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Abstract
Purpose The marine environment harbours diverse bacterial species which can be exploited for the production of valuable
compounds such as exopolysaccharides (EPS) which hold promises for biotechnological applications. The coastal waters of
Mauritius is a relatively underexplored marine environment and in this study, isolated bacterial species were tested for the
production of EPS exhibiting antibacterial properties against human bacterial pathogens from the genera Acinetobacter,
Bacillus, Campylobacter, Enterobacter, Enterococcus, Escherichia, Proteus, Pseudomonas, Salmonella, Streptococcus and
Staphylococcus.
Methods Bacteria were first isolated from seawater samples. Using the disc diffusion method, their EPS were tested for anti-
bacterial effects through two screenings, with each involving a different set of arbitrarily chosen group of pathogens. The
microorganisms producing antibacterial EPS were subsequently identified by morphological, biochemical and 16S rRNA-
based phylogenetic analyses. Those EPS exhibiting broadest antibacterial activities were eventually characterised by Fourier-
transform infrared spectroscopy (FTIR) and thin-layer chromatography (TLC).
Results Eight EPS were found to display antibacterial effects against more than half of the pathogens and the microorganisms
producing them were identified as Bacillus, Halomonas, Psychrobacter and Alcaligenes species. However, only two of these
EPS were found to be the most active, with their MIC values ranging between 62.5 and 500 μg/ml. FTIR and TLC analyses
revealed the presence of carboxyl, hydroxyl and amide as well as sulphate for the EPS, with glucose or fructose being the main
sugar.
Conclusion The results suggest that Mauritius seawater can be a source of biotechnologically useful microorganisms, producing
EPS having potential as antimicrobial agents. DNA sequence data also suggest possible novel bacterial species.
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Introduction

Over the past few years, there has been increasing interests in
the development of natural polymers, also known as biopoly-
mers, for use in industries as well as for other biotechnological
applications (Singha 2012). In this respect, polysaccharides,
representing the largest group of produced biopolymers, have
often been produced from plants for use mainly as food addi-
tives (Vuyst et al. 1998; Poli et al. 2011). However, attention
was subsequently shifted to microbial polysaccharides or
exopolysaccharides (EPS), the main component of the extra-
cellular polymeric substances. Thesemacromolecules, formed
by the polymerisation of sugar residues (Bragadeeswaran
et al. 2011; Pawar et al. 2013), are widely diverse in nature
with varying molecular weights (10–1000 kDa) and may be
classified as either homopolysaccharides, if they consist of
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only one type of monosaccharide, or heteropolysaccharides, if
they consist of multiple ones (Nwodo et al. 2012). Interest in
EPS lies mainly in their diversity, with different types of mi-
croorganisms producing EPS which vary in terms of compo-
sition, size and structure (Yadav et al. 2011). This variation,
attributed to differences in the number and types of functional
groups attached to the EPS, yields polymers of different prop-
erties (Nichols et al. 2005), thereby allowing them to have a
wide range of physiological functions within microorganisms
such as retention of nutrients to prevent starvation (Singha
2012), in biofilm formation (Vu et al. 2009), for establishing
symbiotic relationships (Jones 2012) or for protection against
desiccation and presence of toxins or antibiotics in their sur-
roundings (Singha 2012). It is, therefore, not surprising to note
that such wide diversity in properties and functions has also
made possible numerous industrial applications including in
food, cosmetics, textile, pharmaceutical, agricultural, paint,
petroleum and waste water treatment among others (Cojoc
et al. 2009; Im et al. 2010; Laurienzo 2010).

Currently, the potential applications of EPS in medicine are
of particular interest because not only have they been de-
scribed as useful for medical purposes such as arthritis treat-
ment, wound dressings, surgery or pharmaceutical capsules
(Moscovici 2015), but the widely documented health benefits
of these compounds, especially from Lactobacillus species,
have also prompted investigations on their uses as probiotics
(Panthavee et al. 2017; Dinić et al. 2018; Khalil et al. 2018).
More recently, biological activities of exopolysaccharides
have been reported, with a number of recent studies
documenting their immunostimulatory, antiviral, anti-oxida-
tive, anti-tumour and antibacterial properties (Balzaretti et al.
2017; Zhou et al. 2017; Reichert et al. 2017; El-Deeb et al.
2018; Wen et al. 2018). The latter represents an interesting
prospect in view of the increasing resistance of pathogenic
microorganisms to existing antibiotics (Ghalem 2017).
Indeed, drug-resistant microorganisms have become an in-
creasing concern and the potent ia l of microbial
exopolysaccharides in fighting microbial resistance lies both
in their intrinsic biological activities and their ability to be
used in drug delivery systems (El-Naggar et al. 2016; Sezer
et al. 2017). Furthermore, EPS with such characteristics may
also find applications in food coatings for longer preservation
as it is the case for the polysaccharide pullulan (Morsy et al.
2015; Trinetta and Cutter 2016). Hence, screening for new
sources of microbial exopolysaccharides may eventually help
in developing new antibacterial compounds with different po-
tential applications. The choice of EPS from marine microor-
ganisms is not merely based on the fact that marine microbial
natural products, especially those of pharmaceutical value,
have become increasingly popular (Debbab et al. 2010). The
sea, actually, offers a wider range of biological diversity
(Zheng et al. 2011) while at the same time, the aquatic eco-
system, being completely different from the terrestrial one, has

caused marine microbes to develop different metabolic and
physiological abilities for survival, thereby allowing the pro-
duction of new compounds not found in terrestrial organisms
(Soria-Mercado et al. 2012). As far as microbial extracellular
polysaccharides are concerned, the marine environment,
therefore, offers greater potential of obtaining new EPS-
producing microorganisms as well as novel EPS as demon-
strated in some studies (Liu et al. 2013; Gugliandolo et al.
2014; Sun et al. 2015). While it has also been common prac-
tice to screen the marine environment for biotechnologically
useful microorganisms, such has not been the case of the is-
land of Mauritius. In fact, despite having a very large exclu-
sive economic zone, its marine area has remained largely un-
explored with respect to its microbial diversity as well as their
potential biotechnological applications. The objectives of this
study are as follows: (i) isolate bacterial species from sea water
and characterise them based onmorphology, biochemistry and
DNA sequence data; (ii) extract extracellular polysaccharides
from selected bacterial species and assess their antibacterial
properties against various human pathogens, including
methicillin-resistant Staphylococcus aureus.

Materials and methods

Sample collection

Sampling was carried out during the summer period
(November 2014 to April 2015) from three different locations
in Mauritius namely Flic en Flac (coordinate 1: 20° 19′ 29″ S;
57° 22′ 8″ E), Tamarin (coordinate 2: 20° 19′ 32″ S; 57° 22′
33″ E) and La Preneuse (coordinate 3: 20° 21′ 40″ S; 57° 21′
23″ E). Thirty seawater samples were collected in sterile 125-
ml bottles at maximum depth for these sampling sites (be-
tween 10 and 15m) and theywere kept on ice until transported
to the laboratory where they were stored at 4 °C until use
within 24 h. Physical parameters such as temperature, pH
and salinity of the water samples were also taken.

Isolation of EPS-producing organisms

Each collected sample was serially diluted in filtered
autoclaved seawater and subsequently plated onto four differ-
ent media namely Plate Count Agar (PCA), Zobell™ Marine
Agar (MA) 2216 (HiMedia®), R2A Agar (HiMedia®) and
Seawater (SW) Agar, which was autoclaved seawater supple-
mented with 1.5% (w/v) agar. Plating was carried out in du-
plicate and the plates were incubated at the same temperature
as the collected samples for 24–48 h in the case of MA and
PCAwhile incubation for 3 up to 7 days was carried out for the
other two media. In order to obtain additional microorganisms
which may be better adapted for growth using seawater as a
natural liquid media, samples were also inoculated into
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filtered autoclaved seawater and incubated for at least 1 week
prior to plating onto SWagar. All incubations were carried out
not only aerobically but also under anaerobic as well as
microaerophilic conditions so that microorganisms with dif-
ferent growth requirements may also be recovered. In this
case, plates were kept in airtight jars together with
AnaeroGen™ (Oxoid™) and Campygen™ (Oxoid™) sa-
chets for generating anaerobic and microaerophilic atmo-
spheres respectively. Colonies showing visually different
characteristics including colour and shape were eventually
selected and subcultured on the same medium used as for
isolation until pure cultures were obtained. Pure cultures were
maintained and stored at 4 °C.

Production and purification of exopolysaccharides
by selected organisms

Single colonies of selected isolates were used to inoculate
Zobell Marine Broth (HiMedia®) supplemented with 5%
(w/v) glucose. After 5-day incubation, exopolysaccharides
were extracted based on the method described by Al-Nahas
et al. (2011), with modifications. Briefly, culture broth was
centrifuged at 5000 rpm for 10 min to pellet cells, after which
three volumes of ice-cold absolute ethanol was added to the
supernatant before overnight storage at 4 °C to allow precip-
itation of EPS. The mixture was then centrifuged at 5000 rpm
for 20 min to collect the polysaccharides. Purification of EPS
was carried out by first dissolving the EPS in a minimum
amount of water followed by addition of an equal amount of
20% (w/v) trichloroacetic acid prior to overnight incubation at
4 °C in order to precipitate proteins. After centrifugation at
5000 rpm for 15 min to remove protein pellets, the resulting
supernatant was further purified by dialysis (MW cutoff
12,000 Da, Sigma) against distilled water for 48 h at 4 °C.
The purified EPS was again precipitated by addition of three
volumes of ice-cold absolute ethanol and collected by centri-
fugation. The resulting pellet was eventually dried to constant
mass at 65 °C prior to storage at 4 °C.

Preliminary screening for antimicrobial activity

In order to identify EPS with antibacterial properties, the disc
diffusion assay, according to Balouiri et al. (2016), was carried
out against seven human pathogenic bacteria—the Gram-
positive Bacillus cereusATCC 10876, Staphylococcus aureus
ATCC 29213 and a clinical strain of Staphylococcus
saprophyticus as well as the Gram-negative Escherichia coli
ATCC 25922, Salmonella typhimurium ATCC 14028,
Enterobacter cloacae ATCC 13047 and Proteus mirabilis
ATCC 12453. The test strains were inoculated in Muller–
Hinton broth and allowed to grow for 24 h at 37 °C.
Cultures were then adjusted to a turbidity of 0.5 McFarland
(absorbance 0.08–0.1 at 600 nm) and 100 μl of the

standardised test strain cultures were plated onto Muller–
Hinton agar. Dried EPS from each isolated organism was dis-
solved in sterile distilled water to a final concentration of
5 mg/ml and 10 μl of each sample was applied to 6-mm sterile
discs which were subsequently placed on the agar inoculated
with test strains. Plates were incubated in upright position for
18 h at 37 °C. Zones of inhibition around discs were taken as
an indication of antimicrobial activity and results for each
extract was recorded as the diameter (to the nearest 0.5 mm)
of the zone of inhibition produced around each disc. Isolates
showing activity against a minimum of four test strains were
then selected for further work.

Morphological and biochemical characterisation
of selected isolates

Single colonies of the isolates selected from the preliminary
screening were first visualised for their general characteristics
as described by Smibert and Krieg (1994). This was followed
by their biochemical characterisation based on Bergey’s
Manual of Determinative Bacteriology (Holt et al. 1994) with
tests ranging from the regular Gram-staining for determining
bacterial morphology to other biochemical tests including cat-
alase, oxidase, sugar fermentation, urease, sulphite, indole,
motility, gelatinase, methyl red-Voges–Proskauer and nitrate
reduction.

DNA extraction

DNAwas extracted from the selected isolates using the meth-
od described by Wilson (2003) with a slight modification.
Briefly, 1.5 ml of an overnight-grown culture was centrifuged
at 13,000 rpm for 2 min and the resulting pellet was dissolved
in 567 μl of TE buffer (10 mM Tris pH 8.0 and 1 mM EDTA
pH 8.0). Two microlitres of lysozyme (50 mg/ml) was added
and the mixture was incubated for 30 min at 37 °C before
addition of 30 μl of 10% (w/v) SDS as well as 3 μl of
Proteinase K (20 mg/ml). This was followed by another incu-
bation for 1 h at 37 °C after which 100 μl of 5 M NaCl and
80 μl CTAB/NaCl (10% (w/v) CTAB in 0.7 M NaCl) was
added. The mixture was then incubated at 65 °C for 10 min.
An equal volume of phenol/chloroform/isoamyl alcohol
(25:24:1) was added and the mixture was subsequently cen-
trifuged for 5 min at maximum speed prior to the transfer of
the upper layer to a fresh microcentrifuge tube. The same
process was repeated a second time using chloroform/
isoamyl alcohol (24:1). To the aqueous layer, 0.6 volume of
ice-cold isopropanol was added and after 1-h incubation, the
mixture was centrifuged at 4 °C. The resulting pellet was then
washed with 70% (v/v) ethanol, dried and diluted in TE buffer
before being run on 1% (w/v) agarose gel to check for the
presence of DNA.
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PCR amplification of 16S rRNA and DNA sequencing

The 16S rRNA (1400–1500 bp) was amplified by PCR using
the primer pairs 27F (5′-AGAGTTTGATCATGGCTCAG)
and 1492R (5′-CGGTTACCTTGTTACGACTT) as forward
and reverse primers respectively (Frank et al. 2008). Reactions
were carried out in 25-μl reaction volumes using the following
components: DreamTaq™ buffer (2.5 mM MgCl2), dNTP
(0.05 mM), Primers (0.4 μM) each, DreamTaq™ DNA poly-
merase (1.5 U) and 40 μg DNA. PCR runs were carried out
with the following parameters: initial denaturation for 5 min at
95 °C, followed by 30 cycles, each having a denaturation step
at 95 °C (1 min), an annealing step at 55 °C (1 min) and
extension step at 72 °C (1 min) before a final extension at
72 °C for 5 min. Amplified products were purified and sent
for sequencing with primers mentioned above at Inqaba
Biotech South Africa.

Identification of selected isolates and phylogenetic
analyses

The 16S rRNA sequences were compared to those of validly
published species available in the database of the National
Centre for Biotechnology Information (NCBI) using the
Basic Local Alignment Search Tool (BLAST). Pairwise nu-
cleotide similarity values between the reference strains and the
isolates were determined using the EZBioCloud server
(https://www.ezbiocloud.net/) (Yoon et al. 2017). Sequences
of closely related species were retrieved and aligned with que-
ry sequences using ClustalW (Thompson et al. 1994). Using
PAUP 4.0 (Swofford 2002), phylogenetic trees were subse-
quently constructed using three different tree building
methods namely maximum parsimony (Fitch 1971), maxi-
mum likelihood (Felsenstein 1981), with the nucleotide sub-
stitution model determined using jModelTest (Guindon and
Gascuel 2003; Darriba et al. 2012) and eventually
neighbour-joining method (Saitou and Nei 1987), for which
distance matrices were generated based on Kimura’s two-
parameter model (Kimura 1980). The robustness of the tree
topologies was evaluated using bootstrap analysis, with 1000
replications of the neighbour-joining method, 500 replications
of the maximum parsimony and 100 replications of maximum
likelihood.

Secondary screening—antimicrobial activity of EPS
from selected isolates and minimum inhibitory
concentration

In order to differentiate between the selected EPS for identi-
fying only those exhibiting the broadest range of antibacterial
activity, a second set of screening was carried out using only
those extracts selected during the previous screening to further
compare their biological activity. For this purpose, EPS was

extracted as described before and disc diffusion assay was
again performed but in this case, against a different set of
seven pathogenic strains consisting of Enterococcus faecalis
ATCC 29212, Streptococcus pneumonia ATCC 49619,
Streptococcus agalactiaeATCC 27956,Campylobacter jejuni
NCTC 11351 and three more clinical strains namely
methicillin-resistant Staphylococcus aureus, Pseudomonas
aeruginosa and a species of Acinetobacter.

This was followed by broth microdilution assay to deter-
mine the minimum inhibitory concentration (MIC) of each
polysaccharide extract used in the secondary screening against
all the 14 pathogenic strains (Balouiri et al. 2016). Basically,
50 μl of Muller–Hinton broth was added to each well of a 96-
well microtitre plate. This was followed by the addition of
50 μl of 8 mg/ml EPS to the first well of each column. Fifty
microlitres from the first well was then transferred to the sec-
ond well, leading to a twofold dilution of the EPS and this was
repeated up to the eighth well, with frequent pipetting before
each transfer for proper mixing. Eventually, from the last one,
50 μl was removed and discarded in order to keep a constant
volume in each well. Test strains were cultured as before and
were diluted to a concentration of 1 × 106 CFU/ml. Fifty
microlitres of that diluted test strain was dispensed into each
well to reach a final concentration of 5 × 105 CFU/ml per well
and the plates were incubated for 18–20 h under appropriate
conditions required for the growth of the pathogenic strains.
For each plate, chloramphenicol and Muller–Hinton broth
with extract only were used as negative controls while for
positive control, inoculated broth without extract was used.
After incubation, inhibitory activity of EPS was observed
using the method of Eloff (1998). Ten microlitres of p-
iodonitrophenyltetrazolium violet (INT)—0.2 mg/ml—was
added to each well and the presence of a red coloration indi-
cated the presence of viable cells and hence absence of anti-
microbial activity. INT was added to each well of a column
until red coloration was obtained for two or more consecutive
wells. The MIC value was taken as the minimum concentra-
tion of EPS for which no colour change was observed. Results
were analysed using two-way ANOVA with test strains and
EPS extracts as variables (Minitab 17) to check for differences
at 5% significance level.

Chemical characterisation of extracellular
polysaccharides

The total carbohydrate content of the polysaccharides with the
broadest range of antibacterial activity was spectrophotomet-
rically determined by the phenol-sulphuric acid method
(Dubois et al. 1956) using glucose as standard while the pres-
ence of protein was determined, using bovine serum albumin
as standard, by the Lowry method (Lowry et al. 1951).
Sulphate content was also measured as described by Ji et al.
(2013), with dipotassium sulphate as standard.
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Analysis of monosaccharide composition

The monos a c cha r i d e compos i t i on o f s e l e c t e d
exopolysaccharides was qualitatively determined by thin-
layer chromatography. The EPS was first hydrolysed, as de-
scribed by Zhang et al. (2016), with 2 N sulphuric acid for 4 h
at 100 °C. The hydrolysed samples were subsequently con-
centrated prior to application on silica gels (Merck) along with
the reference sugars glucose, fructose, rhamnose, ribose, arab-
inose, xylose and galactose. The chromatogram was devel-
oped using acetone/butanol/H2O (8:2:2) for neutral sugars,
butanol/ethanol/H2O (5:3:2) for oligosaccharides and buta-
nol/H2O/acetic acid (3:1:1) for acidic sugars (Manca et al.
1996). Visualisation was done by spraying with ethanolic p-
anisaldehyde reagent (1 ml p-anisaldehyde, 1 ml conc.
sulphuric acid in 20 ml ethanol), α-naphtol-trichloroacetic
acid (equal volumes of 0.2% ethanolic α-naphtol + 20% aque-
ous trichloroacetic acid) and ninhydrin for detection of sugars,
uronic acids and amide groups respectively.

Attenuated total reflection Fourier-transform infrared
spectroscopy

Attenuated total reflection Fourier-transform infrared spec-
troscopy (ATR–FTIR) analysis (Bruker Alpha-T) was carried
out in order to determine the functional groups present in the
exopolysaccharides which were effective against most patho-
gens. The samples were directly analysed and the spectra were
acquired on OPUS Spectroscopy Software (Bruker) in the
range 4000–100 cm−1 at 2 cm−1 spectral resolution and with
25 scans.

Results

Sample collection and isolation

For all samples collected, temperature recorded was quite uni-
form ranging between 27 and 29 °C, with pH being between
8.2 and 8.4. Salinity was also uniform with an average of
3.2%. The seawater showed high microbial load with values
between 106 and 107 CFU/ml. This was reflected in the large
number of colonies obtained on the different media but even-
tually, 40 colonies were selected for EPS production based on
morphological differences or their mucoid nature.

Preliminary screening

For the preliminary screening, most extracts showed antibac-
terial activity against at least one test strain, with Figs. 1 and 2
showing the observed zones of inhibition for some of the
extracts. Overall, Gram-negative bacteria were more suscep-
tible than the Gram-positive ones. As shown in Table 1, of all

the EPS tested, only eight—E5, E15, E16, E18, E19, E20,
E26 and E37—(from isolates EPS-5, EPS-15, EPS-16, EPS-
18, EPS-19, EPS-20, EPS-26, EPS-37 respectively) were ac-
tive against a minimum of four pathogenic strains and were,
therefore, selected for further screening as a result of their
broader range of activity.

Morphological and biochemical characterisation
of isolates

Six of the isolates showed similar colony morphology when
grown on marine agar, with the colonies being circular,
smooth and elevated (Fig. 1) (Supplementary Material), while
the remaining two (EPS-20 and EPS-26) were mostly irregu-
lar in shape (Fig. 2) (Supplementary Material). Other charac-
teristics of the selected microorganisms were as shown in
Table 1 (Supplementary Material) while the source of their
isolation, including media on which they have been isolated
were as shown in Table 2 (Supplementary Material).

All the isolates were also found to be motile as well as
Gram-negative, except for EPS-20 and EPS-26. They were
also rod-shaped except for EPS-5 which was coccus-shaped.
Further biochemical characterisation showed that all of them
were negative for methyl red-Voges–Proskauer tests as well as
for indole production. They were also unable to use citrate or
gelatin as carbon source with both tests being negative.
However, they were all catalase and oxidase positive.
Results of the remaining tests for which differences were ob-
served are summarised in Table 3 (Supplementary Material).

Fig. 1 Antibacterial activity of EPS extracts E19, E20, E21, E22 and E23,
with red arrow showing diameter of zones of inhibition

E24
E26

E27 E28

Fig. 2 Zones of inhibition produced by E24, E25, E26 and E27, with
absence of antibacterial activity for E28
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Table 1 Activity of EPS from isolates against test strains for primary screening

EPS Test strains

Enterobacter
cloacae

Salmonella
typhimurium

Escherichia
coli

Staphylococcus
aureus

Staphylococcus
saprophyticus

Bacillus
cereus

Proteus
mirabilis

E1 + - - + - - -

E2 + - - - - - -

E3 + - - + - - -

E4 + + - + - - -

E5 9.8 ± 0.1 9.9 ± 0.2 - 7.4 ± 0.2 7.0 ± 0.2 - 9.0 ± 0.1

E6 + - - - - - +

E7 + - - + + - -

E8 - - - + + - +

E9 + - - - - - +

E10 + - - - - - -

E11 - - - + - - +

E12 + - - + - - +

E13 - - - - - - +

E14 - + - - - + +

E15 10.9 ± 0.2 7.8 ± 0.1 - 9.5 ± 0.1 - - 8.9 ± 0.2

E16 10.6 ± 0.2 7.9 ± 0.1 - 10.0 ± 0.4 - - 8.6 ± 0.1

E17 - - - + - + +

E18 10.8 ± 0.1 9.4 ± 0.4 - 8.1 ± 0.1 7.6 ± 0.3 - 8.0 ± 0.1

E19 7.9 ± 0.2 9.5 ± 0.1 - 8.1 ± 0.2 8.6 ± 0.2 - 11.0 ± 0.2

E20 10.1 ± 0.3 6.4 ± 0.1 - 9.1 ± 0.1 7.1 ± 0.3 - 11.9 ± 0.2

E21 + - - - - - +

E22 + - - - - - +

E23 - - - + - - +

E24 - - + - + - +

E25 + - - + + - +

E26 11.4 ± 0.2 - 9.5 ± 0.1 8.0 ± 0.4 8.1 ± 0.2 - 9.9 ± 0.1

E27 - - + + - - +

E28 + - - - + - -

E29 - - - + + - +

E30 - - - + + - +

E31 - - - + + - +

E32 - - - + + - +

E33 - - - - + - +

E34 + + - - - - -

E35 - + - + + - -

E36 - - + + + - -

E37 9.0 ± 0.2 7.1 ± 0.2 7.6 ± 0.1 9.1 ± 0.2 - - -

E38 + - - - - - -

E39 - - - - - - -

E40 - - - - - - -

+ indicates activity; - indicates no activity; values for diameter of zones of inhibition shown only for selected EPS as diameter (in millimetres) ± standard
deviation;
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DNA-based identification and phylogenetic analyses

Based on 16S rRNA sequences (between 1400 and
1500 bp), it was found that the eight selected isolates
could be assigned to two main bacterial phyla namely
Proteobacteria and Firmicutes (Figs. 3, 4, 5 and 6).
From the phylum Proteobacteria , only EPS-37
belonged to the class Alphaproteobacteria, and closely
related to Alcaligenes faecalis (Fig. 3), with which it
shared 99.5% nucleotide sequence similarity. Five other
isolates from the same phylum could be assigned to
the class Gammaproteobacteria and among these, one
(EPS-5) was identified as belonging to the genus
Psychrobacter, with the isolate having P. ciconiae as
its closest phylogenetic relative (Fig. 4). Interestingly,
this isolate formed an independent lineage from the
P. ciconiae subclade and shared only 96.1% nucleotide
similarity with the type strain of P. ciconiae. The re-
maining four isolates were identified as members of
the genus Halomonas. In this case, EPS-15 and EPS-
16 formed a distinct clade with H. venusta species
while EPS-18 and EPS-19 were more closely related
to H. aquamarina and H. meridiana respectively (Fig.
5). To the other phylum Firmicutes, only two isolates,
EPS-20 and EPS-26, could be assigned. However, even

though they formed a distinct subclade, their phyloge-
netic relationship with any particular species could not
be resolved (Fig. 6).

Secondary screening—disc diffusion and minimum
inhibitory concentration

For the second screening whereby the EPS from the eight
isolates were further compared for their antibacterial activity,
significant differences were observed between the growth-
inhibiting properties of the eight EPS (p < 0.05). As shown
in Table 2, only two extracts, namely E15 and E37, inhibited
the growth of five and four additional test strains respectively.
The remaining polysaccharides were active against less than
half of the test strains. The same results were reflected in the
MIC assays during which the eight EPS were tested against
the whole set of 14 pathogens. In this case, only E15 and E37
inhibited the growth of at least 10 test pathogenic strains
(Table 3). The minimum recorded MIC value was
62.5 μg/ml for E37 against Salmonella typhimurium while
the rest of the values varied between 125 and 500 μg/ml. As
far as the other extracts were concerned, they were inactive
against most of the pathogens, except for E26 which was
inhibitory to up to seven strains. MIC values, in these cases,
ranged from 500 to 2000 μg/ml.

Fig. 3 Neighbour-joining tree
based on 16S rRNA sequences
showing the relationship
of isolate EPS-37 with other
strains from the Alcaligenaceae
family. Bootstrap values
(expressed as percentages of 1000
replications) ≥ 50 are shown at
branch nodes. represent nodes
obtained for all phylogenetic trees
while represent nodes obtained
only on two of the tree topologies.
Number in parentheses indicates
GenBank nucleotide accession
numbers. Oxalobacter
vibrioformis WoOx3 was chosen
as outgroup. Bar represents 0.007
substitution per nucleotide
position
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Chemical characterisation of extracellular
polysaccharides and monosaccharide composition

The two selected EPS extracts, E15 and E37, were both made
up of around 60% sugar. E15 also had 6% protein content,
22% sulphate content, with fructose being the main sugar
detected while E37 had a sulphate content of 19%, a protein
content of 7% and consisted of glucose. The presence of am-
ides was also detected in both extracts while the absence of
uronic acids could also be noted.

ATR–Fourier-transform infrared spectroscopy

Based on the results of the screenings, E37 and E15 were
therefore selected for analysis by ATR–FTIR, with Figs. 7
and 8 showing the spectra obtained. In the case of E37, the
broad band at 3272 cm−1 and the less intense ones at 2919 and
2855 cm−1 could be assigned to hydrogen bonded O–H
stretching vibrations and to C–H stretching variations respec-
tively, common to polysaccharides (Ordóñez and Rupérez

2011). The signal at 1651 cm−1 could be attributed to a C=O
stretch of an acetyl or carbonyl group, with the peak at
1551 cm−1 being attributed to N–H bonding of a secondary
amide, which could be linked to protein presence
(Chalkiadakis et al. 2013). Among other features, the peaks
between 1329 and 1432 cm−1 were likely to represent the
symmetric stretching of the carboxylate functional group
(COO−) or its C–O stretching bands (Kielak et al. 2017;
Sardari et al. 2017). There was also the absorption at
1216 cm−1, suggesting an asymmetric stretching of sulphate
ester O–S–O (Ordóñez and Rupérez 2011; Yang et al. 2012;
Sardari et al. 2017). Finally, for the region from 1200 to
800 cm−1, often considered a fingerprint region used to char-
acterise polysaccharides (Sajna et al. 2013), the strong peak at
1019 cm−1 could be assigned to ring stretching vibrations, C–
OH bending as well as the coupled C–O and C–C stretching
vibrations, all of which are characteristics of polysaccharides
(Choma et al. 2013; Kielak et al. 2017). The peak at 826 cm−1

within this fingerprint region also suggested that E37 could
consist of only of α-glycosidic linkages, especially with the
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Fig. 4 Neighbour-joining tree
based on 16S rRNA sequences
showing the relationship of
isolate EPS-5 with other strains
from the Moraxellaceae family.
Bootstrap values (expressed as
percentages of 1000 replications)
≥ 50 are shown at branch nodes.

represent nodes obtained for all
phylogenetic trees while rep-
resent nodes obtained only on two
of the tree topologies. Number in
parentheses indicate GenBank
nucleotide accession numbers.
Pseudomonas aeruginosa DSM
50071 was chosen as outgroup.
Bar represents 0.02 substitution
per nucleotide position
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absence of any significant signal in the 890 cm−1 region,
which would then have been indicative of β-glycosidic link-
ages (Kalyanasundaram et al. 2012; Du et al. 2017; Kielak
et al. 2017). The spectrum for E15 (Fig. 8) had many of the
peaks (between regions 500–1600 cm−1 and 3000–
4000 cm−1) corresponding to the same functional groups as
those present in E37, except for the region 2000–2400 cm−1,
which was more likely due to background noise within the
spectrum.

Discussion

In this work, microorganisms isolated from seawater of
Mauritius were screened for their ability to produce polysac-
charides which exhibit antibacterial properties. Several au-
thors have reported on the potential of exopolysaccharides
as antimicrobial agents (Wilson et al. 2011; Karlapudi et al.
2016; Wu et al. 2016) and this property was demonstrated for
EPS obtained from different types of microorganisms
(Ghalem 2017; Jeong et al. 2017). Similarly, in this study,
eight selected marine isolates were shown to produce EPS

which could successfully inhibit the growth of human patho-
genic bacteria. Since morphological- and biochemical-based
methods were insufficient for their taxonomic classification,
identification was largely based on their 16S rRNA sequences
through phylogenetic analyses.

Phylogeny generated indicated that EPS-37 could be iden-
tified as Alcaligenes faecalis as it clusters together with other
A. faecalis strains with strong support (Fig. 3). In fact, our
isolate clustered with species obtained from different environ-
ments, suggesting that A. faecalis strains, including EPS-37
could be more of a ubiquitous strain rather than a strictly
marine one. The other isolate, EPS-5, which could be assigned
to the genus Psychrobacter, was more closely related to
P. ciconiae. Psychrobacter species are known to be
halotolerant (Romanenko et al. 2002) and it could be that
our isolate shares similar halotolerance characteristics.
However, further investigations are needed to confirm same
as Kämpfer et al. (2015) isolated P. ciconiae as a new species
from white stork nestling in a non-marine environment. Our
phylogeny also depicts EPS-5 as a separate lineage from the
P. ciconiae group (Fig. 4) and this isolate shares only 96.1%
nucleotide sequence similarity with the type strain. A
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Fig. 5 Neighbour-joining tree
based on 16S rRNA sequences
showing the relationship
of isolates EPS-15, EPS-16, EPS-
18 and EPS-19 with other strains
from the Halomonadaceae fami-
ly. Bootstrap values (expressed as
percentages of 1000 replications)
≥ 50 are shown at branch nodes.

represent nodes obtained for all
phylogenetic trees while rep-
resent nodes obtained only on two
of the tree topologies. Number in
parentheses indicate GenBank
nucleotide accession numbers.
Marinomonas mediterranea
MMB-1 was chosen as outgroup.
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sequence similarity value less than 98.6% in 16S rRNAwith
the closest type strain has been suggested to indicate a new
species (Kim et al. 2014; Chun et al. 2018) and in fact, for this
particular genus, values higher than this threshold have also
been reported for novel Psychrobacter species (Zeng et al.
2016). Moreover, EPS-5 does show physical differences from
the features of P. ciconiae described by Kämpfer et al. (2015),
especially concerning its coccus shape and sugar utilisation.
This indicates that EPS-5 could potentially represent a new
species but further investigations are warranted.

Four of our selected isolates (EPS-15, EPS-16, EPS-18 and
EPS-19) could be assigned to the genusHalomonas. Members
of this genus are well known to be halophilic species (Wang
et al. 2007) and therefore, can adapt well to saline conditions.
In this case, phylogenetic analyses supported the identities of
EPS-15 and EPS-16 as H. venusta as well as those of EPS-18

and EPS-19 as H. aquamarina and H. meridiana respectively
(Fig. 5). On the other hand, the identification of isolates EPS-
20 and EPS-26 was limited to genus level. They clustered
along with other Bacillus species (e.g. B. paramycoides,
B. anthracis, B. cereus, B. thuringiensis) but this subclade
(Fig. 6) received moderate support and phylogenetic relation-
ships with any particular species within the clade could not be
resolved (sequence variation was very minimal). In fact, there
has been concerns on the reliability of 16S rRNA sequences to
delineate species with high level of nucleotide similarities
(Janda and Abbott 2007; Woo et al. 2009) and other genes
exhibiting more sequence variability are needed. This applies
particularly for species such as Bacillus cereus and its close
relatives whereby classification is difficult given that high
similarity was obvious even when whole genomes were com-
pared (Schmidt et al. 2011; Okinaka and Keim 2016). This led

Fig. 6 Neighbour-joining tree
based on 16S rRNA sequences
showing the relationship
of isolates EPS-20 and EPS-26
with other strains from the
Bacillaceae family. Bootstrap
values (expressed as percentages
of 1000 replications) ≥ 50 are
shown at branch nodes. repre-
sent nodes obtained for all phylo-
genetic trees while represent
nodes obtained only on two of the
tree topologies. Number in pa-
rentheses indicate GenBank nu-
cleotide accession numbers.
Staphylococcus saprophyticus
ATCC 15305 was chosen as
outgroup. Bar represents 0.02
substitution per nucleotide
position

Table 2 Zones of inhibition (mm) produced by each of the eight EPS for secondary screening

Methicillin-resistant
Staphylococcus aureus

Enterococcus
faecalis

Streptococcus
pneumoniae

Streptococcus
agalactiae

Pseudomonas
aeruginosa

Acinetobacter
sp.

Campylobacter
jejuni

EPS extract

E5 7.8 ± 0.1 0.0 0.0 0.0 7.4 ± 0.4 0.0 0.0

E15 10.0 ± 0.1 11.3 ± 0.2 9.4 ± 0.2 7.4 ± 0.3 0.0 0.0 9.5 ± 0.1

E16 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E18 0.0 0.0 0.0 0.0 0.0 0.0 0.0

E19 0.0 0.0 7.5 ± 0.1 0.0 7.4 ± 0.2 0.0 0.0

E20 0.0 0.0 8.8 ± 0.1 0.0 7.4 ± 0.3 0.0 8.3 ± 0.1

E26 7.5 ± 0.2 0.0 0.0 0.0 0.0 7.6 ± 0.3 0.0

E37 8.8 ± 0.2 0.0 7.8 ± 0.1 0.0 7.6 ± 0.1 0.0 7.5 ± 0.2

Values for zone of inhibition shown as diameter (in millimetres) ± standard deviation
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to the suggestion that they could be genetically classified as
the same organism (Zahner et al. 2013). However, even
though DNA–DNA hybridisation values less than the 70%
threshold indicated that they were indeed distinct organisms
(Guinebretière et al. 2013), the species of this subclade are
often referred to as the Bacillus cereus group (Ceuppens
et al. 2013; Zahner et al. 2013) but to avoid nomenclatural
confusion, we label our isolate as an unidentified Bacillus
species.

In this study, several isolated marine microorganisms were
shown to produce EPS which could successfully inhibit the
growth of human pathogenic bacteria, with Gram-negative
bacteria being more susceptible than the Gram-positive ones,
except for Staphylococcus aureus which was also very sus-
ceptible. These two types of bacteria differ in their cell walls,
with Gram-negative bacteria having a thinner one as well as
an outer layer compared to Gram-positive bacteria (Silhavy
et al. 2010; Brown et al. 2015). Hence, the observed

differences in susceptibility could very likely be due to the
way in which the EPS interact with the different cell walls.
In fact, the efficiency of other antimicrobial compounds has
also been linked with differences in the cell walls between the
two types of bacteria (Prochnow et al. 2016). This includes the
polysaccharide chitosan, for which its positively charged
structure and hydrophilic nature is considered essential for
antimicrobial activity against Gram-negative bacteria (Kong
et al. 2010) since the thin surfaces of these organisms are
negatively charged, resulting in electrostatic interactions
which may not only disrupt cell wall permeability but also
cause its hydrolysis and subsequent leakage of cell contents
(Goy et al. 2009). However, it should be noted that, as far as
chitosan is concerned, there are conflicting reports on which
group of bacteria is more susceptible (Kong et al. 2010). In
addition to this, the growth of Gram-positive organisms such
as Staphylococcus aureus was also inhibited while no effect
on Escherichia coli, a Gram-negative one, was observed.

Table 3 Minimum inhibitory concentration of selected EPS against pathogenic strains

Minimum inhibitory concentration (μg/ml)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

EPS extract

E5 ni 1000 500 ni ni ni 2000 ni 2000 ni ni ni ni ni

E15 250 250 250 ni ni 250 500 250 250 250 ni ni 250 500

E16 ni 1000 500 ni ni ni 2000 ni 1000 500 ni ni ni 2000

E18 ni ni ni ni ni ni ni ni ni ni ni ni ni ni

E19 ni ni ni ni ni ni ni ni ni 500 500 ni ni ni

E20 ni ni ni ni ni ni ni ni ni 500 500 ni ni 250

E26 ni 500 500 ni 500 500 2000 2000 2000 ni ni ni ni ni

E37 250 500 250 ni 62.5 500 250 500 250 250 250 ni ni 125

1—Bacillus cereus, 2—Staphylococcus aureus, 3—Staphylococcus saprophyticus, 4—Escherichia coli, 5—Salmonella typhimurium, 6—Enterobacter
cloacae, 7—Proteus mirabilis, 8—methicillin-resistant Staphylococcus aureus, 9—Enterococcus faecalis, 10—Streptococcus pneumoniae, 11—
Streptococcus agalactiae, 12—Pseudomonas aeruginosa, 13—Acinetobacter sp., 14—Campylobacter jejuni; ni no inhibition
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These suggest that the mechanism of action of the isolated
exopolysaccharides could be more complex than simple inter-
action with the bacterial cell walls.

The secondary screening as well as the MIC assays allowed
the EPS from the eight isolates to be further differentiated based
on their antibacterial activity and eventually polysaccharide ex-
tracts E15 and E37, from isolates EPS-15 (Halomonas sp.) and
EPS-37 (Alcaligenes faecalis) respectively, were found to be
particularly effective against most pathogens. Interestingly, an-
tibacterial EPS of organisms from these two genera is not wide-
ly documented and both sets of screenings indicated that poly-
saccharides from Halomonas and Alcaligenes species might be
promising antimicrobial agents against various pathogenic
strains. In fact, one of their most promising features was the
inhibitory effect exerted on Staphylococcus aureus, including
methicillin-resistant Staphylococcus aureus (MRSA). The latter
is a major cause of nosocomial infections (Dakheel et al. 2016)
and its incidence has been on the rise, becoming a growing
public health concern, especially due to its resistance to a wide
range of antibiotic treatment (Sardi et al. 2017; Neopane et al.
2018). Although antimicrobial activity of EPS has been studied
against different pathogenic strains, their effectiveness against
MRSA has not been widely investigated. These results may,
therefore, help to further study the different ways in which
antimicrobial polymers such as EPS can be further used, along
with known drugs, to develop more effective treatments against
pathogenic microorganisms, especially antibiotic-resistant ones.

The use of FTIR allowed the determination of functional
groups present in E15 and E37 for identifying those which
could be linked to the observed bioactivity. The spectra for
both extracts did not show major differences, with the pres-
ence of groups such as carbonyl, amine or even hydroxyl
being observed in both. These functional groups have the
ability to chelate metal ions (Collin et al. 2015) and this prop-
erty is more often exploited for bioremediation purposes

(Philippis et al. 2011; Gupta and Diwan 2017). However, the
ability to sequestrate metal ions has also been suggested as a
potential mechanism for antimicrobial activity, including for
the polysaccharide chitosan (Sebat et al. 2001; Kong et al.
2010; Qiu et al. 2011). Indeed, metal ions are essential as
nutrients for microbial growth and at the same time, are re-
quired for the stability of microbial cell walls by combining
with molecules within the walls (Goy et al. 2009; Kong et al.
2010). Hence, through the chelation process, the availability
of metal ions to microorganisms are reduced and this could
have also contributed to the observed antibacterial properties.

The FTIR results as well as the compositional analysis of
E37 and E15 also showed that they bear some similarity with
the polysaccharides curdlan and levan respectively. This is like-
ly given that these two polymers can be produced by
Alcaligenes and Halomonas species, the same genera to which
the isolates producing E37 and E15 belong. Interestingly, al-
though the antibacterial properties of curdlan and levan is
known (Byun et al. 2014; Chen and Liang 2017), their effec-
tiveness against a wide range of microbial pathogens, as carried
out in this study, has not been investigated. Hence, even though
further structural characterisation is required to assess the extent
to which E15 and E37 is similar to curdlan and levan, yet the
observed antibacterial properties in this work suggests that both
curdlan and levan might also exhibit biological activities
against a wide array of pathogens. Furthermore, it was interest-
ing to note the presence of sulphate groups in the two extracts
since sulphate-containing polysaccharides of marine origin are
quite important for industries (Ladrat et al. 2014). In fact, these
have been attracting attention due to a number of their unique
physico-chemical properties (Raveendran et al. 2013) as well as
a number of their biological properties (Jesus Raposo et al.
2013; El Essawy et al. 2016; Heymann et al. 2016), thereby
further highlighting the potential of the two isolated
exopolysaccharides as bioactive compounds.
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Conclusion

The search for new compounds of biotechnological value has
greatly fuelled the need to probe new environments. In this
work, Mauritius seawater, a relatively underexplored one, has
been shown to harbour different microbial species, especially
those which can produce antibacterial exopolysaccharides.
Among these exopolysaccharides, two sulphated ones seemed
promising as inhibitors of the growth of human bacterial path-
ogens, including antibiotic-resistant ones. Although further
work is required to assess their suitability as antibacterial
agents, this work highlights the potential of using the isolated
polymers in the development of new drugs or more effective
treatments. Furthermore, this study shows that Mauritius sea-
water can be a source of biotechnologically useful microor-
ganisms producing compounds of potential value.
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