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Abstract
Purpose Microbial carbohydrate antigens are targets of the immune systems of hosts. In this context, it is of interest to obtain data
that will permit judgment of the degree of heterogeneity, chemical makeup, and localization of the antigenic determinants of the
Herbaspirillum surface glycopolymers.
Methods A sheep single-chain antibody-fragment phage library (Griffin.1, UK) was used to obtain miniantibodies to the
exopolysaccharides (EPS-I and EPS-II), capsular polysaccharides (CPS-I and CPS-II) and lipopolysaccharide (LPS) of
Herbaspirillum seropedicae Z78. To infer about the presence or absence of common antigenic determinants in the cell-surface
polysaccharides of H. seropedicae Z78, we ran a comparative immunoassay using rabbit polyclonal and phage recombinant
antibodies to the surface glycopolymers of H. seropedicae Z78.
Results We isolated and purified the exopolysaccharides (EPS-I and EPS-II), capsular polysaccharides (CPS-I and CPS-II), and
lipopolysaccharide (LPS) of Herbaspirillum seropedicae Z78. Using rabbit polyclonal antibodies, we found that these cell-
surface polysaccharides were of a complex nature. EPS-I, EPS-II, CPS-I, CPS-II, and LPS contained common antigenic deter-
minants. CPS-I, CPS-II, and LPS also contained individual antigenic determinants composed of rhamnose, N-acetyl-D-glucos-
amine, and N-acetyl-D-galactosamine—sugars responsible for cross-reactions with miniantibodies.
Conclusions The anti-LPS miniantibodies were more specific for the core region of the LPS, in which rhamnose was the most
abundant sugar, than they were specific for its O portion. The miniantibodies we isolated can be useful reagents not only in basic
biochemical research but also in clinical diagnostic and therapeutic applications.
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Introduction

Herbaspirillum, a member of the Betaproteobacteria, enjoys
intense current interest (Bajerski et al. 2013; Lin et al. 2013;
Chemaly et al. 2015; Batista et al. 2018; Correa-Galeote et al.
2018). Except several phytopathogenic strains (Valdameri et al.
2017), herbaspirilla can promote plant growth and development
(Pedrosa et al. 2001). Herbaspirillum also colonizes human or-
gans and tissues (Baldani et al. 1996; Michael and Oehler 2005;
Tan and Oehler 2005) and has been identified in clinical isolates
and human secretions (Coenye et al. 2002; Spilker et al. 2008;

Ziga et al. 2010; Chen et al. 2011). Although the ability of these
bacteria to colonize their hosts has been proven, the data on the
mechanisms of such associations are fragmentary.

The mechanisms of host-bacterium associations involve the
glycopolymers of the bacterial surface. Characterization of the
structure of glycopolymers is necessary for understanding their
properties and functions, including those operating in the inter-
action of bacteria with other organisms and with the surround-
ings. The principal macromolecules implicated in the recogni-
tion of symbiotic partners are exopolysaccharide (EPS), capsu-
lar polysaccharide (CPS), and lipopolysaccharide (LPS), which
determine the antigenic specificity of gram-negative bacteria
(Kato et al. 1980; Konnova et al. 1994; Skvortsov and
Ignatov 1998; Whitfield and Roberts 1999; Newman et al.
2000; Yirmiya et al. 2000; Smol'kina et al. 2010). Much infor-
mation about the structure of these glycopolymers can be ac-
quired not only by the destructive chemical methods but also by
immunochemistry, which enables the study of antigenic deter-
minants in vitro, in vivo, and in planta.
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Serological and immunochemical investigations have tra-
ditionally used polyclonal or monoclonal antibodies raised by
animal immunization. If, however, the antigen used is poorly
immunogenic or highly toxic, immunization may be difficult
to carry out. The problem is solved with antibodies based on
variable antigen-binding fragments that are obtained from an-
tibody fragment libraries by phage display (MacCafferty et al.
1990). The most commonly used are Fab and scFv fragment
libraries, in which the antigen-binding fragment is present at
the surface of bacteriophage M13 as part of its pIII protein
(miniantibodies (miniAbs) in phage format) (Asadi-Ghalehni
et al. 2015; Petrenko 2018). Phage display technology, pro-
posed by Smith (Smith 1985; MacCafferty et al. 1990; Smith
and Petrenko 1997), replaces all work stages with simple ma-
nipulations with DNA and bacteria, yielding stable antibody-
producing clones within weeks rather than months and de-
creasing the associated costs.

Here, we use a sheep single-chain antibody-fragment li-
brary (Griffin.1, UK) to raise miniAbs against the main sur-
face antigens of Herbaspirillum seropedicae Z78, and we re-
port a comparative immunochemical characterization of these
antigens.

Materials and methods

Strain and growth conditions

Herbaspirillum seropedicae Z78 (IBPPM 217) was from the
IBPPM RAS Collection of Rhizosphere Microorganisms
(http://collection.ibppm.ru). Cells were grown in a vitamin-
supplemented liquid synthetic nutrient medium (Smol'kina
et al. 2012) at 30 ± 1 °C for 24 h (until the end of the expo-
nential growth phase).

Isolation and purification of bacterial polysaccharides

Cells were sedimented by centrifugation at 3000×g for
40min. Capsular polysaccharides were removed from the cell
surface by resuspending the cells three times in 0.15 M NaCl,
agitating the cells on a magnetic stirrer, and resedimenting the
cells. The cells were then degreased with petroleum ether,
dried with acetone, and finely dispersed. CPS-I, CPS-II,
EPS-I and EPS-II were isolated as described by Smol’kina
et al. (Smol'kina et al. 2012). All carbohydrate-containing
fractions that did not give absorption between 240 and
260 nm were pooled, concentrated, and lyophilized. LPS
was extracted from the acetone-treated cells (10 g) with hot
45% aqueous phenol by a modified Westphal procedure
(Velichko et al. 2018), purified by ultracentrifugation two
times (each at 105000×g for 4 h), and lyophilized with a
Benchtop 2K apparatus (VirTis, USA).

Isolation of O polysaccharide and core
oligosaccharides

Lyophilized LPS was heated in 1% acetic acid at 100 °C for
4 h (Müller-Seitz et al. 1968). Lipid A was sedimented by
centrifuging the reaction mixture at 12000×g for 20 min.
The supernatant liquid was dialyzed against distilled H2O
and fractionated by gel filtration. The high molecular weight
O polysaccharide (OPS) fraction was separated from the oli-
gosaccharide fraction on a Sephadex G-50 column
(Pharmacia, Sweden). The OPS and core oligosaccharide so-
lutions were concentrated, lyophilized, and analyzed.

Preparation of rabbit antibodies

Antibodies to whole cells of H. seropedicae Z78 were
kindly provided by the IBPPM RAS Immunochemistry
Laboratory. Rabbits were immunized with whole
H . s e ro p e d i c a e Z78 c e l l s t r e a t e d w i t h 2%
glutaraldehyde. Rabbits were also immunized with a
mixture of LPS and Freund’s complete adjuvant into
popliteal lymph nodes, three times (0.5, 1.0, and
1.5 mg) at 2-week intervals. The antigen concentration
was 1 mg ml−1 in all immunizations. The animals were
bled 6 days after the last immunization. Antibody titers
were determined by agglutination tests. IgG fractions
were isolated from antisera by ammonium sulfate
precipitation.

Antibody selection from phage-displayed library

For selection of phage-carrying antibodies to the EPS-I, EPS-
II, CPS-I, CPS-II, and LPS ofH. seropedicae Z78, an enzyme
immunoassay plate was used as a solid support for antigen
immobilization. The selection procedure was described in de-
tail elsewhere (Dykman et al. 2012). The concentration of the
sheep phage recombinant library (Charlton et al. 2000) was
1012 phagemids ml−1. The phage specificity was determined
by dot and enzyme-linked immunosorbent assays (ELISA).
The serum titer was measured by conventional ELISA
(Beatty et al. 1987). The titer of the resultant phage antibodies
was 1:4000.

The phage particle concentration was calculated spectro-
photometrically by using a Specord BS-250 UV-vis instru-
ment (Analytic Jena, Germany). The spectrophotometry was
done at the Simbioz Center for the Collective Use of Research
Equipment in the Field of Physical–Chemical Biology and
Nanobiotechnology, Institute of Biochemistry and
Physiology of Plants and Microorganisms, Russian
Academy of Sciences, Saratov. The calculations were based
on the relation (A269 − A320) × 5 × 1014/15, where A320 is the
absorbance of the suspension at 320 nm and A269 is the absor-
bance of the suspension at 269 nm. The virion concentration
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can be estimated if we know that A269 − A320 = 30 absorbance
units, which correspond to 2 × 1014 virions ml−1 (Smith &
Scot, 1993).

Enzyme-linked immunosorbent assay (ELISA)

For ELISA, 96-well polystyrene plates were used. EPS-I,
EPS-II, CPS-I, CPS-II, and LPS with two-fold dilution were
immobilized on a plate through simple adsorption. The enzy-
matic label was horseradish peroxidase conjugated to goat
antibodies. The substrate reagent was o-phenylenediamine in
the presence of hydrogen peroxide. The absorbance of the
samples was measured at 490 nm on aMultiskan Ascent read-
er (ThermoLabsystems, Finland).

Competitive immunoassay

The inhibition of the immunochemical reactions was
assessed by ELISA as described by Kabat and Mayer
(1961). Inhibitory monosaccharides were added to
miniAbs to 10−4 M, a concentration purposely chosen
in excess of the miniAb concentration. The miniAb con-
centration was 1.2 × 1013 virions ml−1, and the LPS con-
centration was 0.015 mg ml−1. Solutions of the
miniAbs, LPS, OPS, and monosaccharides were made
in a buffer of 0.1 M NaCl and 0.01 Tris-HCl
(pH 7.2). The miniAbs were mixed with each inhibitor,
and the mixture was incubated at 4 °C for 24 h.

Statistical analysis

All experiments were performed in triplicate. Data were ana-
lyzed with Excel 2010 software and with standard methods of
statistical data processing. Correlation coefficients and un-
paired t-tests were used when appropriate. All confidence in-
tervals are for 95% confidence. Differences between means at
a confidence level of 5% (P < 0.05) were considered statisti-
cally significant. Data are presented as the mean ± the standard
deviation (SD).

Results

Preparation of rabbit polyclonal antibodies

Purified preparations of CPS-I, CPS-II, EPS-I, EPS-II and
LPS were isolated as described by Smol’kina et al.
(2012) and Velichko et. al. (2018).

All preparations were tested by ELISA for their abil-
ity to interact with rabbit polyclonal antibodies to
glutaraldehyde-treated H. seropedicae cells (Fig. 1).
LPS, EPS-II, and CPS-II interacted with the antibodies,
with the highest interaction being observed for LPS.

Conversely, EPS-I and CPS-I did not interact with the
antibodies at all. Effors to prepare rabbit polyclonal
antibodies against purified LPS were unsuccessful.

Antibody selection from phage library

Because it was difficult to interpret the results of the experi-
ment in Fig. 1, we selected phage recombinant anti-LPS, anti-
EPS-I, anti-EPS-II, anti-CPS-I, and anti-CPS-II antibodies
(miniAbsLPS, miniAbsEPS-I, miniAbsEPS-II, miniAbsCPS-I, and
miniAbsCPS-II). There were four rounds of selection of phage
antibodies. As suggested by Griep et al. (1998), the antigen
concentration in each round was reduced twofold to increase
miniAb specificity. The starting antigen concentration was
1 mg ml−1. Measuring the UVabsorbance allowed calculation
of the numbers of phage in the final dialysates. These were
1.2 × 1013, 0.6 × 1013, 0.5 × 1013, and 2.6 × 1013 particles ml−1

for LPS, EPS-I, EPS-II, CPS-I, and CPS-II, respectively.
The increase in miniAb specificity was evaluated by

ELISA. Figure 2 shows the results obtained after the
first and fourth rounds of selection of miniAbsCPS-II.
After round 1, the miniAbsCPS-II interacted with all
preparations included in the figure, and after round 4,
they interacted equally intensely with CPS-I and CPS-II
but did not interact with EPS-I. The miniAbsLPS
interacted with LPS, CPS-I, and CPS-II. The activity
toward CPS-II was the highest, which suggests that
the specific antigenic determinants of CPS-II were better
surface-exposed. By contrast, the interaction of the
miniAbsLPS with EPS-II and EPS-I was very weak, al-
most absent. Like the miniAbsLPS, the miniAbsCPS-II
barely interacted with EPS-I and EPS-II, but the reac-
tion with LPS was weaker and that with CPS-I was
stronger than was the reaction with CPS-II (Table 1).
The miniAbsEPS-I and miniAbsEPS-II interacted with all
antigens used. The reactions with EPS-I and EPS-II
were weaker than the reaction with CPS-II, the absor-
bance for which was maximal. The interaction of the
miniAbsEPS-I and miniAbsEPS-II with LPS was stronger
than it was with CPS-I (Table 1).

The miniAbsCPS-I interacted with all antigens of
H. seropedicae Z78, but the interaction peaked for LPS,
EPS-II, and CPS-II to an equal degree. The reaction with
CPS-II was somewhat stronger than it was with CPS-I.

Analysis of the data indicates that the polysaccharide-
containing antigens of the H. seropedicae Z78 surface
have a complex nature. Clearly, LPS, CPS-II, and CPS-I
have individual antigenic determinants which EPS-I and
EPS-II lack and which are recognized by miniAbsLPS
and miniAbsCPS-I I . In LPS, CPS-II, and CPS-I,
the miniAbsEPS-II detect antigenic determinants that
were present in EPS-II and EPS-I.
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Inhibition of the glycopolymer–miniAb interaction

We examined the inhibition of miniAbs by commercial rham-
nose, galactose, glucose, and N-acetyl-D-glucosamine (all
sugars part of LPS), as well as by the OPS and core oligosac-
charide of H. seropedicae Z78 (Velichko et al. 2018). The
negative control was commercial altrose. Themonosaccharide
concentration (10−4 M) was purposely chosen in excess of the
concentration of the miniAbs. The concentration of
miniAbsLPS was 1.2× 1013 virions ml−1, and that of LPS
was 0.015 mg ml−1.

The inhibition of the immunochemical reactions decreased
in the order core oligosaccharide ˃ rhamnose ˃OPS ˃ glucose
˃ galactose ˃ N-acetyl-D-glucosamine (Fig. 3). Altrose did not
affect the completeness of the LPS–miniAb reaction and did
not inhibit the miniAbs. The extent of interaction of altrose-
treated miniAbs with LPS was the same as in the nontreated
control. The core oligosaccharide inhibited the miniAbsLPS
completely; OPS inhibited them to a lesser extent; and glu-
cose, galactose, and N-acetyl-D-glucosamine had equally

intense inhibitory effects, which were greater than the effect
of OPS.

Discussion

Knowledge concerning surface polymers is conducive to a
better understanding of bacterial interactions with
macrosymbionts. Studies of biopolymer structure are impor-
tant from both basic and applied perspectives. The major,
highly conserved structures, which are important for the im-
munochemical behavior of microorganisms, are LPS, CPS,
and EPS (Holst et al. 1996; Ovodov 2006; Weidenmaier
et al. Weidenmaier and Peschel 2008). Besides being impli-
cated in the mechanical attachment of bacteria to the root
surface, CPS and EPS ensure the error-free recognition of
the plant host. The unique chemical structure of LPS, formed
from three structurally different portions (lipid A, core oligo-
saccharide, and O polysaccharide), determines its broad

Fig. 1 a - ELISA of LPS, CPS-II,
EPS-II, EPS-I, and CPS-I by
using rabbit antibodies to
glutaraldehyde-treated
H. seropedicae cells. The wells in
a polystyrene plate were coated
with two-fold dilution of EPS-I,
EPS-II, CPS-I, CPS-II, and LPS
through simple adsorption; b -
ELISA of LPS, CPS-II, EPS-II,
EPS-I, and CPS-I by using rabbit
antibodies to glutaraldehyde-
treated cells with polysaccharide
concentration 1.56 μ ml-1.
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biological activity (Holst et al. 1996). Under certain condi-
tions, some bacteria can produce LPS extracellularly. The
capsular glycans of some bacteria are represented by LPS
(Konnova et al. 1994; Whitfield and Roberts 1999;
Smol'kina et al. 2010).

The fine mechanisms of Herbaspirillum interactions with
host organisms have been understudied. Silva-Froufe et al.
(2009) used polyclonal antibodies raised against whole bacte-
rial cells to detect bacteria in the plant tissue interior.
Antibodies to component II (nifH or Fe protein) of the

nitrogenase complex from Rhodospirillum rubrum were used
to evaluate the nitrogenase activity of endophytic herbaspirilla
(Reinhold et al. 1987; James et al. 1997; Olivares et al. 1997;
James et al. 2002).

In this context, it is of interest to obtain data that will permit
judgment of the degree of heterogeneity, chemical makeup,
and localization of the antigenic determinants of the
Herbaspirillum surface glycopolymers. In addition, results
from comparisons of the immunochemical specificities of
LPS, CPS, and EPS may serve the needs of microbiology

Fig. 2 ELISA of CPS-I, CPS-II,
EPS-I, EPS-II, and LPS by using
miniAbsCPS-II prepared after the
first (a) and fourth (b) selection
rounds

Table 1 Comparison of the
ELISA results for the
polysaccharide-containing anti-
gens of H. seropedicae Z78

Antigen Mini*AbsLPS Mini*AbsCPS-
I

Mini*AbsEPS-
I

Mini*AbsCPS-
II

Mini*AbsEPS-
II

LPS ++++ +++ +++ +++ +++

CPS-I ++ ++ ++ ++++ ++

EPS-I – ++ ++ – ++

CPS-II +++ +++ ++++ +++ ++++

EPS-II – +++ +++ – +++

++++, maximal interaction; +++, strong interaction; ++, medium-strong interaction; −, no interaction
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and immunology. Because the CPS of H. seropedicae Z78 is
an extracellular form of LPS [ Smol´kina et al. 2012], the
removal of the capsules from the cell surface was absolutely
necessary to prevent contamination of the LPS preparations
with the surface glycopolymers. The monosaccharide compo-
sition of H. seropedicae Z78 CPS-I, CPS-II, EPS-I, and EPS-
II was described by us earlier [Smol´kina et al. 2012], as were
the monosaccharide composition and the structure of
H. seropedicae Z78 LPS [Velichko et al. 2018]. In this study,
we used the following preparations: EPS-I, EPS-II, CPS-I,
CPS-II, and LPS.

To infer about the presence or absence of common antigen-
ic determinants in the EPS-I, EPS-II, CPS-I, CPS-II, and LPS
of H. seropedicae Z78, we ran a comparative immunoassay
with rabbit polyclonal and phagerecombinant antibodies to
the surface glycopolymers of H. seropedicae Z78.
Experiments with rabbit polyclonal antibodies to
glutaraldehyde-treated whole cells of strain Z78 showed that
the CPS-I, CPS-II, EPS-I, EPS-II, and LPS, had some anti-
genic differences. Glutaraldehyde modifies protein epitopes
and makes impossible an immune response to native mem-
brane proteins, enabling the preparation of antibodies against
bacterial LPS. The antibodies so prepared specifically interact
with the carbohydrate components of the bacterial surface
glycopolymers. These results indicate that although the poly-
saccharide components of EPS-I and CPS-I containe the same
sugars [Smol´kina et al. 2012], they lack common antigenic
determinants. Similar findings have been reported elsewhere
for structurally similar glycoconjugates of other bacteria in
which serological differences were found. For instance, the
K and O antigens of Proteus mirabilis O40 are structured
similarly but differ serologically [Kenne & Lindberg, 1983].

Rabbit anti-LPS antibodies did not cross-react with any of the
antigens used, including LPS.

Efforts to raise antibodies against purified LPS were unsuc-
cessful, possibly owing to the structural peculiarities of
H. seropedicae Z78 LPS. Previous work by us (Velichko
et al. 2018) has found that the OPSrepeating unit in
H. seropedicae Z78 consists of glycerol-1-phosphate
substituted by residues of N-acetyl-D-glucosamine.
Structures of this kind are typical of the teichoic acids of
gram-positive bacteria (Naumova et al. 2001) and are rare in
gram-negative bacteria (Kondakova et al. 2005; Zdorovenko
et al. 2011; Shashkov et al. 2015). Many studies of teichoic
acids in a range of microorganisms, including staphylococci,
bacilli, pneumococci, lactobacilli, and listeria, have shown
that these acids have antigenic properties and can induce im-
mune responses (Baddiley and Davison 1961; Clark et al.
2000; Wicken and Knox 2016). An important condition for
an immune response is the natural surroundings of teichoic
acids in an intact cell or cell wall, because purified teichoic
acids are nonimmunogenic. Antigenic properties may also be
determined by the nature of the polyol and glycosyl substitu-
ents in a biopolymer (Naumova et al. 2001).

Very few reports have used scFv antibodies for immuno-
chemical studies of bacterial glycopolymers. However, those
reports show that such antibodies prove more sensitive that
traditional monoclonal antibodies. Thus, Griep et al. (1998),
using recombinant antibodies against the LPS of Ralstonia
solanacerum (biovar 2, race 3), recorded 5 × 103 microbial
cells in potato tuber extracts. For Herbaspirillum, this is the
first time that miniAbs to the exopolysaccharides (EPS-I and
EPS-II), capsular polysaccharides (CPS-I and CPS-II) and li-
popolysaccharide (LPS) have been obtained.

Fig. 3 Inhibitor effects on
miniAbsLPS, as evaluated by
ELISA
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The procedure that we used to increase miniAb specificity
proved highly effective. From round to round, there were in-
creases in the number of phage carrying specific variable do-
mains to the corresponding antigens (Fig. 2). To look into the
structure of the antigenic determinants, we inhibited the for-
mation of antigen–antibody complexes with various compet-
itive components of known chemical composition (Kabat and
Mayer 1961). The results for the inhibition of LPS–miniAb
precipitation with mono- and disaccharides suggest that these
carbohydrates are part of the immunodominant sites of the O
antigens.

The results obtained correlate well with the data on the
monosaccharide composition of the antigens examined
(Smol'kina et al. 2012; Velichko et al. 2018). LPS, CPS-II,
and CPS-I contain rhamnose, N-acetyl-D-glucosamine, and N-
acetyl-D-galactosamine, which may form part of their antigenic
determinants. This explains why theminiAbsLPS, miniAbsCPS-I,
and miniAbsCPS-II not only interacted but also cross-reacted
with LPS, CPS-II, and CPS-I. We speculate that EPS-II and
EPS-I did not react withminiAbsLPS andminiAbsCPS-II because
they contained no rhamnose and only trace amounts of N-ace-
tyl-D-glucosamine and N-acetyl-D-galactosamine.

The interaction of miniAbsCPS-I and miniAbsCPS-II with
LPS, CPS-II, and CPS-I could be explained by the presence
in them of N-acetyl-D-glucosamine and galactose. On the ba-
sis of the foregoing, we speculate that miniAbsLPS and
miniAbsCPS-II should be more specific for the determinants
containing rhamnose, N-acetyl-D-glucosamine, and N-acetyl-
D-galactosamine; miniAbsCPS-I and miniAbsCPS-II should be
more specific for the determinants containing N-acetyl-D-glu-
cosamine and galactose; and miniAbsCPS-I should be specific
for the determinants including all the above sugars.

The miniAbsLPS were more specific for the core region of
the LPS, in which rhamnose was the most abundant sugar, than
they were specific for its O portion. These results are in harmo-
ny with our speculation that miniAbsLPS have the highest spec-
ificity for rhamnose-carrying determinants. The inhibition of
miniAbsLPS by a wide range of sugars possibly indicates that
the core oligosaccharide is highly branched and heterogeneous.

The use of highly specific miniAbs makes it possible to
detect identical antigenic determinants in samples whose
structures have not yet been examined, to compare those sam-
ples with polysaccharides of known structure, and to detect
microorganisms and bioactive molecules.
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