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Abstract

Purpose: In this study, an aqueous two-phase micellar system (ATPMS), formed by the non-ionic surfactant Triton
X-114, was used to investigate the partitioning of cellulolytic enzymes produced by the filamentous fungus
Aspergillus fumigatus CCT 7873.

Methods: Performance of the ATPMS on the partitioning of CMCase (activity on carboxymethyl cellulose) and
FPase (activity on filter paper) was investigated by varying the temperature (35, 40, 45, 50, 55, 60, and 65 °C),
enzyme crude extract concentration (20, 40, 60, and 80% w/w), and Triton X-114 concentration (2, 4, 6, and 8% w/
w) and by adding different inorganic salts (NaCl, CaCl2, MgSO4, and MnSO4) in the system.

Results: An ATPMS formed with 8% (w/w) Triton X-114 and 40% (w/w) enzymatic crude extract at a system
temperature of 55 °C was most favorable for partitioning the tested enzymes. Under these conditions, a purification
factor for CMCase and FPase of 10.89 and 0.65 was reached, respectively. The addition of inorganic salts changed
the distribution of enzymes. Of these, CaCl2 contributed to a higher distribution coefficient (50.0), whereas for
FPase, the presence of MnSO4 in the system improved the purification factor to 3.94.

Conclusion: The highest values obtained for the yield and purification factors demonstrate that ATPMS is an
interesting option for recovering and purifying cellulolytic enzymes.
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Introduction
Brazil is a large producer of agro-industrial products,
and thus it generates a lot of lignocellulosic residues
(Machado et al. 2010). In general, these residues are rich
in cellulose, hemicelluloses, and lignin. Additionally, they
are a cheap and abundant (Castilho et al. 2000). Cellu-
lose can be used to produce value-added products, such
as second-generation ethanol. In this case, pretreatment

and fermentation processes are followed by a distillation
step in order to obtain the product (Sousa et al. 2009).
Also, depending on the microorganism and the type of
fermentation used, important products such as enzymes
and pigments can be obtained mainly by using solid-
state fermentation (SSF). Using SSF, microorganism
growth is carried out in the absence or near absence of
free water, occurring on a solid surface (Ruiz et al.
2012). In general, this approach leads to a more concen-
trated extract, i.e., the metabolites produced are more
concentrated, and also has a lower energy demand com-
pared to the classical submerged fermentation. However,
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process variables, such as temperature and pH, are more
difficult to control when SSF is used.
Among the enzymes that can be produced using ligno-

cellulosic residues, cellulases play a key role in products
such as textile, chemicals, and animal feed. Cellulases
consist of a group of endo- and exo-enzymes acting syn-
ergistically in order to convert cellulose into glucose
(Gan et al. 2003; Chandra Kalra et al. 2010). On the
other hand, large-scale enzyme production, as well as
the production of other biomolecules, depends on the
techniques used during the purification protocol. Obvi-
ously, the final use dictates the purification degree
needed for the biomolecule. Additionally, downstream
processing represents up to 80% of the total cost of the
process (McCreath et al. 1995, Sousa Júnior et al. 2016).
Thus, integrative techniques play a key role in down-
stream processing. One such technique involves aqueous
two-phase micellar systems (ATPMS). This is a liquid-
liquid extraction technique that uses surfactants with a
concentration higher than the critical micelle concentra-
tion (CMC), i.e., a concentration at which the surfactant
does not occur as a monomer but rather as a micelle-
structure. Additionally, the formation of micelles is re-
lated to the equilibrium of intermolecular forces, includ-
ing Van der Waals, hydrophobic, steric, and electrostatic
ones (Liu et al. 1998). Therefore, once these self-
assembling aggregates are achieved, a biphasic system is
built (Liu et al. 1996), which can be exploited for bio-
molecule separation/purification. In this case, this sys-
tem is advantageous since it is able to maintain the
activity of the biomolecules, i.e., it is environmentally
friendly. The migration of the biomolecules depends on
their miscibility to the micelle-rich phase or to the
micelle-poor phase (Ramelmeier et al. 1991). The
ATPMS is based on the use of a surfactant in order to
form two immiscible phases, a bottom phase that is rich
in micelles and an upper phase that is poor in micelles
(for the systems shown here). The formation of the two
phases is usually implemented by changing the
temperature, also known the cloud point, which is used
to determine the coexistence curve (Rangel-yagui et al.
2004). In these systems, the temperature, along with pa-
rameters such as pH, surfactant concentration, and the
presence of salts, can induce the two-phase formation
(Ooi et al. 2011). The main surfactant used is a nonionic
one, such as Triton X-114 (Wang et al. 2013).
In this context, due to the importance of reducing the

costs of downstream processing by exploiting integrative
techniques, this study investigated the partitioning be-
havior of cellulases using an ATPMS formed by a non-
ionic surfactant (Triton X-114), inorganic salts, and
crude extract at different concentrations. The coexist-
ence curves, i.e., the formation of a cloud point as a
function of the surfactant concentration, were obtained

for every condition assayed. There are few studies in the
literature that have applied ATPMS to recover and pur-
ify cellulolytic enzymes, such as CMCase (activity on
carboxymethyl cellulose) and FPase (activity on filter
paper).

Material and methods
Chemicals
Bovine serum albumin (BSA), the nonionic surfactant
Triton X-114, and carboxymethyl cellulose (CMC) were
acquired from Sigma-Aldrich (Ohio, USA). A low mo-
lecular protein weight marker was acquired from GE
healthcare (Sweden). The inorganic salts CaCl2, MgSO4,
MnSO4, and NaCl were of analytical grade. Ultrapure
water was obtained from a Milli-Q system.

Sugar cane bagasse
Sugar cane bagasse was acquired from Estivas sugar
plants (Rio Grande do Norte-Brazil). After an initial
screening, the bagasse was washed and dried using a tray
dryer at 70 °C for 5 days. Then, it was milled (Willye,
TE-680, Tecnal, São Paulo/Brazil) and sifted through a
20-mesh sieve. The main composition of the sugar cane
bagasse, in percentages, consisted of cellulose (39.25 ±
5.49), hemicellulose (25.20 ± 1.13), and lignin (18.82 ±
0.01). The material used in this study was the same ma-
terial reported by Oliveira et al. (2018).

Microorganism and inoculum
The filamentous fungus Aspergillus fumigatus, isolated
from coconut shells (identified and registered at the
André Tosello Foundation (Campinas/Brazil) as CCT
7873), was used to produce the cellulolytic enzymes and
was kept in the Biochemical Engineering Laboratory of
the Federal University of Rio Grande do Norte (Natal/
Brazil). For the inoculum, A. fumigatus CCT 7873 was
transferred to potato dextrose agar (PDA) medium and
incubated at 30 °C for 5 days. Spore propagation to SSF
was carried out by transferring 1.0 mL of Tween 80
(0.2% v/v) containing microorganisms from the Petri
plate and incubating it in a Biochemical Oxygen De-
mand (BOD) machine (Model: TE-394/I, TECNAL-São
Paulo/Brazil) at 30 °C for 7 days. The spore concentra-
tion was determined using a Neubauer counting-
chamber. The spore concentration used as an inoculum
for the SSF experiments was 1 × 106 spores/gram of
solid medium (Coelho et al. 2001).

Semi-solid fermentation (SSF) and crude enzymatic
extract
The cellulolytic crude enzymatic extract was produced
by the filamentous fungus A. fumigatus CCT 7873 by
SSF using sugarcane bagasse as a substrate (50% mois-
ture with water activity of 0.973) and adding nutrient
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salting solution (pH 4.5) according to Urbanszki et al.
(2000). After 120 h of cultivation, the crude extract was
harvested from the flasks. In this case, 35 mL acetate
buffer (200 mM, pH 5.0) was added to 5.0 g fermented
medium using a glass rod. Next, enzyme extraction was
carried out using acetate buffer under shaking (Tecnal,
TE-421, São Paulo/Brazil) for 30 min at 160 rpm and 30
°C (Coelho et al. 2001). Then, the extract was filtered
and centrifuged for 10 min at 2000 rpm and 20 °C. The
supernatant containing the cellulolytic enzymatic extract
was stored and used in the ATPMS.

Cloud point determination
The ATPMS cloud point was determined by visual iden-
tification, i.e., by observing the system conditions in
which the first turvation occurred. The determination of
the cloud point for the solution containing the surfac-
tant was carried out as described by Watanabe and Ta-
naka (1978). It consisted of the visual identification of
the temperature at which a given surfactant solution
with a known concentration became cloudy. The mix-
tures were added to conical tubes and transferred to a
water bath. The temperature was incremented by 0.1 °C
stepwise every 20 min.

Aqueous two-phase micellar system
The cellulolytic enzymes were partitioned using an
ATPMS composed of Triton X-114 at concentrations of
2, 4, 6, and 8% (w/w). Additionally, we investigated the
impact of temperature (35, 40, 45, 50, 55, 60, and 65 °C),
extract concentration (20, 40, 60, and 80%), and inor-
ganic salts (NaCl, CaCl2, MgSO4, and MnSO4), all at

5.0% (w/w), on the partitioning of the cellulolytic en-
zymes using ATPMS. The pH of the system was kept at
5.0. For the formation of a micellar system, a given
quantity of Triton X-114, enzyme extract, and salt was
added to a centrifugation tube (15 mL) for a final mass
of 5.0 g. Deionized water was used to complement the
final mass. The tube was shaken for 1 min and phase
separation occurred by settling it for 3 h in a water bath
at a given temperature. The phase volume (top and bot-
tom) was measured, and sampling of the phases was per-
formed for quantification of enzymatic activity (CMCase
and FPase) and total protein, which permitted the calcu-
lation of the partition coefficient, yield, and the purifica-
tion factor for the cellulases.

Partition coefficient (K), yield (Y), and purification factor
(PF)
The partition coefficient (K) for the enzymes in the
ATPMS was calculated according to Eq. (1):

K ¼ At

Ab
ð1Þ

where At is the enzymatic activity in the top phase (mi-
celle-poor phase) and Ab is the enzymatic activity in the
bottom phase (micelle-rich phase).
The enzyme yield (Y) in the top phase was obtained as

shown by Eq. (2):

Y ¼ AtV t

AiV i

� �
� 100 ð2Þ

Fig. 1 Coexistence curves for the aqueous two-phase micellar system (ATPMS) with varying enzymatic extract (0 to 80% (w/w)) and Triton X-114
(2, 4, 6, 8, and 10% (w/w)) concentrations at different temperatures
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where Vt and Vi are the top and initial volumes,
respectively.
The purification factor was estimated with regard to

the specific activity as described in Eq. (3):

PF ¼ At=Ct

Ai=Ci
ð3Þ

where Ct and Ci are the total protein at top phase and
the initial concentration in the fermented broth,
respectively.

Cellulase activity (CMCase and FPase) and total protein
quantification
The CMCase activity was determined by adding 0.5 mL
of enzyme extract to 0.5 mL of CMC 4% (w/w) in citrate
buffer (50.0 mM, pH 4.8), according to Ghose (1987).

The enzymatic reaction was performed for 10 min at 50
°C. The mixture was heated in a water bath for 10 min
at a temperature adjusted to 50 °C. The reaction was
stopped by boiling and the formation of reducing sugars
was analyzed in a spectrophotometer (Thermo Spectro-
nic) using the 3,5-dinitrosalicylic acid method (Miller
1959) with D-glucose as standard. A unit (U) of CMCase
was defined as the enzyme quantity necessary to pro-
duce 1.0 μmol of D-glucose per minute under the assay
conditions. The quantification was performed in dupli-
cate and the results shown are the means.
The FPase activity was quantified by adding 0.5 mL of

the enzymatic extract to 1.0 mL of citrate buffer (50.0
mM, pH 4.8) containing filter paper strip (Whatman No.
1) (1.0 cm × 6.0 cm) according to Ghose (1987). The
mixture was heated in a water bath for 60 min and the
formation of reducing sugars was analyzed in a

Fig. 2 CMCase (a) and FPase (b) yields obtained during partitioning in the ATPMS using different Triton X-114 concentrations and changing the
temperature from 35 to 65 °C at 40% enzymatic extract concentration
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spectrophotometer (Thermo Spectronic) using the 3,5-
dinitrosalicylic acid method (Miller 1959), with D-
glucose as a standard. A unit (U) of FPase was defined
as the enzyme quantity necessary to produce 1.0 μmol of
D-glucose per minute under the assay conditions. The
quantification was performed in duplicate and results
shown are the means.
The total protein content was determined at 595 nm

according to Bradford (1976). Bovine serum albumin
(Sigma-Aldrich, Ohio, USA) was used as a standard. The
quantification was performed in triplicate and the results
shown are the means.

Polyacrylamide gel electrophoresis (SDS-PAGE)
Electrophoresis using denaturing condition (SDS-PAGE)
was performed using 10% (w/v) acrylamide according to
Laemmli (1970). The protein bands were stained using

silver nitrate. A low molecular protein weight marker
(GE healthcare, Sweden) was used in order to estimate
the molecular mass of the proteins.

Zymogram
A zymogram was obtained by adapting the method pro-
posed by Takenaka et al. (1999). In summary, the sam-
ples were dialyzed overnight and concentrated (1.0 mg/
mL), and were then submitted to a PAGE by adding
0.2% CMC to a gel prepared with Tris-HCl (1.5 M, pH
8.8) for 3 h at 4 °C.
In order to observe the cellulolytic activity, the gel was

shaken and incubated using sodium citrate buffer (50.0
mM, pH 4.8) at 50 °C for 1 h. Next, the gel was washed
using distilled water, and was then immersed and shaken
in congo red dye solution (0.1% v/v) for 20 min and

Fig. 3 Purification factor for CMCase (a) and FPase (b) obtained during partitioning in the ATPMS using different Triton X-114 concentrations and
changing the temperature from 35 to 65 °C at 40% enzymatic extract concentration
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washed with 1.0 M NaCl until the bands appeared, con-
firming the cellulolytic activity.

Results
Triton X-114 coexistence curves
The quantification of coexistence curves is crucial for
understanding the ATPMS. The coexistence curve de-
limits the single phase from the biphasic region in the
diagram. Figure 1 shows the coexistence curves formed at
different temperatures, changing both the enzymatic ex-
tract content as well as the Triton X-114 concentration.
Our results clearly demonstrate that the coexistence

curve is influenced by the extract content. A higher ex-
tract concentration led to a lower critical temperature
(Tc) for the ATPMS.

Influence of Triton X-114 concentration and temperature
on cellulolytic enzyme partitioning
The influence of Triton X-114 on the cellulase yield
(CMCase and FPase) was assayed by keeping the enzymatic
extract at 40% (w/w) and changing the Triton X-114 con-
centration and the temperature, as shown in Fig. 2. For the
crude extract, the initial conditions were 0.70 IU/mL, 0.11
IU/mL, and 0.64 mg/mL for CMCase, FPase, and total pro-
tein, respectively. It was observed that for enzyme CMCase,
the highest yields were obtained at 60 °C, regardless of the
surfactant concentration in the system (Fig. 2a). The high-
est value for the partition coefficient (K) for CMCase was
9.33 (see supplemental Table S1), obtained at 60 °C when
the Triton X-114 concentration was 8% (w/w).
Figure 3 shows the purification factor for the two clas-

ses of enzymes assayed. The results revealed that the
purification process for CMCase is favorable when the

Fig. 4 CMCase (a) and FPase (b) yields obtained during partitioning in the ATPMS using different Triton X-114 concentrations and changing the
crude extract concentration at 55 °C.
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ATPMS is operated at 5 °C with a Triton X-114 concen-
tration of 8% (w/w). In this case, a PF of 10.89 was
reached for CMCase.
For FPase, even though a temperature of 55 °C using a

Triton X-114 concentration of 8% (w/w) showed a
higher PF, the PF value was still lower than 1.0. This re-
vealed that these enzymes prefer the micelle-rich phase.
Similar to the CMCase, the FPase also showed an in-
crease on the PF due to the increase of the temperature
of the system with the same Triton X-114 concentration
(8% (w/w)). In this case, the increase on the PF was an
approximately 8.1-fold increase, as shown in Fig. 3.

Influence of the Triton X-114 concentration and crude
extract on cellulolytic enzyme partitioning
The influence of Triton X-114 on the cellulase yield
(CMCase and FPase) was assayed by changing the Triton

X-114 concentration as well as the crude extract concen-
tration while keeping the temperature at 55 °C, since this
temperature produced the best results for K and PF for
both enzymes. Figure 4a shows a yield value of 92% for
the CMCase regardless of the crude extract concentration
used in the system. However, the use of the 20% (w/w)
crude extract strongly reduced the yield for the FPase.
Regarding the purification factor for both CMCase and

FPase, a higher crude extract of 40% (w/w) was favorable,
mainly for a Triton X-114 concentration of 8% (w/w), as
shown in Fig. 5 and in the Supplemental Table S2. The PF
obtained for CMCase was again higher than that for FPase.

Influence of the Triton X-114 concentration and inorganic
salts on cellulolytic enzyme partitioning
The salt type and content played a key role in the parti-
tioning of biomolecules using the ATPMS. Therefore, in

Fig. 5 Purification factor for CMCase (a) and FPase (b) obtained during partitioning in the ATPMS using different Triton X-114 concentrations and
changing the crude extract concentration at 55 °C
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this study, we investigated the influence of the inorganic
salts on the partitioning of cellulolytic enzymes pro-
duced by the filamentous fungus A. fumigatus CCT
7873 using ATPMS. For these experiments, the
temperature and crude extract were 55 °C and 40% (w/
w), respectively. These values were chosen since they led
to the best results overall, for yield and PF, for both en-
zymes, as can be seen in Figs. 3, 4, and 5. Thus, the en-
zyme partitioning was carried out in the presence of the
salts CaCl2, MgSO4, MnSO4, and NaCl, changing the
Triton X-114 concentration from 2% (w/w) up to 8%
(w/w), as shown in Figs. 6 and 7. The addition of CaCl2
favored the partition coefficient for both enzymes, as
seen in Supplemental Table S3. For instance, a K value
of 50 was obtained for ATPMS containing 2% (w/w) Tri-
ton X114 operating at 55 °C with 40% (w/w) crude ex-
tract, while the K value for FPase was 13.5.

Figure 8 shows the SDS-PAGE and the zymogram ob-
tained using an ATPMS consisting of 40% (w/w) crude
extract operating at 55 °C using different concentrations
of Triton X-114 (2, 4, 6, and 8% w/w). The crude extract
showed at least four bands with molecular masses of 25,
33, 39, 52, and 70 kDa.

Discussion
The coexistence curve showed that a higher extract con-
centration led to a lower critical temperature (Tc) for
the ATPMS. Additionally, the lowest Tc occurred at
20.4 °C at a Triton X-114 concentration of 0.5 (w/w).
An aqueous solution containing the nonionic surfactant
Triton X-114 can suffer from macroscopic changes in
the phase separation with an increase in temperature,
thus forming a micelle-rich phase (bottom phase) and a
micelle-poor phase (top phase) (Ramelmeier et al. 1991).

Fig. 6 CMCase (a) and FPase (b) yields obtained during partitioning in the ATPMS using different Triton X-114 concentrations and inorganic salts
at 55 °C and 40% (w/w) crude extract concentration
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The structures, shapes, and sizes of the micelles can be
altered by changing the system temperature or the sur-
factant concentration, or by adding salt to the system
(Liu et al. 1996). An increase in temperature causes de-
hydration of the oxyethylene group, which is responsible
for the higher polarity region at the surfactant chain,
thus promoting phase separation due to the molecule
solubility. The cloud point of the system occurs due to
monomer surfactant aggregation, causing phase separ-
ation (Quina and Hinze 1999).
With regard to the influence of the Triton X-114 con-

centration and temperature on cellulolytic enzyme parti-
tioning for FPase, the highest value for K was 5.0 and
was obtained at 60 °C with Triton X-114 concentrations
of 6 and 8% (w/w). Thus, both enzymes preferred the
micelle-poor phase. Also, for both enzymes, the yield re-
lied on both the temperature and the surfactant

concentration. This effect is more pronounced for FPase;
for instance, we observed that when the Triton X-114
concentration was increased from 2 to 8% (w/w), the
yield for this enzyme increased from about 67% at 35 °C
to 97.88% at 60 °C, an increase of approximately 46.09%.
A higher K value is important, as in this case the enzyme
was being concentrated in the surfactant-poor phase.
Thus, with regard to the influence of the Triton X-114

concentration on the purification factor for CMCase, an
increase of almost 19-fold was seen in a system with the
same Triton X114 concentration (8% (w/w)), but operat-
ing at 55 °C instead of 35 °C, as shown in Fig. 5a and
Supplemental Table S1. Therefore, for CMCase, there
was a phase change due to the increase in temperature
when the system contained Triton X-114 at 8% (w/w).
This phase change probably occurred due to a prefer-
ence for the micelle-rich phase (bottom phase) caused

Fig. 7 Purification factor for CMCase (a) and FPase (b) obtained during partitioning in the ATPMS using different Triton X-114 concentrations and
inorganic salts at 55 °C and 40% (w/w) crude extract concentration
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by the temperature increase. Thus, it reduced the vol-
ume occupied by the hydrophilic enzymes, causing the
migration of these enzymes to the top phase. Addition-
ally, as can be seen in Fig. 2, the enzymes were dena-
tured at temperatures above 65 °C. It should be noted
that there has not previously been a report using the
ATPMS approach to recover and purify cellulases exist-
ing in the broth, as we have done in the current study.
Vicente et al. (2019) previously combined an aqueous
two-phase system (ATPS) and ATPMS based on Pluro-
nic L-35, a thermo-responsive copolymer, in order to se-
lectively separate three model proteins: cytochrome c,
ovalbumin, and azocasein.
Considering the influence of the Triton X-114 concen-

tration and crude extract on the FPase yield at a con-
stant temperature of 55 °C (Fig. 4b), the use of the 20%
(w/w) crude extract strongly reduced the yield. In this
case, a decrease from 65 to 20% was observed. Com-
pared to CMCase, this reduction was quite small, from
98.5 to 93%. In addition, the use of 40% (w/w) crude ex-
tract was more favorable for CMCase. For FPase, an in-
crease in the crude extract above 40% (w/w) did not
significantly alter the yield. Thus, greatly increasing the
concentration of the crude extract was not effective at
improving biomolecule extraction. In this case, it can
precipitate the target biomolecule and also influence en-
zyme partitioning (Malpiedi et al. 2011). Regarding the
purification factors for both CMCase and FPase, the
former showed a PF value of 10.89, while the latter
showed a higher PF value of 0.65. For FPases at a
temperature of 55 °C, regardless of the Triton X-114
concentration and crude extract used in this study, these
enzymes showed a preference for the micelle-rich phase
(bottom phase), which could be due to the more hydro-
phobic features of these enzymes. The results of this

study are in accordance with those shown by Jaramillo
et al. (2013), which reported 8% (w/w) and 20% concen-
trated crude extract (w/w) when extracting pectinases
using ATPMS.
With regard to the influence of the Triton X-114 con-

centration and inorganic salts on cellulolytic enzyme
partitioning, it was observed that the addition of CaCl2
favored the partition coefficient for both enzymes, as
seen in the Supplemental Table S3. For instance, a K
value of 50 was obtained for ATPMS containing 2% (w/
w) Triton X-114 operating at 55 °C with 40% (w/w)
crude extract, while the K value for FPase was 13.5. Also,
not only was the K favored but a higher yield was also
obtained when this salt was added to the system. Over-
all, in the presence of MgSO4, a yield of 70% was ob-
tained for both CMCase and FPase. A lower yield (less
than 30% regardless of the Triton X-114 concentration)
was observed for the CMCase. The effect of the ion type
on this enzyme partitioning becomes evident when com-
paring the yields obtained in the presence of MgSO4

with those obtained when MnSO4 is used, as shown in
Fig. 6a. Therefore, the use of the latter is better than the
former for CMCase yield. Indeed, the use of MnSO4 was
more favorable for the yield of CMCase in the micelle-
poor phase. An inverse relationship was observed for
FPase. Thus, the anion size plays a key role in the salting
out: the lower the anion the higher its hydration cap-
acity, and since the radii of the Mn+2 is less than that of
Mg+2, the former induces the micelle-micelle interaction,
thus pushing the CMCase to the upper phase and im-
proving K, Y, and FP. Additionally, in presence of NaCl
and MgSO4, CMCase showed a PF less than 1.0, regard-
less of the Triton X-114 concentration used, as seen in
Fig. 7a. The salt presence was not at all beneficial for the
PF of CMCase, mainly due to the salting-out effect, since

Fig. 8 SDS-PAGE (lanes 1–5) and zymogram (lanes 6–10). 1,6: crude extract; 2,6: 2% Triton X-114 (w/w); 3,8: 4% Triton X-114 (w/w); 4,9: 6% Triton
X-114 (w/w); and 5,10: 8% Triton X-114 (w/w)
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the use of an ATPMS composed by Triton X-114 at 8%
(w/w) operating at 55 °C with 40% (w/w) crude extract
but without salt addition resulted in a PF of 10.89. For
the FPase, the addition of 5% (w/w) MnSO4 resulted in a
PF value of approximately 5.0, as can be seen in Fig. 7b.
The differences in biomolecule partitioning, mainly of

enzymes and proteins, were that the ions could exhibit
very different behaviors when partitioning between the
two phases (Costa et al. 1998, Harris et al. 1998,
Umakoshi et al. 1996). The addition of salt, even at milli-
molar concentrations, can influence the partitioning of
the charged biomolecules. Even though the salts can be
partitioned almost equally between the phases, it is pos-
sible for differences to arise in the partition coefficients
of different ion species. This can create an electric
potential difference between the phases, subsequently
influencing the partitioning of charged biomolecules
(Sarubbo et al. 2000). As shown in the zymogram
(Fig. 8), the crude extract showed at least four bands
with molecular masses of 25, 33, 39, 52, and 70 kDa. The
range of the molecular masses of the proteins in the present
study is similar to the range reported by Morozova et al.
(2010). Thus, based on the results of the present study, an
integrative technique (Araújo et al. 2016; Araújo Padilha
et al. 2017; Glyk et al. 2015; Wanderley et al. 2017) such as
ATPMS (Amid et al. 2013) can be successful at partitioning
cellulases. Overall, the highest values obtained for the yield
and PF show that ATPMS is an interesting technique for
recovering and purifying cellulolytic enzymes.
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