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Abstract

Sustainable enhancement in food production from less available arable land must encompass a balanced use of inorganic,
organic, and biofertilizer sources of plant nutrients to augment and maintain soil fertility and productivity. The varied responses
of microbial inoculants across fields and crops, however, have formed a major bottleneck that hinders its widespread adoption.
This necessitates an intricate analysis of the inter-relationships between soil microbial communities and their impact on host plant
productivity. The concept of “biased rhizosphere,” which evolved from the interactions among different components of the
rhizosphere including plant roots and soil microflora, strives to garner a better understanding of the complex rhizospheric
intercommunications. Moreover, knowledge on rhizosphere microbiome is essential for developing strategies for shaping the
rhizosphere to benefit the plants. With the advent of molecular and “omics” tools, a better understanding of the plant-microbe
association could be acquired which could play a crucial role in drafting the future “biofertilizers.” The present review, therefore
aims to (a) to introduce the concepts of rhizosphere hotspots and microbiomes and (b) to detail out the methodologies for creating
biased rhizospheres for plant-mediated selection of beneficial microorganisms and their roles in improving plant performance.
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Introduction

Biofertilizers are preparations containing specialized living
organisms that can fix, mobilize, solubilize, or decompose
nutrient sources which, when applied through seed or soil,
enhance nutrient uptake by plants. Biofertilizer research
started with “Nitragin,” the first commercially produced and
patented culture of Rhizobium, by Nobbe and Hiltner in 1895
(Nobbe and Hiltner 1896). The introduction of yellow seeded
soybean in India in the 1960s led to a spurt in demand for
soybean inoculants in the region. This intensified research in
development of microbial formulations for pulses, groundnut,
and even forage legumes. The discovery of Azotobacter,
Azospirillum, blue-green algae and a host of other beneficial
microorganisms soon followed. Interestingly, “biofertilizer” is
a misnomer and the term “microbial inoculants” better suit

< Saritha Mohanram
sarithamohanram @ gmail.com

Division of Integrated Farming System, ICAR-Central Arid Zone
Research Institute, Jodhpur, Rajasthan 342003, India

these plant growth-promoting organisms, which are capable
of exerting beneficial effects on plants. Generally, 60-90% of
the total applied fertilizer is lost and in this regard, microbial
inoculants have prominence in sustainable integrated nutrient
management systems (Bhardwaj et al. 2014). Moreover, the
utility of poor-quality native nutrients in soil necessitates mi-
crobial interventions. For example, approximately 90% of to-
tal soil K is found in crystalline, insoluble mineral forms like
feldspars and mica, which plants cannot utilize (Meena et al.
2014). To make them available for plant nutrition, microor-
ganisms which can solubilize and release K should be
deployed.

While positive responses have been recorded in a range of
field trials, the beneficial effects from the application of mi-
crobial inoculants are found to differ greatly under different
agro-environmental conditions and this has resulted in incon-
sistency in responses across crops and regions (Table 1). There
are also reports on the efficacy of microbial inoculants on
particular varieties of crops, but not others. For example, the
Rhizobium strain G,, which increased the yield of four chick-
pea varieties—T53, Gwalior,, G-130, and Pusa-53—was inef-
fective on the varieties R.S.II and N-59 (Sundara Rao 1974).
This suggests the host plant-specificity and strain-specificity
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Table 1 Varied responses of crops to microbial inoculation

Microbial inoculant Crop Remarks

Reference

Bacillus megaterium Vegetable crops, grains,
and potatoes

Chickpea

Various crops

Rhizobium

Arbuscular mycorrhizal fungi

Rice
Wheat

Flax and cereals

Associative nitrogen-fixing bacteria
Azotobacter

Azospirillum brasilense and
Bacillus circulans

Azospirillum Wheat
Pseudomonas, Azospirillum, Maize, wheat, sunflower,
Azotobacter, Bacillus lettuce

Yield increases of 09%—70%

Yield ranging from 30 to 610 kg/ha

Negative interactions to 14-fold yield
increase

Yield increases of 10%—30%
Yield ranging from 34 to 247 kg/ha
Yield increases of 8%—30%

12.9%-22.5% increase in dry weight
Yield increases of 19%—40%

Smith et al. (1961)

Subba Rao (1976)

Black and Tinker (1979), McGonigle (1988),
Owusu-Bennoah and Mosse (1979)

Chongbiao (1990)
Hegde and Dwivedi (1994)
Mikhailouskaya and Bogdevitch (2009)

Veresoglou and Menexes (2010)
Rubin et al. (2017)

associated with microbial inoculants. Several physical, chem-
ical, and biological factors affect the survival and functioning
of microorganisms in the soil. Soil water deficit and high
temperature are the major abiotic factors that affect their per-
formance in dryland agriculture. Inadequacy of soil organic
matter further aggravates the problem as the non-symbiotic
microorganisms depend on organic matter for energy and
growth. Microbial inoculation in soil also influences the ac-
tivity of indigenous microflora, ultimately having a bearing on
their own survival (Ramos et al. 2003). This is because the
introduced microorganism must adhere to the plant roots,
compete for space and nutrients released through root exuda-
tion, and must be able to occupy the new niche in sufficient
numbers so as to exert its effect on the host plant (Barriuso
et al. 2008b). Often, the native inhabitants of soil, which are
better adapted to the environmental conditions, outcompete
the inoculated population. Development of an effective micro-
bial inoculant thus requires the presence of multiple fitness
traits that can facilitate its colonization and survival under
harsh environmental conditions (Rana et al. 2011). To facili-
tate this, bioprospecting for more tolerant strains and novel
methodologies for understanding the plant-microbe interac-
tions are necessitated.

The rhizospheric hotspot of plant microbiome

In spite of the vast microbial diversity in soil, microorganisms
are congregated in small pockets which constitute only 1% of
the total soil volume (Young et al. 2008). These microhabitats
wherein microorganisms are aggregated to form colonies or
biofilms are characterized by faster rates of different biogeo-
chemical processes than bulk soil (Kuzyakov 2009).
Kuzyakov and Blagodatskaya (2015) defined these soil vol-
umes as “microbial hotspots” and identified four such
hotspots in soil. These include (a) rhizosphere, the region of
soil surrounding living roots which is under the influence of
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plant root exudates; (b) detritusphere, the soil region associat-
ed with decomposition of plant litter and turnover of soil or-
ganic matter; (c) biopores, formed by deep growing roots and
burrowing fauna; and (d) the soil aggregate surfaces (Kautz
2015; Kramer et al. 2016; Kuzyakov and Blagodatskaya
2015). These regions provide inputs of labile and recalcitrant
organics for bioprocesses and are also relevant with respect to
the factors like soil moisture, oxygen availability, and nitrogen
nutrition, which limit microbial activity (Kuzyakov and
Blagodatskaya 2015).

The localized availability of labile carbon and other
readily utilizable nutrients leads to a concentration of
events like respiration, gas exchange, nutrient and moisture
utilization, and other bioprocesses in the rhizosphere
(Richter et al. 2011). The major phenomenon underlying
the establishment of such distinct rhizosphere characteris-
tic is rhizodeposition, wherein plant roots secrete a wide
range of low- and high-molecular weight compounds in-
cluding sugars, organic acids, amino acids, polysaccha-
rides, vitamins, and other secondary metabolites into the
surrounding soil (Badri and Vivanco 2009). These
rhizodeposits account for ~ 11% of net photosynthetically
fixed carbon and 10-16% of total plant nitrogen (Jones
et al. 2009). These exudates play an important role in shap-
ing the rhizosphere by altering soil chemistry in the imme-
diate vicinity of plant roots and by serving as substrates for
the growth of selected soil microorganisms (Yang and
Crowley 2000). Components of plant root exudates get
varied, both qualitatively and quantitatively, depending
on the nutritional status of the plant, growth stage, and
even in time and space relative to the position of the root
(Hartmann et al. 2009; Malusa et al. 2016). This creates a
strong selective pressure in the rhizosphere leading to a
plant-driven selection of specific rhizosphere microbial
communities. Interestingly, only 2—5% of the rhizosphere
microorganisms promote plant growth (Antoun and
Kloepper 2001) and plants naturally select for these
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beneficial microorganisms which help in their growth and
survival, especially under constrained conditions (Lareen
et al. 2016). The rhizosphere microorganisms may also
enter the roots and migrate to the plant’s aerial surfaces
(phyllosphere) (Thapa and Prasanna 2018) and internal tis-
sues (endosphere). Hence, plants are often associated with
communities of microorganisms, living on or within them,
exhibiting mutually beneficial symbioses. This entire ge-
nome of microbial community, referred to as the
microbiome, plays vital roles in host’s nutrient uptake,
metabolic capabilities and tolerance to biotic and abiotic
stresses (Bulgarelli et al. 2013; Sessitsch and Mitter 2015).
Therefore, defining a host plant’s core distinct microbiome
that supports its growth is the preliminary step in improv-
ing the plant’s characteristic traits.

Significance of plant microbiome on crop
growth

In an ecological perspective, plants are more than individual
entities as they co-habit with the plant microbiota that impact
plant growth and productivity. The microbial diversity of soil
and rhizosphere microbiomes is highly underestimated as only
5% of microorganisms have been cultured by current method-
ologies (Mendes et al. 2013). The plant-associated
microbiomes consist of beneficial organisms like nitrogen-
fixing bacteria, mycorrhizal fungi, other plant growth-
promoting rhizobacteria (PGPR), and biocontrol agents, as
well as organisms that are deleterious to plant growth like
pathogenic microorganisms. Next-generation sequencing
technologies based on 16S rRNA gene have illustrated the
vast diversity of microorganisms, particularly bacteria, present
in the core microbiome of plants (Table 2). Hawkes et al.
(2007) conducted a meta-analysis of clone libraries obtained
from the rhizosphere of 14 different plant species and found
that the plants were associated with more than 1200 bacterial
taxa and the phylum Proteobacteria was the most dominant.
These assemblages of plants and microorganisms deal with
perturbations in the surroundings by detecting and responding
to environmental stimuli, resulting in specific adjustments in
their growth and development. As opined by Gopal and Gupta
(2016), the overall fitness of the plant depends greatly on the
ecological services of plant-associated microorganisms that
include biofertilization, protection from diseases and tolerance
to abiotic stresses.

Role of plant microbiome in nutrient acquisition

Research on plant microbiome actually started with the earli-
est observations of legume-Rhizobium and mycorrhizal sym-
biotic relationships. Rhizobia fix atmospheric nitrogen in a
form that is utilized by legumes and in turn depend on host

for photosynthates and for some of the genes involved in
nitrogen fixation (Hunter 2016). Mycorrhizal fungi enhance
the nutrient absorptive capacity of roots by increasing the
effective surface area and the release of hydrolytic enzymes.
Besides nutrient translocation, mycorrhizae also improve soil
structure by creating stable soil aggregates (Rillig 2004). The
similarity in signaling crosstalk and the similar cellular re-
sponses of the rhizobial and mycorrhizal symbionts led to
the establishment that the rhizobium-legume symbiosis re-
cruited mechanisms established to support the more ancient
endosymbiotic relationship with arbuscular mycorrhizal fungi
(Rogers and Oldroyd 2014; Streng et al. 2011). However,
understanding the fundamental differences between the two
responses is crucial in realizing the age-old dream of develop-
ing in planta systems to transform cereals into autonomous N-
fixing plants, by engineering into them the legume symbiosis
pathway (Geurts et al. 2012).

Several other nitrogen-fixing endophytic and free-living
rhizobacteria of the genera Bradyrhizobium, Azotobacter,
Pseudomonas, Azospirillum, Bacillus, Burkholderia, and
Achromobacter have been found to have positive impacts on
crops by enhancing both above and belowground biomass
(Guimaraes et al. 2012; Gyaneshwar et al. 2011; Igichon and
Babalola 2018). Several phosphate-solubilizing bacteria
(Pseudomonas, Bacillus, Alcaligenes, Aerobactor) and fungi
(Aspergillus, Penicillium, Fusarium, Chaetomium,
Cephalosporium) are also important members of the plant
microbiome (Chen et al. 2006; Sharma et al. 2013; Uribe
et al. 2010). They increase the solubility of inorganic phos-
phorus (P) by releasing protons, OH , or CO,, and organic
acid anions such as citrate, malate, and oxalate and can also
mineralize organic P by release of various phosphatase en-
zymes (Marschner et al. 2010). Rhizosphere microorganisms
also facilitate the uptake of trace elements such as iron (Fe)
and zinc (Zn). Microorganisms release organic acid anions or
siderophores that chelate ferric ion (Fe®*) and transfer it to the
cell surface where it gets reduced to the soluble ferrous ion
(Fe**) (Mendes et al. 2013). These siderophores include
enterobactin, pyoverdine, and ferrioxamines produced by bac-
teria and ferrichromes produced by fungi (Marschner et al.
2010). Fluorescent pseudomonads have been found to pro-
mote iron nutrition via siderophores for Graminaceous as well
as dicotyledonous plant species (Shirley et al. 2011).
Rhizosphere microorganisms (Curtobacterium, Plantibacter,
Pseudomonas, Stenotrophomonas, Streptomyces) are also
known to mobilize zinc (Zn) by acidification of medium via
gluconic acid production (Costerousse et al. 2018; Whiting
etal. 2001).

The rhizosphere microbiome also plays an important part
in organic matter decomposition which enhances soil fertility
and ultimately improves plant productivity. Lignocellulolytic
fungi like Trichoderma harzianum, Pleurotus ostreatus,
Polyporus ostriformis, and Phanerochaete chrysosporium

@ Springer



310 Ann Microbiol (2019) 69:307-320

Table 2 Vast diversity of
microorganisms identified in the Host plant Dominant members of the rhizosphere microbiome Reference

rhizosphere microbiome of plants
Oak (Characterized by 16S rRNA gene sequencing) identified Uroz et al. (2010)
5619 bacterial OTUs (operational taxonomic unit) with
38% Proteobacteria, 24% Acidobacteria, 11%
Actinobacteria, and 20% unclassified bacteria
Sugarbeet (Characterized by 16S rRNA gene microarray) Mendes et al. (2011)

Detected 33,346 bacterial and archaeal OTUs, of which 39%
were Proteobacteria (Gamma- and Betaproteobacteria),
20% were Firmicutes, 9% were Actinobacteria
Rice (Characterized by 16S rRNA gene sequencing) Edwards et al. (2015)

Bacteroidetes, Firmicutes, Chloroflexi, and
Betaproteobacteria (Rhodocyclaceae,
Comamonadaceae), Alphaproteobacteria,
Deltaproteobacteria
Sugarcane (Characterized by 16S rRNA gene sequencing) Yeoh et al. (2016)

Betaproteobacteria (Undibacterium, Burkholderia),
Alphaproteobacteria (Bradyrhizobium, Rhizobium),
Bacteroidetes (Niastella, Chitinophaga),
Gammaproteobacteria (Dyella, Frateuria), Actinobacteria
(Streptomyces, Cryocola), Chloroflexi and Firmicutes
(Bacillus)
Sugarcane (Characterized by sequencing of 16S and ITS ribosomal de Souza et al. (2016)
RNA genes)
Identified 23,811 bacterial OTUs and 11,727 fungal OTUs.
Major families were Chitinophagaceae,
Rhodospirillaceae, Hyphomicrobiaceae,
Burkholderiaceae, Rhizobiaceae, Sphingobacteriaceae,
Sphingomonadaceae, Sistotremataceae, Meruliaceae,
Ceratocystidaceae, Chaetosphaeriaceae, Glomeraceae
Oilseed rape (Characterized by RNA stable isotope probing and Gkarmiri et al. (2017)
high-throughput sequencing)
Verrucomicrobia, Proteobacteria, Planctomycetes,
Acidobacteria, Gemmatimonadetes, Actinobacteria,
Flavobacterium, Rhodoplanes, Sphingomonas,
Streptomyces, Chloroflexi, Rhizobium
Arabidopsis thaliana  (Characterized by sequencing of the ITS2 region) Urbina et al. (2018)

Ascomycetes (542 OTUs) and Basidiomycetes (145 OTUs)
were the abundant phyla, and Archaeorhizomycetes,
Leotiomycetes, Dothideomycetes, Eurotiomycetes and
Sordariomycetes were the abundant classes
Canola (Characterized by sequencing of 16S and ITS ribosomal Lay et al. (2018)
RNA genes)
Identified 6376 bacterial OTUs, 679 fungal OTUs and 49
archaeal OTUs, including Amycolatopsis sp., Serratia
proteamaculans, Pedobacter sp., Arthrobacter sp.,
Stenotrophomonas sp., Fusarium merismoides, Fusicolla sp.
Blueberry (Characterized by 16S rRNA and 18S rRNA gene Yurgel et al. (2018)
sequencing)
Abundant bacterial classes were Proteobacteria
(Alphaproteobacteria and Gammaproteobacteria),
Acidobacteria, Actinobacteria, Bacteroidetes,
Saprospirae, Chloroflexi, Ktedonobacteria, and
Verrucomicrobia Spartobacteria. Fungal taxa identified
were Ascomycota, Basidiomycota, Mucoromycota,
Glomeromycota, and Chytridiomycota

and bacteria like Pseudomonas sp., Cellulomonas sp., nutrition, but also for plant nutrition (Ahmed et al. 2018;
Cytophaga sp., Sporocytophaga sp., Chryseobacterium  Mendes et al. 2013; Singh and Nain 2014; Woo et al. 2014).
gleum, and Streptomyces sp. are known to degrade plant bio-  The plant microbiome, therefore, facilitates the growth of

mass, thereby releasing nutrients not only for their own  plants even in nutrient-poor soils.
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Role of plant microbiome in protection
from pathogens and host immunity

The rhizosphere antagonistic microorganisms ward off patho-
gens by producing antibiotics or hydrolytic enzymes and also
by competing for nutrients and space (Caravaca et al. 2015;
Raaijmakers and Mazzola 2012). Antimicrobial metabolites
produced by microorganisms include ammonia,
butyrolactones, oligomycin A, phenazine-1-carboxylic acid
(PCA), pyoluterin, pyrrolnitrin, and other moieties (Wackett
2013; Whipps 2001). Pseudomonas fluorescens suppresses
soilborne pathogens like Meloidogyne incognita and
Fusarium oxysporum by production of the antibiotic 2,4-
diacetylphloroglucinol (DAPG) (Meyer et al. 2016). Bacteria
are also known to parasitize and degrade spores of fungal plant
pathogens through the production of extracellular cell wall-
degrading enzymes such as chitinase and (3-1,3 glucanase
(Whipps 2001). Most microbial biocontrol strains produce
more than one antibiotic compound with varying degrees of
antimicrobial activity. Agrobacterium radiobacter produces
agrocin 84, which is antibiotic to closely related strains, and
polyketide antibiotics which are broad-spectrum in nature
(Raaijmakers et al. 2010). Bacterial iron chelators also effec-
tively play a role in the biocontrol of pathogens by sequester-
ing the available iron and making it unavailable to pathogenic
microorganisms, thereby restricting their growth.
Siderophores produced by Bacillus subtilis significantly man-
aged the Fusarium wilt of pepper caused by Fusarium
oxysporum (Yu et al. 2011). Siderophores produced by
Aspergillus niger, Penicillium citrinum, and Trichoderma
harzianum were found to be effective biocontrol agents and
enhanced the growth of chickpeas (Cicer arietinum) (Yadav
etal. 2011).

Rhizobacteria, particularly Pseudomonas and Bacillus,
could also act as elicitors for inducing systemic resistance
against pathogens in some plants. The siderophores produced
by Pseudomonas aeruginosa, pyoverdine, pyochelin, and its
precursor salicylic acid (SA), can induce resistance to diseases
caused by Botrytis cinerea on bean and tomato,
Colletotrichum lindemuthianum on bean, and tobacco mosaic
virus on tobacco (Bigirimana and Hofte 2002; Hofte and
Bakker 2007). Similarly, the catechol-type siderophore pro-
duced by Serratia marcescens 90-166 induces resistance to
fungal, viral, and bacterial pathogens such as Colletotrichum
orbiculare, Fusarium oxysporum, cucumber mosaic virus,
Pseudomonas syringae, and Erwinia tracheiphila in cucum-
ber (Press et al. 2001). The rhizobacterial association trigger
either the salicylic acid dependent signal transduction pathway
or the jasmonic acid and ethylene signaling pathway for pro-
tection against pathogens (Ton et al. 2002). Plants with such
induced resistance show strengthening of epidermal and cor-
tical cell walls by deposition of callose, lignin, and phenolics,
increased levels of enzymes such as chitinase, peroxidase,

polyphenol oxidase, and phenylalanine ammonia lyase, en-
hanced phytoalexin production, and enhanced expression of
stress-related genes (Heil and Bostock 2002; Whipps 2001; Yi
et al. 2013). Therefore, multiple microbial interactions in the
rhizosphere provide enhanced biocontrol against pathogens,
besides modulating the plant immune system.

Role of plant microbiome in tolerance to abiotic
stresses

Rhizosphere microorganisms, with their intrinsic metabolic
and genetic capabilities, contribute to alleviate abiotic stresses
in plants (Gopalakrishnan et al. 2015). Several microflora of
the genera Pseudomonas, Bacillus, Achromobacter,
Burkholderia, Enterobacter, Azotobacter, Methylobacterium,
and Trichoderma have been widely studied in plant growth
promotion by mitigation of multiple kinds of abiotic stresses
(Atieno et al. 2012; Meena et al. 2017; Sorty et al. 2016).
Wheat inoculated with Burkholderia phytofirmans PsJN re-
ported an increased photosynthesis, high chlorophyll content,
and grain yield than the control under water deficit in field
conditions (Naveed et al. 2014). Treatment of Indian mustard
(Brassica juncea) with the fungus, Trichoderma harzianum,
improved the uptake of essential nutrients and enhanced ac-
cumulation of antioxidants and osmolytes and decreased Na*
uptake under saline conditions (Ahmad et al. 2015). Better
root colonizing capability of Pseudomonas sp. along with its
ability to produce exopolysaccharides led to enhanced toler-
ance towards salinity (Sen and Chandrasekhar 2014). Volatile
organic carbons emitted from Bacillus subtilis GB03 were
found to downregulate the HKT! (high-affinity K* transport-
er 1) expression in roots of Arabidopsis and upregulate it in
shoots, resulting in lower Na* accumulation throughout the
plant thereby inducing tolerance to salt stress (Zhang et al.
2008). Srivastava et al. (2008) isolated a thermotolerant
Pseudomonas putida strain NBR10987 from drought-
stressed rhizosphere of chickpea and the strain was able to
combat stress by producing exopolysaccharides with unique
water holding characteristics. Rhizosphere microorganisms
also increase tolerance to low nonfreezing temperatures
resulting in higher and faster accumulation of stress-related
proteins and metabolites (Theocharis et al. 2012). Novel
stress tolerant bacteria such as Brachybacterium
saurashtrense, Zhihengliuella sp., and Brevibacterium casei
have also been reported from plant rhizospheres (Jha et al.
2012). Moreover, the bacteria such as Pseudomonas,
Microbacterium, Verrucomicrobia, and Actinobacteria and
fungi such as Lewia sp. and mycorrhizal fungi are potential
candidates for rhizoremediation as they alter the mobility and
bioavailability of metals, thereby increasing their uptake by
plants (Cruz-Hernandez et al. 2012; Kawasaki et al. 2012;
Yang et al. 2016).
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Role of plant microbiome in phytohormone
production

Plant growth-promoting rhizobacteria and fungi are known to
improve plant growth by the production of phytohormones.
These plant hormones are mostly synthesized as secondary
metabolites as they are not essential for the growth and repro-
duction of microorganisms (Shi et al. 2017). Gibberellins were
firstly discovered when it was noticed that a chemical synthe-
sized in Gibberella fujikuroi can contribute to the disease of
rice plants (Kurosawa 2003). Gibberellins can stimulate plant
growth and regulate various developmental processes like
seed germination, stem elongation, sex expression, and fruit
formation (Bomke and Tudzynski 2009). Production of
gibberellin-like substances have been reported in numerous
bacterial genera including Azospirillum sp., Rhizobium sp.,
Acetobacter diazotrophicus, Herbaspirillum seropedicae,
Bacillus sp., and Fusarium moniliforme (Bottini et al. 2004;
Meleigy and Khalaf 2009). Auxin and cytokinin production
are thought to be involved in root growth stimulation by ben-
eficial bacteria and in associative symbiosis. Auxin biosynthe-
sis by Pseudomonas, Agrobacterium, Rhizobium,
Bradyrhizobium, Azospirillum, Botrytis, Aspergillus, and
Rhizopus are well studied (Costacurta and Vanderleyden
1995; Hui et al. 2007). Apart from synthesis, plant-
associated microorganisms also alter the hormonal signaling
in plants, in response to environmental stimuli. As stated in a
previous section, the systemic resistance response induced in
plants by beneficial rhizobacteria is in many cases regulated
by the phytohormones jasmonic acid and ethylene (Zamioudis
and Pieterse 2012). Therefore, microorganism-mediated phy-
tohormone production is a potent mechanism to alter plant
physiology, leading to diverse outcomes from pathogenesis
to promotion of plant growth (Spaepen 2014).

Role of microbiome in impairing plant health
and productivity

Besides plant growth-promoting microorganisms, the root
microbiome also consists of rhizosphere microorganisms
which are detrimental to plants, competing for nutrients and
space. Plant pathogenic fungi, bacteria, and nematodes cause
various plant diseases resulting in substantial economic dam-
age to crops. Agrobacterium tumefaciens, Ralstonia
solanacearum, Dickeya sp., Pectobacterium carotovorum,
Pythium sp., Phytopthora sp., Fusarium oxysporum,
Rhizoctonia sp., Gaeumannomyces graminis, Colletotrichum
sp., and Magnaporthe oryzae are a few of the major plant
pathogenic microorganisms prevalent in soils (Dean et al.
2012; Doehlemann et al. 2017; Mansfield et al. 2012). The
phenolic compounds present in plant root exudates, in low
concentrations, facilitate conidial germination, while in higher
concentrations; inhibit mycelia growth (Mendes et al. 2013).
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Bacteria and fungi are two major groups of the plant
microbiome, and their interactions via antibiosis, modulation
of the physiochemical environment, cooperative metabolism,
protein secretion, or even gene transfer can lead to either an-
tagonism or cooperation (Chen et al. 2018; Frey-Klett et al.
2007). This implies that an alteration of the rhizosphere char-
acteristics can influence plant growth and in this context,
shaping the rhizosphere microbiome provides a sound alter-
native for the conventional microbial inoculation.

Engineering a biased rhizosphere to promote
plant-microbe interactions

Taking into account the role of plant root exudates in attracting
rhizosphere microorganisms, altering the root exudate compo-
sition, both qualitatively and quantitatively, is a major ap-
proach to reshape the rhizosphere microbiome. The creation
of a “biased rhizosphere™ is a novel procedure which involves
the expression of specific genes in transgenic plants that
would enable roots to produce the specific nutritional com-
pound, which can be used or recognized by specific beneficial
microorganisms (Reddy et al. 2002; Savka et al. 2013). The
goal of rhizosphere engineering is to direct the plant-microbe
interaction towards enhanced beneficial outcomes including
nutrient cycling, mineralization and organic matter decompo-
sition, tolerance to drought, salinity and other abiotic stresses,
and resistance to diseases (Marasco et al. 2012; Quiza et al.
2015). The methods of application of microbial inoculants in
soil, employment of tillage, plant breeding approaches, and
the use of fungicides and antibiotics for plant protection are,
to a certain extent, conventional rhizosphere modification
strategies. The application of plant growth-promoting
rhizobacteria (PGPR), nitrogen fixers, phosphate solubilizers,
and arbuscular mycorrhizal fungi (AMF) improve plant per-
formance by enhancing nutrient availability, phytohormone
production, and pathogen control. But, maintenance of high
population densities of these microorganisms after inoculation
is a major constraint owing to their decline over time and
distance from the inoculum source (O’Callaghan et al. 2001;
Quiza et al. 2015). Similarly, tillage, plant protection mea-
sures, and cultivar selection may induce soil vulnerability,
even though they may influence microbial populations by
inhibiting or enhancing the growth of soil microorganisms
(Bakker et al. 2012; Brussaard et al. 2007). Consequently,
the avenue of rhizosphere microbiome engineering has
emerged which aims to alter the rhizosphere to express a bias
towards beneficial microorganisms enabling plants to evolve
into better hosts. It harnesses the variations in plant root exu-
dation patterns in order to enhance the favorable rhizosphere
microbiome (Philippot et al. 2013; Quiza et al. 2015). Genetic
alteration of root exudation patterns could influence microbial
communities by enhancing or inhibiting the growth of
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selected microorganisms. The important strategies for rhizo-
sphere modification being researched widely include the ma-
nipulation of root border cells, engineering of inhibitors and
enhancers, and induction of microbial gene expression in host
plant cells.

Tailoring root border cells for creation of biased
rhizoshere

In the process of exudation, roots are found to release a group
of metabolically active cells known as border cells into the
surrounding soil (O'Connell et al. 1996). These are actually
the sloughed-off root cap cells, which are attached to the root
surface by a water-soluble polysaccharide matrix (Hawes et al.
2000). In the presence of water, the middle lamellae of these
cells become solubilized by the action of pectinolytic enzymes
in the cell wall and get dispersed from root tips (Wen et al.
1999). These border cells serve in mucilage secretion, sensing
of gravity, and other environmental signals, synthesis, and
export of extracellular chemicals, enzymes, antibiotics, and
sugars, which can rapidly attract and stimulate growth in some
microorganisms or repel and inhibit the growth of others,
thereby mediating rhizosphere processes (Hawes et al. 1998,
2000; Jian-Wei et al. 2002). More importantly, border cells
remain viable even after their detachment from the root cap
and are characterized by distinct mRNA and protein profiles
with respect to that of the root cap cells (Brigham et al. 1995;
Zhu et al. 2004). The ability of border cells to engineer the
chemical and physical properties of the external environment
has been demonstrated by their ability to attract fungal spores,
to repel pathogenic bacteria, to synthesize defensive structures
against pathogen invasion, and to influence gene expression in
symbiotic bacteria (Gunawardena and Hawes 2002; Hawes
et al. 2000; Somasundaram et al. 2008). These cells, therefore,
are attractive targets to be engineered for developing a biased
rhizosphere to facilitate association with beneficial
microorganisms.

Chemotactic attraction facilitating the association of plant
roots and border cells with soil microflora has been reported.
Hawes et al. (2000) studied the interaction of root knot nem-
atode with root border cells of pea and found that the nema-
todes get attracted and immobilized by the border cells.
Experiments also revealed that border cells synthesize and
export into the surrounding mucilage, histone-linked extracel-
lular DNA (exDNA), which attracts, traps, and immobilizes
pathogens in a host-microbe-specific manner (Hawes et al.
2012). Recently, molecular techniques are being used to
identify and manipulate the expression of plant genes that
control the production and specialized properties of border
cells in transgenic plants. Lilley et al. (2011) reported the
targeting of inhibitory peptides specifically to root border cells
of potato using a root-cap-specific MDK4-20 promoter of
Arabidopsis thaliana. The AtMDK4-20 promoter was found

to remain active for a long time in the detached border cells
and the transgenic potato plants expressed 94.9% resistance to
the potato cyst nematode Globodera pallid (Lilley et al. 2011).
Similarly, the expression of Cry proteins in roots and border
cells of transgenic cotton, which are involved in controlling
lepidopteran pests, was investigated by Knox et al. (2007).
ELISA was used to quantify the in vitro expression of
CrylAcand Cry2Ab proteins in root border cells of transgenic
cultivars of cotton and it was found to be constitutive and at
detectable levels (Knox et al. 2007).

Root border cells are also found to impart resistance to
aluminum (Al) toxicity (Yu et al. 2009). The responses of root
apices of pea (Pisum sativum) to Al exposure in mist culture
revealed that border cells enhanced the Al resistance of root
apices by immobilizing Al in their cell-wall pectin (Yu et al.
2009). Inhibition of root elongation, induction of callose syn-
thesis, and accumulation of Al were more pronounced in root
apices stripped from border cells. Such border cell trapping
has also been found to be associated with cadmium, arsenic,
copper, lead, mercury, and nickel (Hawes et al. 2016; Huang
et al. 2009; Kopittke et al. 2011; Zelko and Lux 2003). Root
border cells are also reported to actively take up glucose, and
also release it, thereby playing a significant role in the net
glucose exchange in rhizosphere (Stubbs et al. 2004). These
aspects could be effectively utilized to drive the rhizospheric
characteristics towards better plant-microbe associations and
plant growth. The ability of root border cells to produce mu-
cilage can be employed for better penetration of root tips
through hard soils and mineral surfaces for better uptake of
water and nutrients. The negatively charged groups on side
chains of mucilagenous polysaccharides of root border cells
can also facilitate attraction of cations like Ca**, providing
exchange sites from which roots might absorb nutrients
(Brundrett et al. 2016). In this way, the thousands of border
cells released by plant roots can be tailored to engineer the
rhizosphere to suit plant health and nutrition.

Engineering inhibitors and enhancers in plants
to induce rhizosphere bias

Plants can be genetically modified to alter soil organic anion
efflux and transportation from roots by engineering plants
with a greater capacity to synthesize organic anions and to
transport them out of the cell (Quiza et al. 2015). Plants
engineered with higher ability to excrete citrate from the roots
grew better on P-limited soil than the wild type, indicating
their ability to grow in acid soils (Koyama et al. 1999).
Root-secreted organic acids, such as malate and citrate, opti-
mize the carbon economy of soil microorganisms as they are
easily consumed by the microflora (Wu et al. 2018). Also, the
organic acid-chemotaxis regulates the recruitment of benefi-
cial rhizobacteria to the root surface (Rudrappa et al. 2008). In
tobacco and alfalfa plants genetically engineered to
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overproduce citric or malic acid, an increased colonization by
mycorrhizal fungi and rhizobacteria has been reported
(Lépez-Bucio et al. 2000; Tesfaye et al. 2003). In other stud-
ies, thizosphere pH has been altered by over-expressing the
genes controlling proton efflux from plant cells (Ryan et al.
2009). Tobacco plants transformed with a modified plasma
membrane proton pump ATPase (H"-ATPase) exhibited in-
creased H*-efflux from roots and a more acidic rhizosphere
(Gévaudant et al. 2007). The edaphic variables, especially pH,
shape the structure and function of microbial communities in
the rhizosphere (Fierer and Jackson 2006). However, Yuan
et al. (2008), by transcriptome profiling and functional analy-
sis, have revealed that an acidic soil pH induces the virulence
of Agrobacterium tumefaciens. Plants may also be engineered
to promote the growth of desired microorganisms by releasing
nutritional compounds which only the specific microorganism
can catabolize (O'Connell et al. 1996). The phenomenon of
Agrobacterium tumefaciens mediated transfer of a region of
its plasmid DNA that encodes opine biosynthesis to plant cells
forms the basis of this strategy. Guyon et al. (1993) have
demonstrated that opines produced by roots of transgenic
plants increase the population of opine-catabolizing
Agrobacterium. Similar results have also been obtained by
Mansouri et al. (2002) who reported that transgenic Lotus
plants producing opines specifically favor the growth of
opine-degrading rhizobacteria, irrespective of soil type and
plant species.

Plants may also be engineered for the production of recom-
binant proteins in order to overcome the difficulties involved
in introducing complex antibiotic synthesis machinery in
plants for inhibiting the growth of antagonists. Transfer of
genes encoding inhibitory proteins and peptides to plants en-
ables their diffusion into the rhizosphere resulting in the
growth of only selected soil microorganisms. This approach
is being studied for possible applications in the control of soil-
borne pathogens. Pathogens infect plant tissues by producing
a wide array of plant cell wall degrading enzymes. To prevent
this, polygalacturonase-inhibiting proteins (PGIPs) that inhibit
the pectin-depolymerizing activity of polygalacturonases
(PGs) secreted by microbial pathogens are made use of
(Kalunke et al. 2015). Transgenic tomato plants, expressing
a pear (Pyrus communis L.) PGIP (PcPGIP), capable of
inhibiting the PGs secreted by Bacillus cinerea showed 15%
and 25% reduction of disease lesions caused by the fungus on
ripening fruit and leaves, respectively (Powell et al. 2000). In
another study, Jach et al. (1995) detected high-level expres-
sion of genes transferred to tobacco for the production of
chitinase, (3-1,3-glucanase, and ribosome-inactivating protein,
under the control of the CaMV 35S-promoter. Fungal infec-
tion assays revealed that the expression of individual genes
resulted in increased protection against the soil-borne fungal
pathogen Rhizoctonia solani (Jach et al. 1995). Similarly, si-
multaneous expression of a tobacco class I chitinase and a
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class I (3-1,3-glucanase gene in tomato resulted in increased
resistance to Fusarium oxysporum f. sp. lycopersici with 36%
to 58% reduction in disease severity (Jongedijk et al. 1995).
Strittmatter et al. (1995) reported the inhibition of fungal path-
ogens by engineering controlled cell death in plants. The ex-
pression of bacterial ribonuclease barnase, driven simulta-
neously by a chimeric pathogen-inducible promoter (prpl-1)
from potato and the CaMV 35S promoter, in order to avoid
detrimental effects of the RNAse, was studied and the induc-
tion of barnase activity at the infection site was found to lead
to a significant reduction of Phytophthora infestans sporula-
tion on leaves (Strittmatter et al. 1995).

Engineering microbial signaling molecules in plants
to bias the rhizosphere

Plants recognize and actively respond to different rhizosphere
microorganisms by producing signals that modulate microbial
colonization (Haichar et al. 2014). Hence, plant rhizosphere
may be modified by engineering plants to release microbial
signal molecules like isoflavonoids or lipooligosaccharides
which induce microbial gene expression in the rhizosphere.
This method can be effectively utilized in ensuring nodule
occupancy by the appropriate rhizobial species in leguminous
crop plants by utilizing nodule-specific compounds as growth
enhancers (Savka et al. 2002). The regulatory mechanism of
quorum sensing, which involves the synthesis and accumula-
tion of low-molecular weight signal molecules as a function of
the population density of microbes producing these molecules
in a given environment, finds applications in this area (Savka
et al. 2002). Several microbial functions like biofilm forma-
tion, pathogenicity, and iron uptake are regulated via quorum
sensing (Abisado et al. 2018; Rutherford and Bassler 2012).
The ability to generate bacterial quorum-sensing signaling
molecules in the plant opens new avenues for manipulating
the plant-microbe interactions. Some of the microbial signals
like the N-acyl-L-homoserine lactones (AHLs) and volatile
organic compounds, which belong to a class of bacterial quo-
rum sensing signals from Gram-negative bacteria such as
Pseudomonas, play a role in plant morphogenetic processes
(Ortiz-Castro et al. 2009). Transgenic tobacco and tomato
plants expressing the Lasl gene from Pseudomonas
aeruginosa, responsible for the synthesis of AHLs have been
synthesized (Barriuso et al. 2008a). These AHLs produce get
diffused across the plasma membranes into the rhizosphere,
where they have the potential to affect bacterial processes
regulated by such molecules (Ortiz-Castro et al. 2009).
Providing transgenic plants with the ability to block or de-
grade AHL signals, otherwise termed as quorum quenching,
may provide an alternative approach for engineering plant
resistance to microbial pathogens. Transgenic tobacco and
potato plants expressing the aiiA gene responsible for AHL
degradation have shown resistance to Erwinia carotovora pv.
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carotovora infections even at very high bacterial inocula
(Dong et al. 2000).

Future prospects of plant-microbiome
associations

The rhizosphere microbiome facilitates communication be-
tween the plant and the surrounding soil environment and they
together contribute to creating a productive metagenome
which leads to improved crop productivity (Zorner et al.
2018). Studies connecting comparative genomics and meta-
bolomics have shown that specific rhizosphere bacteria are
naturally selected depending on the root exudates contents
(Zhalnina et al. 2018). For instance, comparison of wild and
domesticated common bean (Phaseolus vulgaris) grown in
agricultural soil revealed that as the genotype transitioned
from wild to domesticated, the relative abundance of
Bacteroidetes (Chitinophagaceae and Cytophagaceae) de-
creased while Actinobacteria and Proteobacteria
(Nocardioidaceae and Rhizobiaceae) increased (Pérez-
Jaramillo et al. 2017). The synergistic and complementary
mechanisms among microorganisms and of plant-microbe in-
teractions can be unveiled with the use of model plants grown
under gnotobiotic conditions as such studies throw light into
the phenomenon of microbiome-mediated host plant immuni-
ty (Sessitsch and Mitter 2015). Researchers have investigated
immune responses elicited by plant microbiomes using the
FlowPot system (Kremer et al. 2016). Microbe-free seeds of
Arabidopsis were grown in sterile, bottom-irrigated pots
alongside Arabidopsis colonized with diverse microbial com-
munities from various soils. Transcriptome profiling revealed
that colonized plants had significantly more defense-
associated transcripts involved in innate immunity, when ex-
posed to speck disease of tomatoes, caused by Pseudomonas
syringae pv tomato. The study also revealed a microbiome-
influenced host and pathogen gene expression and suggested a
“plant-pathogen-microbiome disease triangle” concept for ad-
vanced studies of microbial pathogenesis and plant disease
resistance. The phenomenon of transfer of microbiome, from
disease-suppressive soils to pathogen prevalent soils, for man-
agement of crop diseases has also been reported (Gopal et al.
2013; Turner et al. 2013).

Due to the direct influence of microbial interactions on
plants and the ability of host plants to mediate microbiome
assembly, selection on a host-microbial association is an
emerging approach to enhance plant fitness and productivity
(Mueller and Sachs 2015). Protocols may be designed
targeting the selection of a characteristic host phenotype af-
fected by the microbiome function which then gradually fa-
cilitates the transfer of specific trait-associated microbiomes
into new plant hosts (Fig. 1). Such studies describing the abil-
ity of plant-associated microbiomes to influence different

Pooling rhizosphere samples of crop species with specific phenotype
growing under different environmental and soil conditions

!

Using this soil mixture as inoculum to inoculate crop plants grown
under defined aseptic conditions

l

Using the inoculated soil from aseptically grown plants to inoculate
fresh sets of crop plants under defined conditions

!

Repeating the process for several generations using soil from
previous set as inoculum for the next generation

Fig. 1 Process of identification of trait-specific microbiome associated
with crop plants. The synergy of plant-microbiome associations forms the
basis of this selection which can be utilized to enhance plant fitness and
productivity

plant traits including growth, flowering, and abiotic stress tol-
erance have been reported (Bainard et al. 2013; Sugiyama
et al. 2013). Panke-Buisse et al. (2015) used a multi-
generation experimental system using Arabidopsis thaliana
Col to select for soil microbiomes inducing earlier or later
flowering times of their hosts. They found that the flowering
phenotype was reproducible across plant hosts which showed
shifts in flowering time corresponding with the inoculation of
early or late flowering microbiomes. Moreover, this resulted
in a mutual selection of plant host and the surrounding
microbiome (Hunter 2016). As the host plants get co-
evolved with their microbiome, this strategy of microbiome
selection could be adopted in future crop breeding strategies
for low-input sustainable agriculture. Also, the hologenome of
host-microbiome association functions as an intermediate be-
tween the genotype-environment interaction in shaping the
host plant phenotype (Hassani et al. 2018). Considering the
functional significance of plant-microbe interactions, an in-
depth study into the microbiome function, particularly, the
microbiome constituents that are active during the different
developmental stages of plant growth and their functions is
needed (Mendes et al. 2013).

Genetic improvement of plants focused on an efficient in-
teraction with beneficial microorganisms and selection of ag-
ricultural practices with less adverse effects on microbiome
therefore need to be evolved (Gopal and Gupta 2016;
Sessitsch and Mitter 2015). Application of such works in the
field, as opined by Hunter (2016) would permit crops to ex-
ploit the beneficial microorganisms in soil, as several com-
mercial crop varieties have lost this capability due to injudi-
cious use of chemical amendments.
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