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Abstract
Purpose This review focuses on the spoilage strategies used by the Pseudomonas fluorescens, and in addition, it also discusses
various diagnostic approaches used for its identification in food items. Some challenges faced and advances in the detection of
P. fluorescens and also discussed in this review.
Methods An extensive literature search was performed with published work and data was analyzed in detail to meet the
requirements of the objectives.
Results P. fluorescens are unicellular rods, with long straight or curved axis, but not helical, motility by one ormore polar flagella,
Gram-negative, non-spores former, stalks, or sheaths. P. fluorescens is represented by seven biotypes denoted by the letters A, B,
C, D, E, F, and G. The microbe shows wide choice of growth temperature and causes contamination and spoilage in ordinary and
refrigerated food items by its enzymes and pigment production. The biofilm formation by P. fluorescens poses another serious
threat to the food industries.
Conclusion Molecular identification of P. fluorescens is generally done by 16S rRNA, intergenic spacer (ITS1) utilizing tradi-
tional polymerase chain reactions (PCR). Nowadays, qPCR and multiplex PCR are largely utilized in identification of
P. fluorescens based on AprX gene (extracellular caseinolytic metalloprotease) in the milk and meat spoilage strains. The
available methods still show some disadvantages with accuracy and specificity of detection. Rapid detection of P. fluorescens
in food samples is the need of hour to improve the detection efficiency.
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Introduction

In nineteenth Century, Dr. Migula, Professor at Karlsruhe
Institute of Germany, first proposed the name Pseudomonas
and it read as cells with polar organs of motility, with devel-
opment of spores in a few categories (for instance:
Pseudomonas violacea) (Palleroni 2010). In 1926, Den
Dooren de Jong stressed on microbes of soil and featured
the extreme adaptability of Pseudomonas (Palleroni 2010). It
was represented by unicellular rods, with the long axis curved

or straight, motility by one or more polar flagella, Gram-neg-
ative, non-spore forming, sheaths, or stalks (Stanier et al.
1966). The respiration is the only process involved in
energy-yielding metabolism and all species utilize oxygen as
a terminal oxidant, whereas some species use denitrification as
an anaerobic respiratory system. All Pseudomonas spp. are
chemoorgano t rophs , wh i l e f ew a re facu l t a t i ve
chemolithotrophs which use H2 as energy source.
Pseudomonads has three subgeneric group: fluorescent group
having species Pseudomonas aeruginosa, P. fluorescens,
P. putida; acidovorans group, with P. acidovorans,
P. testosterone; and, alcaligenes group representing
P. alcaligenes, P. pseudoalcaligenes sp.nov., P. mutivorans
sp.nov, P. stutzeri, and P. maltophilia (Stanier et al. 1966).
Pseudomonas fluorescens is represented by seven biotypes
denoted by the letters A, B, C, D, E, F, and G (Stanier et al.
1966). Consequently, DNA/RNA hybridization confirmed the
presence of five diverse rRNA groups (rRNA groups I–V)
(Palleroni et al. 1972; Palleroni 1993; Kersters et al. 1996).
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Pseudomonas rRNA group I contained P. aeruginosa, all the
fluorescent species (P. fluorescens, P. putida, P. syringae), and
some non-fluorescent species (P. stutzeri, P. alcaligenes,
P. pseudoalcaligenes, and P. mendocina) (Palleroni et al.
1973). Various types of spoilage caused by P. fluorescens
and its spoilage agents are shown in Fig. 1. The various types
of spoilage caused the Pseudomonas fluorescens, and various
diagnostic approaches used for its identification are discussed
in the following sections:

Pseudomonas fluorescens as a food spoiler

Pseudomonas fluorescens is a regular contaminant of
ready to-eat foods. These microscopic organisms show
wide choice of growth temperature, and contamination
is a key issue in ordinary and refrigerated food items
as shown in Table 1. A report from Italy also con-
firmed the presence of P. fluorescens in packed ready
to-eat vegetables (Caldera and Franzetti 2014). Raw
vegetables quality, processing, packaging system, and
storage temperature are essential factors that influence
the microbial composition in the final product.
Pinkeye disease in potato tubers was caused by the
pec t ic enzyme of P. f luorescens (Folsom and
Fr iedman 1959; Huether and McIntyre 1969) .
Biotypes I and II of P. fluorescens were isolated from
celery, cabbage, and chicory stored at 1° and 4 °C,
and on the other hand, biotypes III and V were

isolated from incompletely processed lettuce gathered
from the processing plants (Brocklehurst and Lund
1981; Sellwood et al. 1981; Magnuson et al. 1990).
Head spoil disease in broccoli had additionally con-
firmed the relationship of surfactant-positive strains of
P. fluorescens biovar II, IV, which reduces the water
surface tension and enables surfactant-deficient strains
to colonize over water-soaked areas even in the ab-
s ence o f phys i c a l i n j u ry (H i l deb r and 1989 ) .
Biosurfactants producing P. fluorescens are also re-
sponsible for the spoilage of aerobically stored chick-
en meat (Mellor et al. 2011). Different volatile com-
pounds, for example, trimethylamine, methyl mercap-
tan, and dimethyl disulf ide, were produced by
P. fluorescens in sterile fish muscles under in vitro
condition at 0 °C after 32 days of incubation (Miller
et al. 1973). P. fluorescens also produced 2-butenal,
methyl thiol n-butyrate, 3-octanol in spoiled chicken
breast stored at 2 to 6 °C for 14 days (Pittard et al.
1982). Similarly, alcohols, aldehydes, esters, hydro-
carbons, toluene, ketones, few sulfur-containing com-
pounds were identified, when P. fluorescens biotype I
was inoculated under in vitro conditions in beef
stored at 6 °C at pH 5.5–5.7 (Edwards et al. 1987).
P. fluorescens isolated from sea bream stored aerobi-
cally in Greece market at 0°, 10°, and 20 °C and
modified-atmosphere packaging (MAP) conditions
(40% CO2–30% N2–30% O2) (Tryfinopoulou et al.
2002). An investigation in Belgium has confirmed
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Fig. 1 Spoilage of different food items by Pseudomnas fluorescens
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the growth of P. fluorescens in tofu packed in modi-
fied conditions and showed that some strain can sur-
vive under 100% CO2 (Stoops et al. 2012). The
postpasteurization contamination (PPC) of high tem-
perature, short time-pasteurized fluid milk with
P. fluorescens continues to be an issue with processor
defects like lower flavor scores, coagulation, and
fruity fermented milk (Reichler et al. 2018).

P. fluorescens having protease, lecithinase, and lipase ac-
tivity were isolated from the raw and pasteurized milk in four
dairy processing plants in New York (USA), from chicken in
Santiago (Chile) and cheese from El-Menofia (Egypt) (Dogan
and Boor 2003; Hammad 2015; Morales et al. 2016).
P. fluorescens acts as most common contaminants in Italian
bulk milk tank and shows lipolytic, proteolytic, and lecithin-
ase activity (Decimo et al. 2014). A research report from
Brazil additionally confirmed the deterioration of goat milk
by P. fluorescens that was strongly associated with its proteo-
lytic activity at different temperatures (Scatamburlo et al.
2015). A study in Iraq revealed the presence of
P. fluorescens in raw cow and buffalo’s milk due to protease
activity (Al-Rodhan and Nasear 2016).P. fluorescens biotypes
I, II, and III were likewise identified due to proteolytic and
lypolytic activities in the milk, minced beef, chicken, and fish
sold at the different sale points in Izmir, Turkey (Keskin and
Ekmekçi 2007). P. fluorescens isolated from the pork meat in
Budapest, Hungary, showed quite intense proteolytic activity
as compared to lipase (Márta 2012).

Mystery of blue cheese

P. fluorescens can induce troublesome changes in food
items by producing pigment molecule (Andreani et al.
2014). A notable model is blue mozzarella cheese
events that happened in Italy, when shoppers observed
blue stains on mozzarella cheese in the wake of opening
the bundles (RASFF 2010). About 70,000 mozzarella
cheese chunks were tested and P. fluorescens group
was found associated with this specific spoilage event
(Andreani et al. 2015). Substance responsible for blue
color in contaminated mozzarella cheese was indigoidine
compound produced by P. fluorescens (Caputo et al.
2015). Later on, some reports confirmed that the blue
shade created by P. fluorescens strains was not because
of indigo or indigoidine; however, it was a substantial
particle, and an indigo-derivative (Andreani et al. 2015).
Besides, in the ongoing finding, additionally it was ob-
served that blue shade is most probably an indigoid
molecule (Fasolato et al. 2018). A recent study reported
that the genes involved in blue pigment production pos-
sibly play role in tryptophan biosynthetic pathway and
also provide antioxidant protection (Andreani et al.
2019).

Enzymes of P. fluorescens

Lipases, i.e., triacylglycerol hydrolases, act on food fat mole-
cules and cause the release of unsaturated glycerol and fatty
acids (Andreani 2016). Free short-chain unsaturated fats give
unpleasant flavors, stated to be rancid, whereas medium-chain
unsaturated fats are associated with bitter, foamy, or unclean
flavors (Samaržija et al. 2012). Various report stated that lipo-
lytic activity is more noteworthy at refrigeration temperatures
(Woods et al. 2001; Rajmohan et al. 2002). In cheese, lipases
get absorbed within fat globules and remain in the cheese,
inciting decay impacts amid ripening of hard and semi-hard
cheese (Samaržija et al. 2012). Presence of different lipases in
spoiled food improves the heat stability of lipase (Teh et al.
2014). Few strains of P. fluorescens cause rancidity in cheddar
cheese due to lipase that retained 20–25% of their lipolytic
activity at 100 °C for 10 min (Law et al. 1976). Extracellular
lipase enzymes from P. fluorescens responsible for the off
flavoring of the milk are treated at ultra-high-temperature
(UHT) (Andersson et al. 1981). In meat, lipases break down
glycerides forming free fatty acids and produce off-flavor,
frequently referred to as rancidity (Huis 1996). Novel lipase
from P. fluorescens C9 strain, in which lipA gene was report-
ed, strongly suggested the presence of second lipase in this
strain (Dieckelmann et al. 1998). On the other hand, in
P. fluorescens B52, genes encoding for thermostable lipase
(lipA) and protease (aprX) situated within same operon, dif-
fered by associated genes with discharge of the protease
(extracellular) and gene expression of both hydrolases, are
interlinked (Woods et al. 2001; McCarthy et al. 2004). In
another report, P. fluorescens grown in refrigerated raw milk
with lipase enzyme had high activity at 25 °C and a broad pH
optimum extending from 7.0 to 10 (Martins et al. 2015).

Gelation of UHT milk by proteinases of Pseudomonas
fluorescens strain isolated from raw milk depends on its
amount before heat treatment (Law et al. 1977). Shelf-life of
UHT milk is much lower than processed raw milk stored at
6 °C (Griffiths et al. 1988). The proteinase produced in the
milk leads to extensive breakdown of k-casein to para-k-ca-
sein, an event similarly to the action of rennet. Additionally,
modification of milk casein is encouraged because of the ac-
tivity of milk proteinase (endogenous), particularly in plasmin
(Datta and Deeth 2001).

Production of proteinases destabilizes the casein and influ-
ences the cheese yield (Mitchell and Marshall 1989). In this
process specifically, plasminogen and plasmin are liberated
from casein micelles, altering the cheese yield and influencing
the texture and flavor of the final product (Samaržija et al.
2012). A recent study based on the phenotypic examination
of 87 P. fluorescens species revealed that each strain (94%)
could stimulate proteolysis on nutrient agar plates with 2%
UHT milk at 22 °C, while around 72% could initiate this at
refrigeration temperatures, showing high predominance of
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proteolytic strains inside the P. fluorescens group (Andreani
et al. 2014). The most common family of thermostable prote-
ases within the genus Pseudomonas is serralysin protease
family, a much conserved protein group from the AprX with
an alkaline zincmetalloprotease family withmolecular masses
in the range of 39.2 and 45.3 kDa (Dufour et al. 2008;
Marchand et al. 2009; Teh et al. 2014). Extracellular protease
from the P. fluorescens CY091 with sub-atomic weight of
50 kDa retained 20% of its activity even after heating at boil-
ing temperature for 10 min, revealing its high resistance to
heat inactivation (Liao and McCallus 1998). Another zinc-
metalloacid protease produced by Pseudomonas fluorescens
RO98 was isolated from raw milk with molecular weight of
52 kDa and demonstrated its activity between 15 and 55 °C
and pH 4.5–9.0 (Koka and Weimer 2000). In a few
Pseudomonas spp. strains, AprX has been identified as the
only protease associated with food decay (Woods et al.
2001). Proteases are chiefly synthesized at the end of the ex-
ponential stage, when thickness of cell is high, featuring the
contribution of quorum sensing mechanism in spoilage activ-
ity (Liu et al. 2007; Pinto et al. 2010; Bai and Rai 2011).

Pectic lyase is additionally produced by soft rot causing
strains of P. fluorescens (Liao 1989). Yield of pectin lyase
produced by P. fluorescens W51 was progressively increased
when glycerol was utilized as a sole source of carbon, whereas
thermal stability of pectate lyase produced by P. fluorescens
CY091 expanded when CaCl2 or positively charged mole-
cules, for example, polylysine was used at 48 °C in the culture
medium (Schlemmer et al. 1987; Liao et al. 1997). Another
critical class of extracellular enzymes present in spoiled food
is constituted by lecithinases and different phospholipases that
disturbs the fat globules of milk and makes fat substances
accessible for further lipase action (Samaržija et al. 2012).
The most common enzyme of this family is phospholipase C
(lecithinase) which is produced by most of the pseudomonads
(Fox et al. 1976).

Biofilm formation by P. fluorescens

P. fluorescens has been regarded as the predominant and most
harmful microbiota during the cold storage of raw milk
(Machado et al. 2015; Von-Neubeck et al. 2015; Vithanage
et al. 2016). During storage of the dairy product, not only
the P. fluorescens heat-resistant enzymes will remain active
after heat sterilization, causing milk bitterness, sediment, and
gelation, but they also form biofilm on the surface of equip-
ments and tools in dairy production line (Shpigel et al. 2015;
Stoeckel et al. 2016). Once the biofilm is formed by the
Pseudomonas bacteria, it is hard to remove it by the hygienic
treatments during the processing of raw milk (Ksontini et al.
2013). The biofilm formation will not only cause the pipelines
corrosion, but also provides appropriate substratum for the
growth of other bacteria including pathogens, which mayT
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threaten the health of consumers (Costerton 1999;
Aswathanarayan and Vittal 2014). The availability of nutrient
in the environment will also affect biofilm growth and
P. fluorescens can form biofilms under any nutrient concen-
tration that allows growth (Teh et al. 2014). Biofilm formation
by P. fluorescens strains was temperature dependent, and low-
er incubation temperature (± 10 °C) favored the formation of
biofilm after 48 h (Rossi et al. 2016).

Methods used for diagnosis of P. fluorescens

Isolation of P. fluorescens on all universal (supplement agar)
medium and in specific media is a normal practice in
food industries. Toward the end of nineteenth century,
ELISA-based methodologies have given effectively rec-
ognizable proof of microscopic organisms from different
foods, particularly the meat items. Various ELISA-based
techniques were developed for the identification of
P. fluorescens using meat surface inhibition ELISA with
affectability level as low as 3 × 105 microscopic organ-
isms for each millil i ter (Eriksson et al. 1995).
P o l y c l o n a l a n t i b o d i e s a g a i n s t F p r o t e i n o f
P. fluorescens cell envelope were produced and were
dependent on indirect ELISA approach for the detection
of refrigerated microscopic organisms at an affectability
of 104–105 cfu cm−2 (González et al. 1996). Another
indirect ELISA kit was developed against the live cells
of P. fluorescens in the refrigerated meat with sensitivity
level of 104 cfu cm−2 (Gutierrez et al. 1997).

Molecular identification of the P. fluorescens and its bio-
type dependent on 16S rRNA and intergenic spacer (ITS1)
utilizing traditional polymerase chain reactions (PCR) were
extensively developed (Scarpellini et al. 2004; Franzetti and
Scarpellini 2007; Márta 2012; Ardura et al. 2013; Caldera and
Franzetti 2014; Hammad 2015; Al-Rodhan and Nasear 2016;
Morales et al. 2016). P. fluorescens enzyme-specific gene
identification approaches are also regularly used in its identi-
fication as shown in Table 2 (Martins et al. 2005; Decimo et al.
2014; Hammad 2015; Al-Rodhan and Nasear 2016). PCR-
denaturing gradient gel electrophoresis (DGGE) was

additionally used to examine the V3 and V6-V8 areas of
16S rRNA quality; however, this strategy was not a valid
proof to distinguish Pseudomonas in the biological meat com-
munity (Jiang et al. 2011). Nowadays, qPCR and multiplex
PCR techniques are commonly utilized to identify the
P. fluorescens on the basis of AprX gene coding for extracel-
lular caseinolytic metalloprotease in the meat and milk spoil-
age strains (Dufour et al. 2008; Chiang et al. 2012). Enhanced
multiplex PCR was also developed to identify the food micro-
organisms producing biogenic amines as presence of
P. fluorescens odc gene is normally recognized to produce
ornithine decarboxylase (De las Rivas et al. 2005, 2006).

Challenges and advances in diagnosis
of P. fluorescens

Immunological approaches using ELISA for the detection of
P. fluorescens in meat products were well designed but could
not get commercialized as most of the experiments were con-
ducted under in vitro conditions. On the other hands, the test
showed the variations in their sensitivity level, and this was
one of the challenges in diagnosis of the potential food spoiler
(Eriksson et al. 1995; González et al. 1996; Gutierrez et al.
1997).

Molecular identificationmethods based on 16S rRNA gene
sequencing provide low resolution and cannot discriminate
Pseudomonas at the species level (Ait Tayeb et al. 2005).
Although methods based on rpoB gene sequencing are widely
used in identification of P. fluorescens strains (Ait Tayeb et al.
2005; Machado et al. 2015), markers targeting protein-coding
sequences have also been used to improve the resolution of
molecular detection methods for example gene aprX; coding
the alkaline protease was used for the identification of
P. fluorescens in dairy products, but presence of same gene
in other species of Pseudomonas makes it difficult to distin-
guish between them and poses another challenge in its accu-
rate identification (Martins et al. 2005; Decimo et al. 2014).

To overcome the challenges faced in accurate identification
of P. fluorescens from spoiled food items, some advanced
methods have been used as shown in Table 3. The taxonomic

Table 3 Some advances in detection of Pseudomonas fluorescens causing food spoilage

Method Strains used Study sample Target/marker used References

TaqMan Assay Referred strains Food
equipment

cpn60 gene Saha et al. (2012)

Raman spectroscopy using chemometric
analysis

Referred strains Water Fluorescens Yilmaz et al.
(2015)

LAMP Pseudomonas fluorescens
38

Raw cow milk Conserved lipase gene sequence Xin et al. (2017)

Multiplex PCR Laboratory isolates Raw milk Biofilm formation gene AdnA Xu et al. (2017)

Oligotyping Laboratory isolates Meat and dairy V1–V3 regions of 16S rRNA
gene

Stellato et al.
(2017)
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resolution of 16S rRNA gene-based study is generally limited
to the genus level, and the common use of operational taxo-
nomic units (OTUs) based on 97% sequence similarity cut-off
often results in phylogenetically mixed units (Koeppel and
Wu 2013). These approaches in some cases fail to resolve
ecologically meaningful differences between closely related
organisms in complex environments (Eren et al. 2014,
2015). An alternative approach used to overcome this problem
is using oligotyping, which decomposes a given taxon, or
97% OTU, into high-resolution units (‘oligotypes’) by only
using the most information-rich nucleotide positions identi-
fied by Shannon entropy calculations (Eren et al. 2013;
Schmidt et al. 2014). This approach was successfully used in
meat and dairy processing environment for the isolation of
P. fluorescens oligotypes (Stellato et al. 2017). Another study
reported the use of multiplex PCR for the detection of
P. fluorescens showing the ability of biofilm formation with
a detection limit of target strain to 102 cfu/ml (Xu et al. 2017).
AdnA protein, a transcriptional activator related to biofilms
formation in P. fluorescens, is very important for its spreading
and survival in soil (Marshall et al. 2001).

In one of the studies, a loop-mediated isothermal amplifi-
cation (LAMP) assay was developed to detect the
P. fluorescens in raw milk (cow), as most of the frequently
reported heat-resistant lipase-producing bacterial species with
detection limit of 4.8 × 102 cfu/reaction of the template DNA
and 7.4 × 101 cfu/reaction of P. fluorescens led to contamina-
tion of pasteurized cow milk (Xin et al. 2017). LAMP assay
cannot distinguish between DNA from viable cells and to that
from dead cells (Chen et al. 2011; Wan et al. 2012). This
serves as an advantage to accurately assess the potential con-
tamination of heat-resistant lipase produces in milk as these
microorganisms remain active in contaminated dairy products
even after P. fluorescens has been destroyed. Therefore,
LAMP detection method is more accurate than culture-
dependent method.

Raman spectroscopy, an alternative cultivation-free verifi-
cation method with 15-min analysis time, was developed to
detect the P. fluorescens in water samples. According to this
test, test colonies were screened under UV light at 365 nm,
and fluorescent and nonfluorescent colonies were specifically
marked (Yilmaz et al. 2015). In another study, TaqMan assay
was developed that showed results better than 16S rRNA for
the identification and enumeration of closely related species
and strains with a sensitivity 10 cfu/ml. The assay was also
successful in determining the concentration of the test prepa-
ration within 2 h (Saha et al. 2012).

Conclusion

It is observed that the rates of P. fluorescens are steadily grow-
ing and making them perfect spoiler of food items. There is

dire need for improvements in accurate detection of this or-
ganism. There is still scope for improvement in the presently
available method of P. fluorescens detection. Some biosensors
have already been developed for detecting food-related dis-
eases, e.g., ultrasensitive transglutaminase-based nano-sensor
used for early diagnosis of celiac diseases in human (Gupta
et al. 2017). Further, thought is required for more capability in
Pseudomonas recognition techniques with new developments
in accuracy and specificity to meet the future demand. New
approaches using biosensors with high specificity and sensi-
tivity can be developed for robust identification of
P. fluorescens present in food and plant samples.
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