = 0.182; p = 0.671
Methane addition F = 0.077; p = 0.78 F = 9.951; p = 0.008 F = 15.137; p = 0.01 F = 5.698; p = 0.02 F = 0.522; p = 0.471 F = 36.242; p = 0.01
pH*methane
addition

F = 17.422; p = 0.01 F = 0.541; p = 0.465 F = 2.437; p = 0.125 F = 1.761; p = 0.19 F = 10.975; p = 0.001 F = 1.629; p = 0.208

Different letters in a column means significant difference at p < 0.05

Table 2 The effects of increased methane concentration on the phylogenetic structures of soil prokaryotes along artificial pH gradient (two-way
ANOVA followed by Tukey’s test)

pH NTI ± SD PNull model expectation NRI ± SD PNull model expectation

4.5 7.712 ± 1.6 ns 0.01 3.3 ± 1.4 ns 0.01

5.5 7.87 ± 1.3 ns 0.01 3.91 ± 1.7 ns 0.01

6.8 7.22 ± 1.6 ns 0.01 2.97 ± 1.5 ns 0.07

7.5 8.2 ± 1.4 ns 0.01 3.51 ± 0.8 ns 0.01

8.5 7.87 ± 1.2 ns 0.01 3.15 ± 0.7 ns 0.01

Methane addition

Ambient 7.45 ± 1.6 ns 0.01 3.67 ± 1.5 ns 0.01

Methane 8.06 ± 1.2 ns 0.01 3.02 ± 0.9 ns 0.01

Two-way ANOVA

pH F = 0.612; p = 0.112 F = 1.481; p = 0.09

Methane addition F = 3.123; p = 0.07 F = 0.923; p = 0.17

pH*methane addition F = 1.221; p = 0.562 F = 1.426; p = 0.212

ns means non-significant at p < 0.05 for the values in the same column
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Betaproteobacteria, and Deltaproteobacteria in soils incubated
after methane addition.

Discussion

Many studies show that energy sources have great effects on
the diversity and abundance of soil biota (Eisenhauer et al.
2012; Liu et al. 2016). We did not observe any significant
changes in alpha diversity of prokaryotes after the addition
of methane using lab incubation experiments. This implicated
that methane pulse for short time (48 h in this study) probably
did not have significant effects on the species richness of soil
methanotrophs. However, methane addition affected the struc-
ture of soil prokaryotic community. These changes in the
structure of soil prokaryotes were closely related to the chang-
es in the relative abundances of dominating prokaryotic taxa.

The relative abundances of Crenarchaeota, Chloroflexi,
Bacteroidetes, and Planctomycetes increased in soils under
increased methane concentration. We suggested that the abun-
dances increase in these phyla could reflect cross feeding in-
teractions withmethanotrophs, or evenmethanotrophic capac-
ity of some members in these phyla. Previous reports indicate
the potential for methane consumption of Crenarchaeota
(Vaksmaa et al. 2017) and other bacterial phyla such as
Chloroflexi, Bacteroidetes and Planctomycetes (Héry et al.
2008; Nunoura et al. 2012). This study also emphasized the
possible roles of Chloroflexi, Bacteroidetes, and
Planctomycetes in methane oxidation, yet more evidences
are needed. In contrast, as an abundant phylum in soil,
Proteobacteria was not sensitive to methane addition and did
not respond significantly to elevated methane.

We used a single soil for incubation experiments at various
pH levels under laboratory conditions. Soil pH has significant
effects on bacterial diversity at larger geographical scale
(Lauber et al. 2009) and increase species richness along arti-
ficial pH gradient in a long-term limed soil (Rousk et al.
2010). The bacterial diversity is higher in neutral soil than that
in acidic soil (Wu et al. 2017). However, in our short-term
incubation experiment, species richness of soil prokaryotes
did not change significantly. For the bacterial composition,
the relative abundance of Chloroflexi decreased and the rela-
tive abundance of Gemmatimonadetes increased along artifi-
cial pH gradient. In contrast, another study (Lauber et al.
2009) shows that compositional changes in soil microbial
communities with pH are largely driven by the changes in
the relative abundances of Acidobacteria, Actinobacteria,
and Bacteroidetes.

The relative abundance of Alphaproteobacteria was lower
in acidic pH than that in alkaline pH. Some studies show

Table 4 The effects of increased methane concentration on the relative abundances of most frequent proteobacterial sub-phyla along artificial pH
gradient (two-way ANOVA followed by Tukey’s test)

pH Alphaproteobacteria ± SD Betaproteobacteria ± SD Gammaproteobacteria ± SD Deltaproteobacteria ± SD

4.5 0.094 ± 0.04a 0.052 ± 0.02 ns 0.028 ± 0.01 ns 0.047 ± 0.02 ns

5.5 0.1 ± 0.01ab 0.046 ± 0.007 ns 0.036 ± 0.009 ns 0.047 ± 0.01 ns

6.8 0.111 ± 0.01b 0.046 ± 0.007 ns 0.03 ± 0.005 ns 0.042 ± 0.005 ns

7.5 0.112 ± 0.02b 0.049 ± 0.007 ns 0.03 ± 0.008 ns 0.044 ± 0.008 ns

8.5 0.123 ± 0.02b 0.052 ± 0.005 ns 0.035 ± 0.01 ns 0.034 ± 0.007 ns

Methane addition

Ambient 0.11 ± 0.01 ns 0.05 ± 0.009 ns 0.03 ± 0.007 ns 0.05 ± 0.02 ns

Methane 0.11 ± 0.03 ns 0.047 ± 0.01 ns 0.03 ± 0.01 ns 0.04 ± 0.01 ns

Two-way ANOVA

pH F = 6.578; p = 0.013 F = 0.001; p = 0.977 F = 2.061; p = 0.157 F = 3.740; p = 0.06

Methane addition F = 1.345; p = 0.251 F = 1.617; p = 0.209 F = 0.939; p = 0.337 F = 2.487; p = 0.121

pH*methane addition F = 1.316; p = 0.257 F = 8.295; p = 0.01 F = 4.360; p = 0.042 F = 16.380; p = 0.01

Different letters in a column means significant difference at p < 0.05

Fig. 2 The effect of soil pH changes on methane oxidation rates (linear
regression model)
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opposite response of Alphaproteobacteria to pH (Rousk et al.
2010; Zhang et al. 2015). These discrepancies implicated that
various responses of specific taxonomic group/subgroups to
pH were likely influenced by other integrative factors, such as
carbon sources and soil properties. Our results provided an
evidence that short-term methane elevation did not alter the
responses of prokaryote communities to pH gradient. Our in-
cubation system is a closed incubation systemwithout input of
C from plant. It may also influence the sensitivity of prokary-
otes to pH changes.

Percentage of null model expectation of the mean NTI
indicated strong phylogenetic relatedness of soil prokaryotic
community in soils before and after methane addition along
artificial pH gradient. Our results indicated soil pH as a strong
environmental filter in species assembly of soil prokaryotic
community. This indicates that disturbances, e.g., altering
pH, promotes the dominance of deterministic processes (Lin
et al. 2017; Yao et al. 2017). In contrast, study of Ho et al.
(2017) hypothesize that microorganisms belong to the same
phylogenetic hierarchy at family or genus level possess dis-
tinct physiological traits.

Microbial communities in soil are characterized by
complex networks forming intricate relationships of syn-
ergistic, antagonistic, and/or neutral nature (Ho et al.
2016). Network analysis revealed different correlation
patterns among various prokaryotic taxa before and after
methane addition. Increased methane concentration may
provide energy resource for methanotrophs and their

abundance; therefore, we speculate that increased the
abundances of methanotrophs can substantially affect oth-
er members of soil prokaryotes non-sensitive to methane
concentration (Knief 2015) through secondary metabolites
of methanotrophs or cross feedings.

For example, obligate gammaproteobacterial methanotroph
Methylomicrobium alcaliphilum may directly excrete carbon-
based compounds (e.g., acetate) which can be used by other
microbes (Kalyuzhnaya et al. 2013). Conversely, specific het-
erotrophs such as Rhizobium spp. likely provide essential nu-
trients important for the growth of alphaproteobacterial
methanotroph Methylovulum miyakonense (Iguchi et al.
2011). These phenomena implicate the important roles of bi-
otic interactions in shaping co-occurrence patterns of soil pro-
karyotic communities (Ho et al. 2016).

Linear regression model revealed significant decrease
in methane oxidation along elevated pH gradient. Our
results corroborates with previous study (Dedysh and
Panikov 1997) showing acidic pH as an optimum for
higher methane oxidation rates than more alkaline pH.
Negative relationship between soil pH and methane oxi-
dation rates is observed in soils from various grasslands
across different geographical regions (Kou et al. 2017).
The effects of pH on methane oxidation rates are possibly
realized through the stimulation of bacterial growth or
activity as well as substantial shifts in the methanotroph
community structure. We focused on methane oxidizing
prokaryotes in topsoil because that upper layer is expected

Fig. 3 Heatmap of species
indicator values for OTUs
affiliated to prokaryotic genera
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be more Baerated^ and thus more active in methane oxi-
dizing. However, topsoil layer can by colonized by anaer-
obic methanothrophs II type localized in soil aggregates
with extremely low oxygenic concentration (Angel et al.
2012; Fierer 2017). These anaerobic prokaryotes can also
increase methane oxidation rates in soil with lower pH
and increased nutrient depletion.

Conclusions

Our results revealed changes of the relative abundances of
main prokaryotic taxa in soil after addition of methane.

Structure of prokaryotic community based on Bray–Curtis
distance was strongly affected by artificial pH gradient and
methane concentration. Analysis of phylogenetic relatedness
indicated that microbial community was mainly shaped by
deterministic factors. Therefore, soil pH constituted a strong
environmental filter in species assembly of soil prokaryotic
community. In addition, methane oxidation rates decreased
significantly with elevated pH. The interactive effects of ele-
vated methane concentration and pH are therefore promising
topic for future research.
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