
Annals of MicrobiologyAdegoke et al. Annals of Microbiology           (2020) 70:43 
https://doi.org/10.1186/s13213-020-01579-4
REVIEW ARTICLE Open Access
Critical threat associated with carbapenem-

resistant gram-negative bacteria:
prioritizing water matrices in addressing
total antibiotic resistance
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Abstract

Purpose: The World Health Organization (WHO) in 2017 classified some carbapenem-resistant Gram-negative
bacteria into a critical criterial group for research and development. This study reviews the need to prioritize the
water matrices as hotspot in the development and transfer of antibiotic resistance determinants, where future total
resistant superbug may emerge.

Methods: Published articles on Google Scholars, PubMed/Medline Search and other search tools were selected,
with special interest in articles published in indexed journals. Search criteria were based on antibiotic resistance,
antibiotic resistance determinants and emerging trend in the reported trend of antibiotic resistance among bacteria
from water matrices.

Results: Research reports around the globe have identified carbapenem-resistant Gram-negative bacteria (CRGNB)
in water matrices. These CRGNB have also been found to be resistant to other antibiotics in the last line of defence.
Molecular typing of some carbapenem-resistant Enterobacteriaceae (CRE) in the environment through pulsed-field
electrophoresis showed them to be the same as those in the hospital settings. CRGNB from various water matrices
have been reported to harbour carbapenem resistance genes with phenotypic expression of carbapenemases’
production. Water habitat provides a conducive environment for the development and spread of carbapenem
resistance. Factors like residual antibiotics (RAbs), metals, biocide and water-borne mutagens aid the emergence of
the resistance in water matrices. Irrespective of where it was contacted, carbapenem-resistant bacteria have poor
prognosis. This is exemplified by resistance to 26 different antibiotics recently in the USA. The human health risk
associated with the use of water harbouring these pathogens for irrigating fruits and vegetables may be alarming.

Conclusion: The reports of the rising trend of antibiotic resistance also necessitate prioritizing water matrices when
addressing the problems from the reservoir. Surveillance and strict isolation, education and enlightenment, strict
compliance with multiple barrier approach of the WHO and more search for more potent antibiotics remain some
of the antidotes against the development and spread of resistance through the water matrices as discussed in this
article.
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Introduction
The dangerous trend in the evolution of difficult-to-
control bacteria, which sometimes originate from the
hospitals and are released to the water matrices through
the wastewater, is alarming. Health-related news around
the globe are agoggled with the worsened prognosis of
bacterial infection, which has been leading to the death
of the patients. This is because the bacteria are becom-
ing resistant to the existing antibiotics in the last line of
defence. Statnews.com reported in January 2017 about
the death of a Nevada woman who died of a superbug
resistant to every available antibiotic in the USA. Worthy
of note in this report was that the woman was infected
with potential water contaminant bacteria, Enterobacte-
riaceae, which in this case was carbapenem-resistant En-
terobacteriaceae, CRE. The death of the woman due to
failure of 26 different antibiotics made the doctor in
charge termed CRE a “nightmare bacteria” (Branswell,
2017). Earlier, another report from the “Science for the
Curious Discover, 2015” elaborated on the discovery of a
strain of Escherichia coli, which has shown resistance to
all existing antibiotics. The said E. coli was resistant to
all the antibiotics in the last line of defence, including
colistin, known earlier for consistent effectiveness
against the bacterium and other Gram-negative bacteria
(GNB) (Zavascki et al. 2007). There is a high level of
concern among the health care practitioners and global
regulatory bodies due to the rising antibiotic resistance
rates. The World Health Organization (WHO) (2017)
published the list of bacteria requiring more input in re-
search and development. They include major Gram-
negative bacteria, which are known as nosocomial path-
ogens as well as water-related pathogens (Ramirez-Cas-
tillo et al. 2015; Stenström et al. 2016). These pathogens,
which include carbapenem-resistant Acinetobacter bau-
mannii, carbapenem-resistant Pseudomonas aeruginosa,
and carbapenem-resistant, ESBL-producing Enterobacte-
riaceae with critical priority (Ramirez-Castillo et al.
2015), are known water-borne pathogens (Ramirez-Cas-
tillo et al. 2015; Stenström et al. 2016). Water-borne P.
aeruginosa’s relatives, Stenotrophomonas maltophilia
and Burkholderia cepacia, have been classified for posing
a great threat as having intrinsic extreme drug-resistant
statuses (McGowan, 2006; Adegoke and Okoh, 2015).
Water matrices therefore remain the phases for consid-
eration in the emergence and spread of antibiotic resist-
ance among Gram-negative pathogens (Adegoke et al.
2017). These groups of Gram-negative bacteria are of
threat in water-borne infection as well as serious noso-
comial infections due to their production of extended-
spectrum β-lactamases (ESBLs). The enzyme (ESBLs)
makes the bacteria resistant to the third-generation
cephalosporins and results in prolonged hospital stays,
higher health care costs and increased mortality.
Resistance to antibiotics in the last line of defence by either
the environmental strains or the clinical strains of bacterial
pathogens leads to total drug resistance. Based on the clin-
ical outcomes in the reports above, carbapenem-resistant
Gram-negative bacteria are of greater threat in the emer-
gence of total antibiotic resistance.
Water matrices are major breeding ground in the

emergence of this magnitude of resistance, and they are
continually impacted with multidrug-resistant (MDR)
bacterial isolates from the hospital through poorly
treated hospital sewage (Picão et al. 2013; Blaak et al.
2015). When these MDR bacteria include species in the
genera Acinetobacter, Pseudomonas, Aeromonas, Steno-
trophomonas among others, their chances of survival in
these matrices are high. They get exposed to the residual
antibiotics in this environment and may develop a high
level of resistance (Adegoke et al. 2017). Carbapenem-
resistant bacteria are, in principle, heading towards total
antibiotic resistance, especially when they show resist-
ance to colistin and fluoroquinolone (Endimiani et al.
2009; Kontopoulou et al. 2010; Zarkotou et al. 2010).
This is usually peculiar for carbapenem and fluoroquino-
lone resistance with their determinants residing in the
plasmid (Endimiani et al. 2009). Exposure to antibiotic
residues in the environment (especially in the water
matrices) or by self-medication where further develop-
ment of resistance can be developed makes these bac-
teria be of greater threat with potentials to resist more
antibiotics (Adegoke et al. 2017). This article examines
the carbapenem-resistant Gram-negative bacteria as re-
ported in water matrices, their reported carbapenemase
production and the presence of other resistance determi-
nants, the fate of these resistant bugs in the water envir-
onment, their critical impending threat and ways to
mitigate the risks.
Methods
Search criteria
Published articles on Google Scholars, PubMed/Medline
Search and other search tools were selected, with special
interest in articles published in indexed journals. Search
criteria were based on “antibiotic resistance”, “antibiotic
resistance determinants” and “emerging trend in the re-
ported trend of antibiotic resistance among bacteria
from water matrices”. The keywords and search terms
employed include, but not limited to, “carbapenem re-
sistance AND water matrices, public health threat” AND
“carbapenem resistance AND water matrices”, “carba-
penem; carbapenemases AND water matrices”; “metals;
carbapenem resistance AND total resistance AND
threat”. “antibiotic resistant genes OR antibiotic resistant
bacteria”. For each case, the search outcomes were
reviewed by the authors.

http://statnews.com
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Inclusion and exclusion criteria
Articles published in the English language were selected
for this study with less emphasis on the study location
or year of publication. Articles which reported antibiotic
resistance in surface water, tap water, wastewater, recre-
ation water, etc. with emphasis on carbapenem antibi-
otics were considered. Other studies in clinical settings
that also reported the threats associated with the resist-
ance or mechanisms of resistance reported already in
water matrices were sometimes used for comparative il-
lustrations. Articles written in other languages were
excluded.
Extraction of data
Information on the reported carbapenem resistance fac-
tors favouring the emergence of antibiotic resistance in
water environment was extracted, and the distribution of
associated threat of carbapenemases and reported mor-
tality to carbapenem resistance towards total antibiotic
resistance pattern etc. were extracted. Relevant tables
and illustrative figures containing important summaries
of resistance threat, associated factor and interpretive
standards were developed.
Results
Out of about 536 articles searched, only 127 publications
matched the described inclusion criteria and were even-
tually used for this study.
β-Lactamases produced by gram-negative bacteria
Gram-negative bacteria produce various β-lactam anti-
biotic degrading enzymes which destroy the penicillins,
some inhibitor-based β-lactam antibiotics, cephalospo-
rins, carbapenem etc. depending on the spectrum of the
enzymes’ activity. So, the beta-lactamases are categorized
as depicted in Fig. 1.
The beta-lactamases contributing to the threat of anti-

biotic resistance include the following:
Fig. 1 β-Lactamases produced by Gram-negative bacteria. Key: IMP-type ca
encoded metallo-β-lactamase) (class B), OXA (oxacillinase) group of β-lactam
(class C), SME, IMI, NMC (metallo-β-lactamases) and CcrA, and NDM-1 (New
a. Penicillases which are those that are effective
against the β-lactam ring of the penicillin antibi-
otics, but not effective against extended-spectrum
antibiotics like cephalosporins

b. Extended-spectrum beta-lactamases (ESBLs): ESBLs
hydrolyze extended-spectrum cephalosporins with
an oxyimino side chain including cefotaxime, ceftri-
axone and ceftazidime, as well as the oxyimino-
monobactam aztreonam. They sometimes originate
from genes coding for phenotypic production of
beta-lactamases like TEM-1, TEM-2 or SHV-1 by
mutations in which the amino acid configuration in
the active site of these β-lactamases has been chan-
ged. There are reports on the rising detection of
some specific ESBLs (Rodríguez-Baño and Pascual
2008) which are coded for by the plasmid and make
the Cephem drugs ineffective. The ESBLs limit the
treatment option for a broad range of infection
from Gram-negative bacteria. A case of water-borne
infection caused by ESBL producers in children or
neonates would be difficult to treat, especially if the
aetiology is carbapenem resistant, since fluoroqui-
nolones are least indicated (unsafe) for these cat-
egories of patients (Goldman and Kearns 2010;
Adefurin et al. 2011; Choi et al. 2013). ESBLs on its
own do not inactivate carbapenems, but can confer
resistance to carbapenem due to subsequent
chromosomal porin mutations limiting the penetra-
tion of β-lactam agents in the bacteria (Lutgring
and Limbago 2016).

Types of ESBLs
TEM (Temoneira) beta-lactamases (class a)
TEM-1 is the most prevalent beta-lactamase in Gram-
negative bacteria. It is produced by majority of ampicillin
resistance in E. coli (Ghafourian et al. 2015) “ampicillin
and penicillin-resistance in” Haemophilus influenzae and
Neisseria gonorrhoeae. The shield provided around the
amino acid substitutions necessitated clustering around
by ESBLs before access to the oxyimino-beta-lactam
rbapenemases (metallo-β-lactamases) (class B), VIM (verona integron-
ases (class D), KPC (K. pneumoniae carbapenemase) (class A), CMY
Delhi metallo-β-lactamase) (class B)
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substrates. Protease inhibitor, e.g. clavulanic acid, pos-
sesses activity against the ESBLs because of prior exposure
of active site as induced by the presence of beta-lactam
substrates. Out of about 140 different TEM beta-
lactamase possible owing to changes via combinations,
only TEM-10, TEM-12 and TEM-26 are prevalent in the
USA (Bradford 2001; Paterson et al. 2003; Bush 2008). In
surface water, Guyomard-Rabenirina et al. (2017) reported
the detection of multidrug-resistant E. coli strain with
TEM-1 beta-lactamase genes, showing the importance of
water matrices in cycling of resistance genes in nature.

SHV beta-lactamases (class a)
Both TEM-1 and SHV-1 possess structural similarities
with 68% similar amino acids.
The SHV-1 beta-lactamase stands as the most preva-

lent in K. pneumoniae. It undergoes conformational
amino acid changes around the active sites to bring
about 60 varieties of its enzyme, out of which SHV-5
and SHV-12 are the most prevalent (Paterson et al.
2003). The genes for the SHV-ESBLs reside on self-
transmissible plasmids. The plasmids usually bear resist-
ance genes to other antibiotics. The ESBL which is ubiqui-
tous and rampant among Enterobacteriaceae globally has
been described by Liakopoulos et al. (2016) as neglected yet
ubiquitous. It is vital for resistance (Liu et al. 2016). Liu
et al. (2016) showed that the location and transmission effi-
ciency of SHV-12 ESBL are directly linked with the anti-
biotic resistance of Enterobacter cloacae. Conjugation
assays conducted by Liu et al. (2016) which were transcon-
jugated into E. coli C600 showed 84% partial expression
and 10% complete expression of resistance from E. cloacae
by plasmid-borne SHV-12 ESBL genes.
In South Western Nigeria, Adesoji and Ogunjobi

(2016) observed the combinations of blaSHV + blaTEM in
11 Klebsiella species in water distribution channels but-
tressing the importance of water matrices in the distri-
bution of the resistance determinants.

CTX-M beta-lactamases (class a)
These were name in more relativity to cefotaxime than
other oxyimino-beta-lactam substrates like ceftazidime,
ceftriaxone or cefepime. They have been widely reported
in water-borne Gram-negative isolates around the globe
(Adegoke and Okoh 2011; Stenström et al. 2016;
Adegoke et al. 2017). Plasmids carrying blaCTX-M genes
usually carry other antibiotic resistance determinants
such as plasmid-mediated quinolone resistance (Canton
et al. 2002). CTX-M enzymes, which contain over 80
CTX-M enzymes, have just about 40% identity with
SHV and TEM. In South America, these enzymes are
prevalently detected in E. coli and other species of
Enterobacteriaceae (Delgado et al. 2016). Delgado et al.
(2016) detected variants of CTX-M, with CTX-M-15
being the highest as well as 2 rare variants of CTX-M
(CTX-M-15) which has also been reported in K. pneu-
moniae ATCC BAA-2146 in Asia (South Korea) (Cho
et al. 2015). Environmental detection of these enzymes
and its determinants, as well as other antibiotic resist-
ance determinants previously believed to be in the exclu-
sive preserve of the clinical isolates, calls for caution in
handling environmental samples like the clinical samples
(Adegoke and Okoh 2015). It also points to the import-
ance of the environment, especially the water matrices,
in the emergence and/or distribution of resistance. Iso-
lates with these determinants in the environment have
greater tendencies for further exposures to several muta-
gens in the environment (e.g. wastewater) than in hos-
pital, increasing their resistant threat (Lutgring and
Limbago 2016). This might also increase.
Other plasmid-mediated ESBLs
Rarely detected plasmid-mediated ESBLs which include
“PER, VEB, GES and IBC” beta-lactamases are predom-
inant among P. aeruginosa. Though rare as earlier noted,
they have been isolated in various countries at different
times. In South Africa, Adegoke and Okoh (2014) re-
ported the maiden detection of GES-5 in South Africa
which was the second in clinically isolated P. aeruginosa.
On the environment, Al Yousef et al. (2016) discovered
83.3% VEB in E. coli from some Saudi Arabian house-
hold water samples in which the isolates showed 100%
resistance to ampicillin, cefazolin and piperacillin. Korea,
Belgium, Romania, France, the USA and Turkey have
also prevalently reported PER-1 in Acinetobacter species
(Peleg et al. 2008). Some of these rare enzymes (e.g.
IBC-1, BES-1, IBC-1 etc.) contribute substantially to the
emergence of resistance to antibiotics in the last line of
defence among Enterobacteriaceae through mutation.
This has been reported to be of concern in the usually
prioritized hospital settings and mostly overlooked en-
vironment (D'Costa et al. 2006).
Factors for the emergence of antibiotic resistance in
water environment
The emergence as well as progression to higher trend of
antibiotic resistance in the water matrices is possible due
to a number of factors or water components, which in-
clude residual antibiotics (RAbs) in water, metals, bio-
cides and mutagenic contaminants (Zuccato et al. 2005).
Table 1 shows the mechanisms by which the compo-
nents may induce resistance or its progression as well as
specific examples of reported or relevant cases. Exposure
to the listed components (Table 1) may lead to progres-
sion of resistance in the following order: single antibiotic
resistance (AR), multidrug resistance (MDR), extensive
drug resistance (EDR), pandrug resistance (PDR), extreme



Table 1 Factors favouring the emergence of antibiotic resistance in the water environment

Water components/contaminants Mechanism of resistance Specific applicable example References

Residual antibiotics (RAbs) Bacterial exposure to
sublethal concentration
of RAbs leads to the
emergence of resistance,
post exposure resistance
via selection for specific
antibiotic-resistant genes
(ARGs) or resistance
determinants, bacterial
mutation as a form of
adaptation to the
antibiotics in water
habitat

β-Lactams by mutations in PBP5
and PBP2 among aquatic
Enterococcus faecium and
Proteus mirabilis

Adegoke et al. (2017); Li et al.
(2009); Sosa et al. (2006)

Metals Co-selection of resistance
genes against antibiotics
in which exposure/selection
for metal resistance leads
to antibiotic resistance

merA and KPC beta-lactamase.
This may affect a wide range
of β-lactam antibiotics including
the carbapenems

Romero et al. (2017); Pal et al.
(2015); Baker-Austin et al. (2006);
Fang et al. (2016)

Copper and silver may develop
co-occurrence of resistance to
beta-lactam and fluoroquinolone

Fang et al. (2016)

Copper, mercury and silver
Colistin may develop co-
occurrence of resistance to
ampicillin, sulfonamide,
tetracycline, streptomycin
and chloramphenicol

Li et al. (2016); Campos et al. (2016)

Biocide Co-selection of resistance
genes against antibiotics
in which exposure/selection
for biocide resistance leads
to antibiotic resistance

Acriflavine, chlorhexidine
and ethidium bromide may
develop co-occurrence of
resistance to gentamicin
and amikacin

Wales and Davies (2015)

Water-borne mutagens Alteration of drug target
by mutagenesis

Bromoacetamide (BAcAm),
trichloroacetonitrile (TCAN)
or tribromonitromethane
(TBNM) increased the
resistance of Pseudomonas
aeruginosa PAO1 to both
individual and multiple
antibiotics (ciprofloxacin,
gentamicin, polymyxin
B, rifampin, tetracycline,
ciprofloxacin + gentamicin
and ciprofloxacin + tetracycline)

Lv et al. (2014); Lv et al. (2015);
Watanabe et al. (2006)
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drug resistance (XDR) and total drug resistance (TDR) as
elaborated by Adegoke et al. (2017).
Carbapenem resistance is an obvious XDR. A progres-

sion via exposure to mutagens (mutation), RAbs, metals,
biocides etc. in water environment can easily lead to
their progression to TDR. Water matrices therefore re-
main an aspect of the environment that requires import-
ant action in tracking and mitigating the risk associated
with antibiotic resistance.

Distribution and associated threat of carbapenemases
As earlier noted in the various clinical reports of the
gradual emergence of total drug resistance, carbapenem-
resistant bacteria, also known to be carbapenemases’
producers, resist all existing antibiotics. This has made
carbapenemases to be recognized for posing a new
threat, inactivating the last lines in antibiotic defence.
Following the detection of the classic carbapenemases
(metallo-β-lactamases, Ambler class B) in the 1990s, the
distribution of different metallo-β-lactamase genes
globally has been reported (Picao et al. 2013; Berrazeg
et al. 2014; 59. Adam and Elhag 2018). In 2003, Klebsi-
ella pneumonieae carbapenemases (KPC, Ambler class A
serin β-lactamase) which are predominantly found in
Klebsiella species (also in Enterobacteriaceae as well as
other Gram-negative bacteria) were reported in North
Carolina and it has spread across the globe (Yigit et al.
2001; Arnold et al. 2011). For Enterobacteriaceae, they
singlehandedly house OXA-48 and its derivatives
(Canton 2002; Nordmann and Poirel 2002; Nordmann
et al. 2012). Meanwhile, metallo-beta-lactamases that
used to be less rampant in the USA are now
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becoming the most prevalent for carbapenem resist-
ance (Canton et al. 2012), leading way to the “emer-
gence of total drug resistance (TDR)”. The gene
blaKPC, which codes for the KPC, is widely dissemi-
nated among species and geographical location. It is
located within a Tn3-type transposon, Tn4401, with
potential for insertion into various plasmids of GNB.
Plasmids carrying blaKPC are usually linked with re-
sistance determinants for antibiotics (Asit et al. 2016).
Carbapenemase production is highly significant in the
emergence of resistance, especially among carbapenem-
resistant Enterobacteriaceae (CRE).
The presence of carbapenemase-producing Enterobac-

teriaceae (CPE) in a sample may connote the expression
serin β-lactamases. Carbapenemase production is com-
monly detected among Escherichia coli, Klebsiella pneu-
moniae, Pseudomonas aeruginosa and Acinetobacter
baumannii (Bialvaei et al. 2015). There is also an in-
crease in the likelihood of detecting carbapenemases in
Central Europe. KPC is endemic in some countries like
Italy or Greece (Nordmann et al. 2011; Hoenigl et al.
2012). Poirel et al. (2012) also reported the detection of
KPC-producing Enterobacteriaceae from wastewater and
river-water samples in Portugal, just as bacterial isolates
from human in Austria were reported to harbour NDM-
1, KPC, VIM, IMP and OXA-48. There is therefore an
upward surge in the detection of KPC-producing En-
terobacteriaceae (Nordmann et al. 2011; Zarfel et al.
2011; Heller et al. 2012).
Studies have shown that OXA-48 is rampant in

Austria (Nordmann et al. 2011; Zarfel et al. 2011; Heller
et al. 2012). However, the detection of “metallo-β-lacta-
mase” has not been frequently reported. That was the
first report of “OXA-48-producing Enterobacteriaceae in
Taiwan and the second report to identify blaOXA-48 on
an IncA/C plasmid in K. pneumoniae”. Potron et al.
(2011) gave a report on the intercontinental spread of
OXA-48 beta-lactamase producing Enterobacteriaceae
over 11 years. The report showed the emergence of an
endemic situation occasioned by repeated importation of
OXA-48 beta-lactamase producers in Europe and par-
ticularly in France. As far back as 2005, Austria had re-
cords of metallo-β-lactamase carbapenemase (Zarfel
et al. 2011). Metallo-β-lactamases are recognized for
environmental spread (Isozumi et al. 2012) but may
obviously be following KPC and OXA-48 in the human
and clinical settings. Both KPC-2 and OXA-48
carbapenemase-harbouring Enterobacteriaceae have
been reported in an Austrian wastewater (Galler et al.
2014). This might be a true reflection of the statuses of
the Enterobacteriaceae in the Austrian human environ-
ment as wastewater is an early warning system of the
situation in the human population before outbreaks
(Hellmér et al. 2014). This also brings to bare the need
for the wastewater treatment plant to scale up the
process to raise treatment efficiency. Hrenovic et al.
(2017) reported the 54% reduction of the carbapenem-
resistant bacterial population in the secondary wastewa-
ter treatment plants (WWTPs). The report shows that it
is possible to stop the spread of carbapenem-resistant
bacteria and its associated risk in the wastewater reuse
by upscaling the WWTPs.
The spread to the environment through the wastewa-

ter is very frequent which in turn impacts the food cy-
cles, human and animal health as well as contaminated
inanimate objects. Environmental disseminations of
KPC- and OXA-48-producing Enterobacteriaceae in
Austria have been reported (Kittinger et al. 2016). It was
found to be more prominent in the rivers and animals
(Galler et al. 2014; Kittinger et al. 2016), which may
mean that more animals are exposed and shed the or-
ganisms to the environment. These deposits in the envir-
onment are washed by runoffs into the rivers where they
are recirculated to more animals by exposure. Mean-
while, attentions that are more specific have been drawn
to the presence of NDM-1 in E. coli ST-type 131 in
community-based infection as the bacteria are known
for CTX-M ESBL production (Adegoke et al. 2017;
Potron et al. 2011; Diancourt et al. 2005).
It is important to note that one CRE and CPE are re-

leased to the environment as well as to the food chain
through wastewater from the infected residence or hos-
pital. Several studies (Stenström et al. 2016; Xu et al.
(2011), Liu et al. (2010) and Reinthaler et al. (2013) re-
ported the presence of multidrug-resistant bacteria in
the aquatic environment imparted by wastewater. Some
of these studies implied that the production of carbape-
nemases produced by aquatic bacteria follows the same
pattern as those by clinical strains. This is exemplified
by the reports of water-borne carbapenemase-producing
Enterobacteriaceae (Zurfluh et al. 2013).

Mortality related to CRB
Carbapenem-resistant bacteria (CRB) have been reported
with poor prognosis, irrespective of the source of infec-
tion: either community-acquired or nosocomial (Bennett
et al. 2009; Zhang et al. 2016). There have been contro-
versies around recovery from the carbapenem resistance
as cases of co-resistance to other drugs leading to death
have been reported (Branswell 2017; Bennett et al. 2009;
Zhang et al. 2016). Zhang et al. (2016) observed that
though carbapenem resistance had a damaging impact
on the mortality of P. aeruginosa bacteremia, its associ-
ation with mortality is still controversial. Bennett et al.
(2009) deduced that 26–44% of deaths were observed in
7 studies due to carbapenem resistance and the course
may be a bit different when bacteraemia is involved.
Zhang et al. (2016) reported that four studies reported
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8–18.4% mortality due to carbapenem resistance within
30-day mortality. Buehrle et al. (2017) predicted certain
factors that aid the course of carbapenem-resistant
Pseudomonas aeruginosa (CRPA) bacteraemia towards
mortality, in which early active therapy would have been
redemptive. This shows that various factors facilitate the
course of recovery or death in carbapenem-resistant bac-
terial infection, making it difficult to treat. The death of
the US woman, earlier mentioned in this article due to
carbapenem-resistant Enterobacteriaceae and subsequent
failure of 26 different antibiotics (Branswell 2017), con-
tinues to position the carbapenem-resistant Gram-
negative bacteria as a threat in both clinical settings and
the environment. Liu et al. (2016) drew a conclusion that
“CRPA had significantly higher mortality than those in-
fected with carbapenem-susceptible Pseudomonas aerugi-
nosa (CSPA)”. These reports informed the classification of
these CRB in the critical priority list, for which new R and
D antibiotics are required (WHO 2017).

Mitigating the public health risks associated with CRB
Some schools of thought believe that the CRB from the
hospital settings are responsible for the contamination of
the environments (Liu et al. 2015). Others believe that the
emergence of antibiotic resistance including CRB occurs
in the environment due to exposure to antibiotic residues
(Khan et al. 2013). The latter believe that water matrices
create a very conducive environment for the development
of antibiotic resistance (Li et al. 2009; Khan et al. 2013)
even when there is no hospital in the vicinity. These re-
searchers submitted that antibiotic resistance genes (Li
et al. 2009; Davies and Davies 2010; Zhang et al. 2011)
and other resistance determinants (Li et al. 2009; Manhal
and Hashim 2016) in environments are exchanged in the
environment. Adegoke et al. (2017) elaborated on the role
of biofilms formed in wastewater and the surface water
environments in providing a conducive avenue for the
water-borne bacteria to exchange resistance determinants.
Reports acknowledge that both the hospital settings and
the community are important in the emergence and dis-
semination of antibiotic resistance (Zhang et al. 2011;
Adegoke et al. 2010). Water matrices become very import-
ant because there have been reports of antibiotic resist-
ance, including carbapenem resistance in various types of
water, including drinking water (Table 2).
Environment, especially the water matrices, is important

to prioritize in finding solutions to the threat associated
with CRE, CRB and resistance to other antibiotics in the
future. Certain steps to take are itemized as follows.

Surveillance and strict isolation
Following typing by pulsed-field gel electrophoresis, it
has been reported that both clinical and environmental
isolates of CRB were related (Kotsana et al. 2014).
Surveillance in the environment should be intensified as
much as the hospital settings to check the spread of the
CRE and CRB (Calfee and Jenkins 2008; Kochar 2009;
Ben-David et al. 2010; Centers for Disease Control and
Prevention 2012). Patients recognized to have been colo-
nized with CRE should be isolated to prevent being the
reservoir for the spread (Munoz-Price et al. 2010a;
Munoz-Price 2010b; Castilho et al. 2017). Isolation of
patients with CRB is also very important. This is peculiar
to those in the intensive care units (ICU). Castilho et al.
(2017) reported a high incidence of carbapenem resist-
ance (MDR) A. baumannii with the expression of OXA-
23 genes. Even the wastewater from the isolation ward
should be specially treated onsite to prevent the acciden-
tal leakage into the surface water while being trans-
ported through the municipal wastewater treatment
plants. There have been reports showing that the drains,
sinks, and faucets in hospitals are usually colonized by
carbapenemase-producing Klebsiella pneumoniae and
Pseudomonas aeruginosa (Gordon et al. 2017). These
Gram-negative bacteria, known for potentials to survive
in the environment and water matrices, may pose a
threat if released with wastewater, especially when there
are accidental leakages. This shows the need to ensure
the treatment of wastewater from hospital settings onsite
and to put in place an automated recall system that
returns the undone wastewater effluent for retreatment
chambers. The existing WWTPs receiving wastewater
from hospitals should be upgraded with modern facilities
to ensure the eradication of CRB. It is worthwhile to en-
sure that hospital wastewater for reuse must be free of
CRB to avoid the threat associated with such reuse. Due
to the fund required, this preventive measure would
need support in every country adopting locally, region-
ally and nationally.
While suggesting the way to alleviate the spread of

carbapenem resistance, Palmore and Henderson (2013)
recommended detailed environmental decontamination
after aggressive microbial surveillance. Kochar et al.
(2009) had reported that improved decontamination of
hands and environmental surfaces as well as rectal sur-
veillance reduced the incidence of carbapenem-resistant
K. pneumoniae. Surveillance in both environment and
hospital settings, especially in intensive care units, would
reduce the spread as well as the need to administer
colistin (An et al. 2017). Environmental cleaning and
disinfection done thrice a day as well as other inter-
ventions lead to 88.3% decrease in the number of
cases per thousand (odds ratio, 0.12; 95% confidence
interval, 0.03 to 0.4; p < 0.001). This also translated
to a reduction in the need for the administration of
carbapenems (Cheon et al. 2016) following antibiotic
susceptibility testing (AST) using approved interpret-
ive standards e.g. (Table 3).



Table 2 Reported antibiotic profile of aquatic Gram-negative bacteria to carbapenem antibiotics in water matrices

Carbapenem antibiotics Sample source Reported % resistance Other resistance status reported References

Imipenem (+ cilastatin) Swimming pool 26 30% Cefpodoxime-resistant
Pseudomonas aeruginosa

Stenström et al. (2016);
Picão et al. (2013);
Magalhães et al. (2016);
Freitas et al. (2019);
Tacao et al. (2015);
Akiba et al. (2016);
Skariyachan et al. (2015)

Surface freshwater 20 CTX-M-ESBLs producing
Acinetobacter spp.

Wastewater effluent 17 CRE ESBLs and carbapenemase
producing E. coli

Hospital effluent 20.5 KPC-producing Aeromonas spp.
and Enterobacteriaceae

Sewage and receiving watera 18 blaNDM-positive plasmids

River (drinking water source) 100 Carbapenem-resistant Citrobacter

Ertapenem Wastewater influent 61.5 ESBLS producing Gram-
negative bacteria

Amine et al. (2013)

Wastewater effluent 66.6 ESBLS producing Gram-
negative bacteria

River (drinking water source) 100 “Carbapenem-resistant” Citrobacter Skariyachan et al. (2015)

100 “Carbapenem-resistant” Proteus

43 “Carbapenem-resistant” Klebsiella

Meropenem Surface freshwater 10 CTX-M-ESBLs producing
Acinetobacter spp.

Stenström et al. (2016);
Akiba et al. (2016);
Skariyachan et al. (2015);
Amine et al. (2013);
Figueira et al. (2011)

Surface water 3.9 Carbapenem-resistant
Aeromonas species

Post-ozonated surface water 3.4 Clonal selection occasioned
by ozones/mutation cum
fluoroquinolone resistance

Hospital effluent 16.2 KPC-producing Aeromonas spp.
and Enterobacteriaceae

Wastewater influent 10.2 ESBLS producing Gram-
negative bacteria

Wastewater effluent 8.3 ESBLS producing Gram-
negative bacteria

River (drinking water source) 42 Carbapenem-resistant Citrobacter

Doripenem River (drinking water source) 43 Carbapenem-resistant Salmonella Skariyachan et al. (2015)

100 Carbapenem-resistant Citrobacter

0 Carbapenem-resistant Proteus

33 Carbapenem-resistant Klebsiella

Faropenem River (drinking water source) 100 Carbapenem-resistant Salmonella Skariyachan et al. (2015)

100 Carbapenem-resistant Citrobacter

22 Carbapenem-resistant Proteus

100 Carbapenem-resistant Klebsiella
aIsolates were pulled together from both interlinked matrices

Table 3 CLSI interpretive standards for carbapenems (CLSI M100-2017)

Carbapenems Disc content, μg Resistance Intermediate Susceptible Remarks

DD MIC DD MIC DD MIC DD = disc diffusion
MIC = minimum inhibitory
concentration

Imipenem 10 ≥ 23 ≤ 1 20–22 2 ≤ 19 ≥ 4 Enterobacteriaceae

Meropenem 10 ≥ 23 ≤ 1 20–22 2 ≤ 19 ≥ 4

Ertapenem 10 ≥ 22 ≤ 0.5 19–21 1 ≤ 18 ≥ 2

Doripenem 10 ≥ 23 ≤ 1 20–22 2 ≤ 19 ≥ 4
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Education and proper labelling of wastewater irrigated
crops and vegetables
It would be beneficial for consumers of fruits and vege-
tables irrigated with wastewater effluents to be educated
on the associated risks (Marti et al. 2013; Thanner et al.
2016). This will be a way of guiding them on the appro-
priate hygienic steps to prevent being infected by the
pathogens from the irrigated water (Adegoke et al.
2016). Appropriate labelling of organically grown crops
should be encouraged in all countries to prepare the
consumers. The action, if properly implemented, would
help to achieve the focus of multifaceted, elaborate and
integrated measures in line with one health approach to
stop infective diseases by curbing antibiotic resistance
(Founou et al. 2016). The spread of pathogens bearing
resistant determinants through food chain contributes
essentially to the development of antibiotic resistance
(Economou and Gousia 2015) right from the first antibi-
otics to the latest. Figure 2 illustrates the potentials for
uptake and internalization of human pathogens into
crops irrigated with wastewater. These human patho-
gens, which might be antibiotic resistant, may persist in
edible fruit which may affect immunocompromised
Fig. 2 Uptake and internalization of carbapenem-resistant Gram-negative b
into edible fruits
individuals who consume them (Bouakline et al. 2000;
Brenier-Pinchart et al. 2006; Golberg et al. 2011; Iwu
and Okoh 2019). Some projections have shown that 85%
of gastroenteritis and mortalities are from such contami-
nated food in which Salmonella is implicated (Deng
et al. 2012; Majowicz et al. 2010).
Consumption of internalized pathogen originating

from organic fertilizers or wastewater used for irrigation
in uncooked food, e.g. fruits and vegetables in salad, may
lead to difficult-to-treat food infection or food intoxica-
tion (Adegoke et al. 2016). This was also illustrated in
Fig. 2. It is imperative to properly label crops grown
using organic fertilizers appropriately for the consumers
to decide based on their immune statuses.

Hand hygiene and multiple barrier approach
Hand hygiene is an all-important process to reduce the
adherence of the CRE and, generally, the CRB from con-
tacted surfaces and to avoid the spread same to other
animate or inanimate surfaces (Sickbert-Bennett et al.
2004; Goroncy-Bermes et al. 2010; Macinga et al. 2011).
The use of bactericidal hand gel has been advised to re-
duce CRE population on the hands. This is also in line
acteria (CRGNB), ARGs, carbapenemase-producing bacteria (CPB) etc.
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with recommendations. Hand hygiene needs to be ac-
companied with general hygiene as well as steps to pre-
vent contamination of food or water source. Hands
should be washed anytime one gets in contact with
wastewater, treated wastewater’s recipient water bodies,
untreated recreation waters etc. likely contaminated with
antibiotic-resistant bacteria. This will decrease the trans-
mission of antimicrobial resistance from water matrix.
This relates with the multiple barrier approach (WHO,

2006). The multiple barrier approach prevents or re-
duces the contamination of drinking water by high-risk
pathogens, which include CRE. Combined utilization of
advanced oxidative processes coupled to UV-irradiation
with chemical disinfectants possesses potentials to elim-
inate ARB and ARGs (Sanganyado and Gwenzi 2019),
though some disinfectants may form toxic complexes
with residual antibiotics in water and lyse microbial cells
to release their genome enhancing gene transfer to path-
ogens worsening their prognosis of the infection they
cause (Faleye et al. 2019).
Conclusion
In conclusion, water matrices occupy 71% of the total space
in the earth and the events within these matrices affect
terrestrial life. This article reviewed the antibiotic-resistant
Gram-negative bacteria, especially the carbapenem-
resistant bacteria (classified with critical criteria for research
by WHO) in water. It also considered the factors predicat-
ing the reported level of resistance as well as the potentials
for total antibiotic resistance due to repertoires of these fac-
tors, while not leaving behind the related human health
risk. Gene transfer, mutation and genetic recombination
take place more effectively in water matrices, as organisms
form more protective or effective biofilms and quorum
sensing. ARGs are exchanged, and the new strains return
easily to human and animal lives through the food chains
or contact with the environment. These scenarios have
contributed to the development of multidrug resistance,
pan drug resistance, extreme drug resistance and, now, total
drug resistance. Water from various sources should be sub-
jected to multibarrier screening to prevent transmission of
difficult-to-treat antibiotic-resistant bacteria from water to
food cycle.
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