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Abstract

Purpose: To investigate the effect of Danggui Buxue Tang (DBT) on intestinal microbiota diversity after fermentation
by Bacillus subtilis.

Methods: B. subtilis was used to ferment DBT. Sprague Dawley (SD) rats were randomly divided into the following four
groups with six rats in each group: the control group, DBT nonfermentation group, B. subtilis group, and DBT
fermentation group. Rats were fed continuously for 14 days. The 16S rRNA of faecal samples was analysed by high-
throughput Illumina sequencing.

Results: In total, 3483 operational taxonomical units (OTUs) were identified in this study, and 1236 OTUs were shared
among all samples. Moreover, the most abundant phyla identified in this study were Bacteroidetes (29.65–38.19%) and
Firmicutes (48.30–67.04%). The F/B ratios of the DBT nonfermentation group (1.07%) and the DBT fermentation group
(1.78%) were slightly lower than those of the control group (2.29%). Lactobacillus was most upregulated in the DBT
fermentation group (38.4%), followed by the DBT nonfermentation group (18.97%), control group (14.61%), and
probiotics group (8.39%). Moreover, the pathogenic bacteria Alistipes and Parabacteroides were found to be
downregulated in the DBT fermentation group (the percentages of Alistipes and Parabacteroides were as follows:
control group, 8.09% and 0.16%; DBT nonfermentation group, 4.31% and 0.37%; DBT fermentation group, 1.96 and
0.09%; and probiotics group, 6.25% and 0.12%, respectively).

Conclusion: This study is the first to research systematically the effects of DBT on the diversity of rat intestinal
microbiota before and after fermentation. The structural characteristics of complex bacterial community in each group
were clearly analysed, and DBT significantly increases probiotics and inhibits pathogenic bacterial growth in the
intestinal tract of rats after fermentation, which plays a significant role in maintaining the balance of the intestinal
microbiota of the rats. This research provides new insights into the development and utilization of traditional Chinese
medicine.
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Introduction
The intestinal microbiota participates in a variety of meta-
bolic processes of the host, including sugar metabolism
and fat metabolism. Many metabolic diseases, such as
obesity and diabetes, are closely related to changes in the
structure of the intestinal microbiota (Koh et al. 2018;
Huang et al. 2019). Innate and adaptive immune systems
require an interaction between the body and microorgan-
isms during development, and different microbial taxa
generally play various physiological roles and perform dif-
ferent molecular functions in the intestines of animals
(Kau et al. 2011). The daily diet of animals plays an im-
portant role in the structure and balance of intestinal mi-
crobial groups, and the key role of intestinal microbial
groups in combating the colonization and excessive
growth of pathogenic microorganisms in the body has
gradually attracted attention (Kamada et al. 2013). Probio-
tics indirectly regulate the homeostasis of the body
through molecular mechanisms related to homeostasis, in-
cluding the intestinal epithelial barrier, the immune sys-
tem, and substances necessary to compete with pathogens
for growth (Macpherson and Harris 2004; Gourbeyre
et al. 2011; Bermudez-Brito et al. 2012). In addition, many
studies have shown that probiotics improve the overall
health of animals by balancing the intestinal microecosys-
tem. Bacillus subtilis is one of the two types of bacillus
used to inoculate forage allowed by the Ministry of Agri-
culture and Rural Affairs of China, and it is a dominant
biological population widely present in soil and plants. As
a common probiotic in the production of fermented foods,
B. subtilis significantly improves the growth, immune per-
formance, and intestinal microbiota of animals, and it has
been widely used to inhibit the propagation of foodborne
pathogens (Stein et al. 2005; Chen et al. 2013; Eom et al.
2014; Piewngam et al. 2018).
Traditional Chinese medicine (TCM) has been used in

China for thousands of years (Zheng et al. 2010). One of
the classic compounds, Danggui Buxue Tang (DBT), is
composed of two simple medicinal materials, Astragali
Radix and Angelica Sinensis Radix, at a ratio of 5:1. DBT
has been widely used in China for more than 800 years
(Xie et al. 2012). The results of pharmacological studies
show that DBT has many effects. For example, DBT re-
plenishes blood by promoting haematopoiesis and stimu-
lating cardiovascular circulation, and it improves secretion
activities by eliminating free radicals and balancing im-
mune cells and related immune active substances in the
body. In addition, DBT has antioxidant activity and im-
mune activity (Dong et al. 2006, Gao et al. 2008). Further-
more, the use of “medicine food homology” (MFH) for
dietary regulation will be a new trend. Using the renew-
able resources of MFH to develop and produce new drugs
or health care products has a broad prospect (Hou and
Jiang 2013; Song and Jiang 2018).

Microbial fermentation technology has been widely
used in the food industry, including in the production of
beer and wine. Therefore, during the fermentation
process, the relevant metabolic activities of microorgan-
isms are indispensable. The status of TCM is equally im-
portant. To fully exploit the potential efficacy value of
TCM, fermentation has an extremely important role in
standardizing efficacy. However, the effect of DBT fer-
mentation liquid on intestinal microbiota has not been
reported (Sang et al. 2012).
Here, we provided and compared the microbial com-

munities of rats with three different diets (DBT nonfer-
mentation liquid, DBT fermentation liquid, and B.
subtilis), and the 16S rRNA genes of the faecal samples
were analysed to better understand the differences in the
structure of the faecal microbial communities among the
four groups. The aim of this study was to explore the
positive effects of TCM fermentation broth on intestinal
microbiota and lay a theoretical foundation for the ex-
pansion of TCM research.

Materials and methods
Plant materials and preparation of DBT
Plant materials
The Astragali Radix and Angelica Sinensis Radix were
acquired from Minxian in the Gansu Province. For the
reparation of DBT, Astragali Radix and Angelica Sinen-
sis Radix were weighed accurately at a ratio of 5:1,
crushed evenly, mixed by vortexing, and filtered through
a sieve.

Fermented DBT and B. subtilis bacterial preparations
The B. subtilis used in this study was purchased from
the China Centre of Industrial Culture Collection (CICC
10089). The fermented liquid medium (FLM) contained
6% dried DBT powder, 0.95% glucose, 1.52% peptone,
0.3% yeast extract powder, 0.05% K2HPO4, 0.07%
MgSO4, and 0.02% CaCO3 in 100 ml of distilled water
(initial pH 7.2), and it was made in 250 ml flasks. The
stock culture was grown in LB broth in a shaker at 160
rpm and 37 °C for 24 h until the logarithmic phase.
Liquid-state fermentation and bacterial culture (grown
in LB) were performed by culturing 2.92% (v/v) precul-
tured B. subtilis (3.6 × 108 CFU/ml) in a shaker at 160
rpm and 37 °C for 35.8 h to obtain the fermentation
product (B. subtilis, 6.8 × 108 CFU/ml). The fermenta-
tion product was then obtained after freeze-drying. DBT
(unfermented product) was also obtained in the same
manner but without bacteria present in the process.

Animals and experimental design
Female Sprague Dawley (SD) rats weighing 180–220 g
were obtained from the Lanzhou Veterinary Research In-
stitute of the Chinese Academy of Agricultural Sciences.
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After 1 week of adaptation, rats were randomly divided
into the following four groups (n = 6): the control group
(CG) received 3 ml of normal saline; the DBT fermenta-
tion group (FG) was intragastrically administered 2 g/kg
DBT fermentation product with 3 ml of normal saline; the
DBT nonfermentation group (WG) received 2 g/kg DBT
with 3 ml of normal saline; and the probiotics group (PG)
was orally administered B. subtilis (6.8 × 108 CFU/per rat)
with 3 ml of normal saline. The study period was 2 weeks,
and the oral treatments for all rats were administered
daily. Each group of rats was given the same diet (SPF-
grade fodder) during the treatment, and faecal samples
were collected from each rat after 2 weeks. Sterile forceps
were used for sample handling, and an average of 100–
200 mg of faeces was collected per rat. Immediately after
collection, samples were frozen at − 80 °C for DNA ex-
traction. All of rats in this study were cared for according
to the specifications of the Ethics Committee of Lanzhou
Institute of Husbandry and Pharmaceutical Sciences of
Chinese Academy of Agriculture Sciences for the Care
and Use of Laboratory Animals (2018).

DNA extraction and intestinal microbiota analysis
DNA extraction and high-throughput sequencing were
performed according to our previously reported method
with some modifications. DNA from different samples
was extracted using the E.Z.N.A.®Stool DNA Kit (D4015,
Omega, Inc., USA) according to the manufacturer’s in-
structions. Total DNA was eluted in 50 μl of elution buf-
fer and stored at − 80 °C until measurement by PCR by
LC-Bio (Hang Zhou, China), and the isolation of DNA
was confirmed by 1.2% agarose gel electrophoresis. Be-
fore sequencing, the 16S rDNA V3-V4 region of each
sample was amplified with a set of primers targeting the
16S rRNA gene region. Sequencing libraries were gener-
ated using the NEB Next, Ultra DNA Library Prep Kit
for Illumina (NEB, USA) following the manufacturer’s
recommendations, and index codes were added. The li-
brary quality was assessed on the Qubit@ 2.0
Fluorometer (Life Technologies, CA, USA) and Agilent
Bioanalyzer 2100 system. Finally, the library was se-
quenced on an Illumina MiSeq platform, and 300 bp
paired-end reads were generated (Zhang et al. 2018).

Bioinformatics analysis
Samples were sequenced on an Illumina MiSeq platform
according to the manufacturer’s recommendations pro-
vided by LC-Bio. Paired-end reads were assigned to sam-
ples based on their unique barcode and truncated by
cutting off the barcode and primer sequences. Paired-
end reads were merged using FLASH. Quality filtering
of the raw tags was performed under specific filtering
conditions to obtain high-quality clean tags according to
fqtrim (V 0.94). Chimeric sequences were filtered using

Search software (v2.3.4). Sequences with ≥ 97% similarity
were assigned to the same operational taxonomic units
(OTUs) by Vsearch (v2.3.4). Representative sequences
were selected for each OTU, and taxonomic data were
then assigned to each representative sequence using the
Ribosomal Database Project (RDP) classifier. The differ-
ences in the dominant OTUs in different groups and
multiple sequence alignment were conducted using
mafft software (V 7.310) and were used to study the
phylogenetic relationship of different OTUs. OTUs
abundance information was normalized using a standard
sequence number corresponding to the sample with the
least sequences. Alpha diversity was applied to analyse
the complexity of OTUs diversity for a sample through
two indices, including Chao1 and observed OTUs, and
all these indices in our samples were calculated with
QIIME (version 1.8.0). Beta diversity analysis was used
to evaluate differences in the OTUs complexity of sam-
ples. Beta diversity was calculated by NMDS, and cluster
analysis was calculated by QIIME software (version
1.8.0) (Li et al. 2018).

Statistical analysis
Data were analysed by one-way ANOVA using SPSS
23.0, and the significance test of differences in four
groups was performed by LSD multiple comparisons. P
< 0.05 was used as the significant level of difference, and
the data analysis results were expressed as the mean ±
standard deviation.

Results
Abundance and diversity of sample OTUs
The rank abundance curve of bacterial OTUs indicated
that in the model used in this study, most OTUs exhib-
ited low-abundance microbial populations in rat faeces.
A Venn diagram was generated to aid in the understand-
ing of the OTUs shared between samples (Fig. 1). The
analysis results showed that 3483 OTUs were detected
in all samples, but only 1236 were shared in the total
abundance. In our study, 2649, 2862, 2485, and 1902
OTUs were obtained from the CG, WG, PG, and FG
samples, respectively, accounting for 76.06, 82.17, 71.35
and 54.61% of the OTUs, respectively.

Variation in alpha diversity
Alpha diversity was assessed by the Chao1 index and ob-
served OTUs index, and the results are presented in Fig.
2. In all four groups, rarefaction curves of Chao1 indices
were close to the saturation platform at a sequencing
depth of 10,000 (Fig. 2a). The observed OTUs curves
showed a similar trend. The microbial community rich-
ness in the WG samples was higher than those in the
other three groups (P < 0.05) (Fig. 2b). The microbial
community richness in the FG samples was the lowest
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among the samples (P < 0.05). Thus, these findings dem-
onstrated that the WG samples had the highest microbial
community diversity (P < 0.05) (Table 1).

Variation in beta diversity
To facilitate the observation of faecal microbial population
differences between groups, the NMDS test based on the
unweighted UniFrac distance matrix was applied. The in-
dividual samples from rats fed with the same sample solu-
tion were more closely clustered, but there were
significant differences between the individual samples of

different sample solutions given to the stomach, indicating
that the different dietary patterns in this study had signifi-
cant effects on the faecal microbial communities in the
four groups (Fig. 3).

Microbial community structure at the phylum, family, and
genus levels
In the study of taxonomic composition (Fig. 4), the clas-
sification of sequences from the samples resulted in
more than nine different phyla identified in this study.
The most abundant phyla identified in the four groups
were Bacteroidetes (29.65–38.19%) and Firmicutes
(48.30–67.04%), both accounting for 96.98% (Fig. 4a).
The other phyla present in relatively low abundance
were Actinobacteria, Tenericutes, Proteobacteria, Verru-
comicrobia, and Cyanobacteria as well as two unclassi-
fied bacteria. In addition, the ratio of Firmicutes to
Bacteroidetes (F/B) was lower in the WG and FG sam-
ples than in the CG samples. The F/B ratio was lower in
the WG samples than in the FG samples, and it was
higher in the PG samples than in the CG samples.
To better understand the structure of the faecal micro-

biota in rats, we performed faecal sample analysis at the
family level (Fig. 4b), and the top 20 bacteria were se-
lected for analysis at this level. The following families
showed an increasing trend after different treatments. In
the CG samples, Lachnospiraceae was the predominant
family (31.02%) followed by Porphyromonadaceae, Lac-
tobacillaceae, and Prevotellaceae. Lachnospiraceae was
also the predominant family in the PG samples (46.00%)
followed by Porphyromonadaceae, Lactobacillaceae, and
Rikenellaceae. Remarkably, the abundance of Lactobacil-
laceae (38.40%) in the FG samples was higher than that
in the other groups (P < 0.05), while the abundance of
Lactobacillaceae in the PG samples was lower than that
in the other groups (P < 0.05), especially in the CG

Fig. 1 There were 2649, 1902, 2485, and 2862 OTUs in the CG, FG,
PG, and WG samples. The overlapping OTUs are described as
follows: CG and FG samples shared 1530 OTUs; CG and PG samples
shared 1954 OTUs; CG and WG samples shared 1791 OTUs; FG and
PG samples shared 1505 OTUs; FG and WG samples shared 1740
OTUs; PG and WG samples shared 2185 OTUs; CG and PG samples
shared 1287 OTUs; CG, FG, and WG samples shared 1440 OTUs; CG,
PG, and WG samples shared 1791 OTUs; and FG, PG, and WG
samples shared 1421 OTUs. The total richness of all the samples
was 3483

Fig. 2 Comparison of the diversity indices for different methods. a Chao1-based rarefaction curves for each sample. b Observed OTUs index for
each sample
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samples. We also found two unclassified sequences at
the family level, namely Bacteroidales and Clostridiales,
and they comprised 2.33, 3.94, 1.18, and 1.24% of CG,
WG, FG, and PG samples, respectively.
At the genus level, significant differences were ob-

served for most of the samples (Fig. 4c). The unclassified
bacteria in the four samples accounted for 34.81, 40.56,
52.88, and 35.25% of the top 20 reads for the CG, WG,
PG, and FG samples, respectively. We generated a heat-
map to show the genera at different levels in the sam-
ples. Lactobacillus was most abundant in the FG
samples (38.4%) followed by WG (18.97%), CG (14.61%),
and PG (8.39%) (P < 0.01). Surprisingly, there was a sig-
nificant reduction in the relative abundance of Alistipes
(CG, 8.09%; WG, 4.31%; FG, 1.96; and PG, 6.25%), Pre-
votella (CG, 8.09%; WG, 4.31%; FG, 1.96; and PG,
6.25%), and Bacteroides (P < 0.05) after treatment. More-
over, the abundance of Parabacteroides in the FG sam-
ples (0.09%) was significantly less than that of the other
three groups (CG, 0.16%; WG, 0.37%; and PG, 0.12%).
Thus, the intake of different treatments had a significant
influence on the diversity of intestinal microbiota.

Discussion
The faecal microbiota plays an important key role in the
absorption and transformation of nutrients involved in
the daily diet (Ghosh et al. 2014). In recent years, related
studies have reported that Chinese herbal extracts, pro-
biotics, and fermentation broth have significant effects
on intestinal microbiota (Eom et al. 2014, Zhang et al.
2017). In this study, rats were given DBT, B. subtilis, and
DBT fermentation product to comprehensively evaluate
the effect on intestinal microbiota by comparison. Com-
pared to other samples, the intestinal probiotics were
significantly upregulated in the FG samples, and the
pathogenic bacteria were significantly downregulated in
the FG samples. These findings demonstrated that DBT
fermentation product has a significant influence on im-
proving the intestinal environment and balancing the in-
testinal microbiota.
Analysis of the four groups of faecal samples indicated

that Firmicutes accounted for the largest proportion of
all categories in the total microbiota. Previous studies
have shown that Firmicutes plays a key role in improving
the nutritional absorption of the daily diet and energy
conversion of animals (Turnbaugh et al. 2008; Jumpertz
et al. 2011). Although the diet patterns of rats in the four
experimental groups were different, Firmicutes was still
the most important category of all stool samples (48.30–
67.04%) in our study, and the differences between the
groups were not significant. Bacteroidetes and Firmicutes
play an important role in the regulation of colon metab-
olism, and they can further decompose and absorb un-
digested food residues in the intestine through a series
of systematic energy metabolism mechanisms (Candela
et al. 2010). In addition, related studies have indicated
that reducing the proportion of F/B in the main bacteria
effectively prevents further development of obesity af-
fected by diet (Turnbaugh et al. 2006). As a TCM for
tonics, DBT has a significant stimulating effect on the
immune functions of animals, and Astragalia Radix poly-
saccharide, a main active ingredient of DBT, has a cer-
tain effect on the body weight of mice fed a high-fat diet
(Mao et al. 2009). In the present study, we noted that
the F/B ratios of the WG and FG samples were lower
than those of the CG samples (WG, 1.07 ± 0.43; FG,
1.78 ± 0.93; and CG, 2.29 ± 1.79). In addition, the F/B
ratios of the PG samples showed an upward trend (3.45
± 2.69), but the difference in means was not significant
(P = 0.13). Nevertheless, relevant studies have indicated
that polysaccharides and metabolites can inhibit the
growth of Firmicutes and thus balance Bacteroidetes in
the intestine (He et al. 2016). Bacteroidetes can further
digest and absorb dietary polysaccharides and other
complex energy substances in the large intestine and
then convert them into short-chain fatty acids for reuse
as energy substances in animals (Becker et al. 2014).

Table 1 The influence of different preparations on biodiversity
of the three treatment groups

Samples Chao1 Observed OTUs

CG 1137.87 ± 224.19a 735.67 ± 140.38a

WG 1181.81 ± 178.28b 1003.33 ± 120.69b

FG 918.97 ± 141.11c 584.83 ± 139.93c

PG 1248.20 ± 91.17a 863.50 ± 61.22ab

The results are expressed as the mean ± SD (n = 6). Different letters in the
same column indicate significant differences (P < 0.05) among
different groups

Fig. 3 NMDS plots based on the unweighted UniFrac distance
matrices of four groups
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SCFAs are metabolites of the intestinal microbiota. The
daily diet pattern of the animal body has a certain effect
on the structure of the intestinal microbiota and affects
the composition ratio and concentration of SCFAs.
SCFA-producing bacteria breakdown fibrous foods to
obtain energy substances, and high concentrations of
SCFAs in faeces promote this behaviour of bacteria and
then play a certain role in resisting host colon disease
(Sanz et al. 2005).
In addition, butyric acid is produced in the later stages

of fermentation, which is related to the conversion of
other bacterial metabolites formed during fermentation
(Świątecka et al. 2011). By far, most bacteria related to
butyric acid concentration in the caecum are related to
Firmicutes. In the present study, the WG and FG sam-
ples promoted the growth of Bacteroides and inhibited
the proliferation of Firmicutes. However, the internal
pathways and mechanisms need to be comprehensively
elucidated by genomic technology.
Lactobacillus is one of the most widely studied and

used probiotics (Soto et al. 2014). Lactobacillus re-
lieves lactose intolerance, prevents intestinal infection,
stimulates the immune system to enhance response,
reduces inflammation, reduces allergic reactions, pro-
motes gastrointestinal motility, and prevents depres-
sion (Levri et al. 2005; Bravo et al. 2011). In addition,

Lactobacillus promotes antihypertensive activities,
prevents colon cancer, and reduces the incidence of
cardiovascular disease. In our study, Lactobacillus
was the most predominant genus. Some related stud-
ies have shown that several TCMs of the tonic cat-
egory promote the proliferation of probiotics in the
intestine, inhibit the proliferation of pathogenic bac-
teria, and regulate the intestinal microbiota (Yu et al.
2019). As a TCM for tonics, DBT had a significant
stimulating effect on Lactobacillus in our study, and
the FG samples had a stronger effect than the WG
samples (P < 0.05). Moreover, Parabacteroides is a
genus of Bacteroides and is a drug-resistant pathogen
that has been found to cause intra-abdominal infec-
tions. Alistipes is also a pathogen that is involved in
the progression of colitis and colon cancer. Langille
et al. (2014) also reported a significant increase in
the abundance of Alistipes in weak mice. Our study
showed that the abundance of these two pathogens
was significantly reduced in the FG samples com-
pared to the other three groups, which was consistent
with previous reports. For example, after treatment of
ulcerative colitis in rats induced by trinitrobenzene
sulfonic acid using a red ginseng decoction, the num-
ber of beneficial bacteria in the intestines of rats,
such as Bifidobacterium animalis, Bifidobacterium

Fig. 4 The relative abundance of the top phyla (a), bar graph of the top families from samples (b), and the heatmap of the genera in samples (c)
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longum, and Lactobacillus, is significantly upregu-
lated, while the number of pathogenic bacteria, such
as Escherichia coli, is significantly reduced (Guo et al.
2015). In the present study, the PG samples showed
the opposite result for Lactobacillus. In addition, we
also found that the number of Prevotella in the other
three groups decreased compared to the CG samples
and that the PG samples were particularly significant
(P < 0.01). It has been reported that the number of
Prevotella has a strong positive correlation with ani-
mal body weight. Probiotics colonize the intestines
and help to digest food residues, produce nutrients,
balance intestinal microbiota, inhibit pathogenic bac-
terial growth, inhibit bacterial reproduction, and
stimulate the body’s immune system (Hill et al.
2014). However, with the development of sequencing
technology, some related reports have indicated that
additional supplementation with probiotics does not
have a probiotic effect on the body (Zmora et al.
2018). Therefore, we postulate that this phenomenon
may be related to the type of probiotics and the in-
ternal environment of the animal, which requires fur-
ther exploration.
The intestinal microbiota of rats fed DBT fermentation

product was analysed for the first time by high-
throughput sequencing technology, and this analysis
provided a clearer understanding of the structure of the
intestinal microbiota of rats after experimental treat-
ment. However, in the process of sequence analysis of
samples, some inevitable errors in sample preparation, li-
brary preparation, and bioinformatics analysis are prone
to occur (Lawrence et al. 2013). Thus, improvement of
the experimental method can reduce the occurrence of
experimental errors as much as possible (Williams et al.
1999; Akbari et al. 2005). However, studies on the identi-
fication of faecal microbial populations are not adequate
for comprehensive and systematic analysis of faecal mi-
crobial populations. The lack of 16S rRNA gene se-
quences in the available databases also hinders the
development of sequencing technology. In addition,
short-read high-throughput sequencing has weaknesses,
including the generated “noise.” In general, the quality of
sequencing in this study was reliable (Table S1). Al-
though we analysed specific microbial microbiota in rat
stool samples, there are still many strains in the samples
that need further classification and functional identifica-
tion (Quince et al. 2011).
In conclusion, we performed 16S rRNA-based micro-

bial analysis of the bacteria in rats given different dietary
treatments by high-throughput Illumina sequencing
technology. We found many differences in the intestinal
microbiota structure and changes in composition among
the groups in this study. Although the bacterial commu-
nity may be affected by many factors, the structural

characteristics of the complex bacterial community in
the faeces of the four groups were well explained in this
study. In particular, the DBT fermentation product sig-
nificantly improves the microbiota balance, increases the
number of beneficial bacteria, and inhibits the growth of
pathogenic bacteria. However, the mechanism by which
the fermentation broth balances the intestinal micro-
biota remains unclear. Therefore, further metagenomics
and metabolomics research should be undertaken to
fully understand the series of potential metabolic regula-
tory mechanisms of specific functional gut microbiota
related to animals.
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