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Abstract

Purpose: Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the
phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified
amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein
repair enzymes, protein L-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and
methionine sulfoxide reductase (MSR).

Methods: Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed.
The information obtained from the research articles was analyzed and categorized into general information about
the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the
importance of these enzymes in Salmonella Typhimurium.

Results: Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without
translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes
very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are
reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes
in different bacteria revealed their importance in the virulence and oxidative stress survival.

Conclusion: PIMT repairs isoaspartate residues, PPiase catalyzes the conversion of cis-trans forms of proline residues,
while MSR repairs oxidized methionine (Met) residues in the proteins. These repair enzymes maintain the activities
of the target protein(s), thus aid in bacterial survival and virulence. The interventions which can interfere with this
mechanism could be used for the development of novel therapeutics.
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Introduction
Phagocytes constitute a very important part of host in-
nate immunity. After sensing microbial ligands, phago-
cytes produce various reactive oxygen species (ROS),
reactive nitrogen species (RNS), antimicrobial peptides,
chemokines, and cytokines with an overall goal to con-
tain or kill the invaders and help other immune cells to
generate adaptive immunity. Upon activation, NADPH

oxidase (NOX) gets assembled on the phagosomal mem-
brane and pumps the electrons from NADPH to oxygen
by generating superoxide anions (O2

−). O2
− is then me-

tabolized into a variety of other toxic ROS, like hydrogen
peroxide (H2O2) and hydroxyl radicals (•OH) (Miller
and Britigan, 1997). Further, myeloperoxidase catalyzes
the production of highly toxic reactive chlorine species
(RCS), hypochlorous acid (HOCl) from H2O2, and chlor-
ide ions (Fig. 1). It has been demonstrated that
phagocyte-generated NADPH oxidase plays a very vital
role in controlling bacterial pathogens, including Sal-
monella enterica serovar Typhimurium infection. Simul-
taneously, inducible nitric oxide synthase (iNOS) gets
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activated and catalyzes the oxidation of one of the guan-
idine nitrogens of L-arginine to generate nitric oxide
(NO). NO gets autooxidized to produce other reactive
nitrogen species like NO2

•, N2O3, and S-nitrosothiols
which are more reactive and have enhanced cytotoxic
abilities (Fang, 1997). Further, the combination of NO
and O2

− forms peroxynitrite (ONOO−), which is one of
the most potent RNS. Phagosomal oxidase and iNOS
knockout mice were found to be more susceptible to Sal-
monella infection (Felmy et al. 2013). Almost all macro-
molecules, including DNA, RNA, lipids, and proteins, are
susceptible to ROS- and RNS-mediated damage (Fig. 1).
The genus Salmonella includes two species, Salmon-

ella enterica and Salmonella bongori. Salmonella enter-
ica is further divided into six subspecies I (enterica), II
(salamae), IIIa (arizonae), IIIb (diarizonae), IV (houte-
nae), and VI (indica) (Le Minor L & Popoff MY 1987;
Popoff et al. 1998). These subspecies are further classi-
fied into various serovars. Based on host preference and
adaptability, the Salmonella enterica subspecies enterica
are categorized into two serovars, i.e., typhoidal (includes
S. Typhi and S. Paratyphi) and non-typhoidal (NTS, in-
cludes S. Enteritidis and S. Typhimurium) (Hohmann,
2001; Parry et al. 2002; Gal-Mor et al. 2012). Typhoidal
Salmonellae are the causative agents of “enteric fever,”
which is characterized by prolonged fever, fatigue, and
severe gastroenteritis. Most pathogenic species of Sal-
monella which are the leading cause of foodborne
gastroenteritis across the globe causing illness in humans
belong to the species Salmonella enterica. Poultry serves
as reservoir of Salmonellae and acts as major source of

human infection (Bailey et al. 2002, Velge et al. 2005).
Poultry meat and eggs have been implicated in the large
outbreaks of foodborne Salmonellosis (Leach et al. 1999;
Humphery, 2000). In 2015, WHO in its 10 year report of
global burden of foodborne diseases identified Salmonel-
losis as the most common foodborne illness and estimated
approximately 230,000 deaths in the USA alone due to
non-typhoidal Salmonella enterica (NTS) (WHO, 2015).
In the same year, the eggs contaminated with Salmonella
spp. were associated with the highest number of food-
borne outbreaks reported and were among the top five
foodborne pathogen in terms of overall illness (EFSA and
ECDC, 2016). Normally, NTS causes self-limiting, mild to
moderate gastroenteritis in healthy adults. However,
young, old, and immuno-compromised individuals are at
a higher risk, wherein NTS causes severe gastroenteritis to
invasive, extra-intestinal disease culminating in bacteremia
and infections in multiple organs (Mandal and Brennand,
1988; Lê-Bury and Niedergang, 2018).
Salmonella can replicate in a variety of host cells. One

important feature of this bacterium is its ability to infect
and replicate inside the phagocytic cells. Recent studies
suggest that Salmonella can survive and replicate in neu-
trophils, which are considered a dead-end for most bac-
terial pathogens (Geddes et al. 2007). Virulence of S.
Typhimurium has been correlated with its survival in
the phagocytic cells, whereas mutants that are unable to
survive inside the macrophages are considered avirulent
(Fields et al. 1986).
Salmonella handles oxidants in three ways. First, it in-

jects Salmonella pathogenicity island 2 (SPI2) effectors

Fig. 1 Antioxidant defenses of Salmonella: Phagocytes produce an array of ROS/RNS which exert microbicidal effect by damaging
macromolecules. Salmonella handles ROS/RNS in three ways. First, by injecting SPI2 effectors into the host phagosome, Salmonella inhibits NADP
H oxidase assembly thus interfere with the O2

− production. Second, various primary antioxidants of Salmonella directly inactivate ROS/RNS. Third,
DNA and protein repair enzymes restore the functions of damaged DNA, and proteins
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into the host cell that interfere with the assembly of
phagosomal oxidase, thus modulating the production of
O2

− (Vázquez-Torres et al. 2000; Gallois et al. 2001) and
consequently other ROS and RNS. Second, the primary
antioxidants of Salmonella directly detoxify the oxidant
species. Third, macromolecular (DNA and protein) re-
pair enzymes mend damaged DNA and proteins and re-
store their functions without de novo synthesis.
Among primary antioxidants, Salmonella encodes four

superoxide dismutases (SodA, SodB, SodCI, SodCII), three
catalases (KatE, KatG, KatN), and three peroxiredoxins
(AhpC, TsaA, Tpx). SODs neutralize O2

−; Kats scavenge
H2O2; peroxiredoxins reduce organic hydroperoxides and
H2O2 (Fang, 2011; Slauch, 2011; Aussel et al. 2011). AhpC
and KatG degrade ONOO– (McLean et al. 2010; Henard
and Vázquez-Torres, 2011) (Fig. 1). During the respiratory
burst, the quantity of phagocyte-generated oxidants can
be much higher than the scavenging capacity of primary
antioxidants (SOD, catalases, peroxiredoxins, etc.) of Sal-
monella. Furthermore, microbial enzymes that can de-
grade host-generated toxic oxidants like .OH and HOCl
which results in macromolecular damage are not known
yet. Therefore, DNA and protein repair enzymes help Sal-
monella to cope with oxidative insult and ensure its
propagation in the host.
Due to their abundance and reactivity, proteins are

highly prone to oxidative damage. Two types of protein
damage are known including covalent modifications to
amino acids and changes in the secondary structure
(Mahawar et al. 2011). Degradation of damaged proteins
to amino acids followed by ribosomal synthesis is an obvi-
ous and well-studied way to replenish damaged proteins.
On the other hand, protein repair is a rapid and energy-
efficient approach to reactivate damaged proteins without
de novo synthesis (Brot et al. 1981; Zhang and Weissbach
2008). Under stress conditions, when limited resources
are available to the cell, the repair of vital protein(s) be-
comes indispensable for cellular survival (either the cell
repairs them or it dies). Chaperones can refold unfolded
proteins. However, even though various covalent modifi-
cations have been described (Hawkins et al. 2003), only
three types of repair enzymes are known: (1) protein L-iso-
aspartyl O-methyltransferase (PIMT), (2) peptidyl prolyl
cis-trans isomerase (PPIase), and (3) methionine sulfoxide
reductase (MSR) which repair damaged aspartate or as-
paragine (isoaspartate), isomerized proline, and oxidized
methionine residues respectively (Li and Clarke, 1992;
Boschi-Muller et al. 2008; Ünal and Steinert, 2014).

Protein L-isoaspartyl O-methyl transferase
Aspartyl (Asp)/asparaginyl (Asn) residues in proteins
spontaneously get converted into iso-aspartate (iso-Asp)
as a part of normal post-translational modification which
decides the half-life of the protein (Güttler et al. 2013).

But under the condition of certain stresses, their rate of
formation has been shown to accelerate. Iso-Asp forma-
tion leads to distortion of protein structure resulting in
unfolding and aggregation of the proteins. Thus iso-Asp
formation has been linked to compromised protein func-
tion (Kern et al. 2005; Shimizu et al. 2005; Dimitrijevic
et al. 2014) which consequently affects cellular survival.
Protein L-isoaspartyl O-methyl transferase (PIMT) (EC
2.1.1.77), a product of pcm gene in bacteria, methylates
the α-carboxyl group on iso-Asp residues by using the
methyl group of S-adenosyl-L-methionine (AdoMet),
thus producing methyl esters. By repairing iso-Asp to
Asp, PIMT restores the protein function(s) partially and
thereby enhances cellular survival under stress condi-
tions (Dimitrijevic et al. 2014).

Mechanism of PIMT-mediated repair
Asp/Asn residues in proteins, spontaneously or under
stress, get converted into succinimide. The hydrolysis of
succinimide yields isoAsp and Asp in a ratio of 3:1 (Vig-
neswara et al. 2006). The PIMT transfers methyl group
from S-adenosyl methionine to isoAsp residues resulting
in the formation of iso-aspartyl methyl esters which are
unstable and rapidly hydrolyzed to form succinimide
(Fig. 2). With multiple cycles of such reactions, the
aspartyl residues can be salvaged and thereafter proteins
regain their functions (DeVry and Clarke, 1999; Dimitri-
jevic et al. 2014).

Effect of pcm gene deletion on the survival of
various organisms
The pcm gene knockout strain of E. coli (Li and Clarke,
1992; Visick et al. 1998; Hicks et al. 2005) showed hyper-
sensitivity to oxidative, temperature, and other stresses.
On the other hand, the PIMT overexpressing E. coli cells
showed enhanced tolerance to oxidative and
temperature stresses (Kindrachuk et al. 2003;Verma
et al. 2010). The enhanced survival capabilities of PIMT
overexpressing cells under temperature stress were
shown to be due to the methyltransferase independent
activities of PIMT (Kindrachuk et al. 2003). The struc-
ture crystallographic study of PIMT in E. coli has re-
vealed the presence of 2 highly conserved Glu81 (E81)
and Glu104 (E104) in the binding site of PIMT for Ado-
Met (Kindrachuk et al. 2003). The same study undertook
the in situ mutagenesis of glutamine residues to alanine
in PIMT of E.coli cells (E81A and E104A mutants) to
analyze the specific effects of PIMT on cellular survival.
It was observed that upon exposure to temperature
stress, overexpressed wild and inactive PIMT (E81A) led
to increased but comparable survival rates, while the
E104A inactive mutant showed the highest cellular sur-
vival. Since, E104A inactive mutant had no methyltrans-
ferase activity, the study postulated a different role of
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PIMT in enhancing cellular survival other than its
stereotypical role of enzymatic repair. Further, the west-
ern blot study revealed the overexpression of DnaK
chaperone protein in E104A inactive mutant under
temperature stress. Therefore, the study highlights the
importance of a methyltransferase independent role of
PIMT in increasing cellular survival through the induc-
tion of heat shock proteins. Thus, this study suggested
methyl-transferase dependent as well as the independent
role of PIMT in the survival of E. coli against
temperature stress (Kindrachuk et al. 2003).

PIMT in S. Typhimurium
PIMT contributes to the resistance of S. Typhimurium
against hydrogen peroxide, hypochlorous acid, and
temperature stresses in vitro (Kumawat et al. 2016;
Pesingi et al. 2017). The survival of Δpcm mutant strain
inside interferon-γ (IFN-γ) stimulated macrophages was
found to be 10-folds less as compared to the parent WT

strain (p < 0.001), and it also showed attenuated viru-
lence to mice (Kumawat et al. 2016). Further, the pcm
gene is required for colonization in poultry cecum and
dissemination to the spleen and liver (Pesingi et al.
2017). The expression of PIMT protein was about three-
fold higher following exposure of S. Typhimurium at
42 °C (Pesingi et al. 2017). On the other hand, HOCl ex-
posure induced PIMT by 1.5-fold (Kumawat et al. 2016),
suggesting a greater role of this protein under thermal
than oxidative stress.

Peptidyl proline cis-trans isomerase
Among the various known post-translational modifica-
tions of proteins, the dynamics of polypeptide chains can
also be affected by catalytic activity of foldases. PPIases
are a type of foldases that catalyze the isomerization be-
tween the cis and trans forms of peptide bonds, by the
180° rotation about the prolyl bond (Fig. 3) (Lin et al.
2019) and expedite the folding of nascent polypeptides

Fig. 2 Conversion of Asp to iso-Asp and their repair by PIMT: Under stress Asp or Asn residues in the proteins convert into succinimide.
Succinimide spontaneously convert into normal Asp or abnormal iso-Asp residues in a ratio of 1:3. PIMT catalyzes conversion of iso-Asp residues
into succinimide. Few cycles of PIMT-mediated repair converts all iso-Asp to Asp
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as well as the refolding of unfolded and misfolded pro-
teins (Compton, et al. 1992; Schmid et al. 1993). Due to
steric hindrance exerted by side chains of amino acids,
almost all peptide bonds exist as trans-conformers.
However, in the case of proline, due to the formation of
the pyrrolidine ring, the peptide bond can be present ei-
ther in normal trans- or in cis-configuration. The pres-
ence of the abnormal proline-cis bond spontaneously
affects folding, refolding, and protease-mediated degrad-
ation of the polypeptide chain and consequently influ-
ences protein function(s) (Brandts et al. 1975; Cook
et al. 1979). PPIases are mostly found to be localized in
the bacterial periplasm, inner membrane, and cytoplasm
and are sometimes present in the supernatant (secreted)
(Hayano et al. 1991; Kim et al. 2002; Söderberg and
Cianciotto. 2008; Delpino et al. 2009). Localization in
different compartments suggests a variety of differen-
tially distributed targets for PPIases.
The PPIases can be grouped under one superfamily

comprising three families of proteins, namely cyclophi-
lins (Cyps)—PpiA, FK506-binding proteins (FKBPs)—
FkpA, SylD, and parvulins like SurA (Ünal and Steinert,
2014). PpiA is localized in the periplasm. FKBP-type
peptidyl-prolyl cis-trans isomerase (FkpA), a product of
the fkpA gene, and cyclophilin PpiA catalyze the same
isomerization reaction. Chaperone SurA encoded by the
surA gene helps in the correct folding and assembly of
outer membrane proteins. Structurally, SurA has an N-
terminal region, two parvulin-like domains, and a C-
terminal tail. The PPIase activity resides in one of the
parvulin domain. The N-terminal region and the C-
terminal tail are necessary and sufficient for the
chaperone activity of SurA. This was demonstrated by a
study in which a variant of SurA composed of only N-
terminal region and the C-terminal tail (lacking the parvu-
lin domains) exhibited chaperone activity in spite of lack-
ing the PPIase parvulin domain (Behrens et al. 2001).

PPIase in bacterial virulence
PPIases are shown to be induced during the accumula-
tion of misfolded proteins, heat and cold stresses, (Kan-
dror and Goldberg, 1997; Söderberg and Cianciotto,
2008; Fasseas et al. 2012) and infection processes (Port
and Freitag, 2007). The role of PPIase in bacterial viru-
lence is mostly explained by its ability to facilitate proper
folding of secreted proteins, adhesins, and other viru-
lence factors (Hermans et al. 2006; Purdy et al. 2007;
Alonzo and Freitag, 2010; Behrens-Kneip, 2010; Forster
et al. 2011). In Streptococcus suis, Listeria monocytogenes,
and Clostridioides difficile, PPIases are required for re-
sistance against several stresses including thermal, oxida-
tive, and acid stresses, thereby contributing to virulence
in mice (Bigot et al. 2006; Wu et al. 2011; Ünal et al.
2018). PPIase gene deletion strains of E. coli and Yersi-
nia pseudotuberculosis showed defective adherence to
and invasion of host cells (Justice et al. 2006; Obi and
Francis, 2013) and virulence in mice (Hermans et al.
2006; Cron et al. 2009). A recent study demonstrated
the role of Legionella pneumophila PPIase in the infec-
tion of both Acanthamoeba castellanii and human mac-
rophages (Rasch et al. 2018).

PPIase in Salmonella
The fkpA and surA genes are required for Salmonella
survival during long-term carbon starvation and the
cross-resistance of carbon-starved cells to acidic pH,
high temperature, and antimicrobials (Kenyon et al.
2010). Deletion mutant strains of fkpA and surA genes
were found to be defective in survival in epithelial cells
and macrophages and showed attenuated virulence in
mice (Horne et al. 1997; Sydenham et al. 2000; Hum-
phreys et al. 2003). Cyclophilin A (CypA) is a eukaryotic
protein belonging to the PPIase family. A recent study
suggested the role of CypA in the membrane ruffling

Fig. 3 Conversion of cis- and trans- forms of proline by PPIase
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and internalization of S. Typhimurium into HeLa cells
(Dhanda et al. 2018).

Methionine sulfoxide reductases
The sulfur-containing amino acids (Met and Cys) are
highly prone to oxidation (Hawkins et al. 2003). Upon
oxidation, Met residues convert into methionine sulfox-
ides (Met-SO) and further oxidation leads to the forma-
tion of methionine sulfones. MSRs reductively repair
Met-SO to Met; however, sulfone repair enzymes are
not yet known (Fig. 4). MSR-mediated repair of Met-SO
plays two important roles in the cell. First, the MSR-
mediated repair restores the functions of Met-rich oxi-
dized proteins (Mahawar et al. 2011; Kuhns et al. 2013).
Second, surface-exposed Met residues in proteins act as
oxidant sinks. These surface-exposed Met residues get
oxidized during the respiratory burst of host immune re-
sponse and sop up excess oxidants, thus limiting damage
to the cell until oxidized Met-SO gets repaired by MSRs
(Abulimiti et al. 2003; Luo et al. 2009; Benoit and Maier,
2016; and Schmalstig et al. 2018).

Mechanism of MSR-mediated repair
Oxidation of sulfur in methionine forms either S or R
epimers. According to localization, there are two types
of MSRs, cytoplasmic and periplasmic (Boschi-Muller
et al. 2008). MsrA and MsrB, which are present in cyto-
plasmic compartment repair S and R epimers of Met-
SO, respectively. A third MSR was later discovered in
the cytoplasm and named as MsrC. It is specific for free
Met-R-SO and had been first described in E. coli (Lin
et al. 2007) and then in S. Typhimurium (Denkel et al.
2011). MsrA reduces both free and protein-bound Met-
S-SO whereas, MsrB reduces mainly protein-bound
Met-R-SO with limited action on free Met-R-SO. All

these MSRs repair Met-SO in thioredoxin -thioredoxin
reductase manner where NADPH serves as an electron
donor for the reduction process. The catalytic mechan-
ism of MSR is a three step process involving three cyst-
eine residues. In the first step, a nucleophilic Cys residue
(CysA) attacks a Met-SO substrate, which leads to the
formation of a sulfenic acid (–SOH) group on CysA and
the release of reduced Met. In the second step, a nucleo-
philic Cys residue (CysB) attacks CysA–SOH, which
leads to the formation of an intramolecular disulfide
intermediate and the release of a water molecule. In the
third step, the intramolecular disulfide intermediate is
reduced by a Trx protein, and a catalytically active MSR
enzyme is regenerated (Ezraty et al. 2017).
Periplasmic MSR (MsrP) has been discovered very re-

cently in Gram negative bacteria. This new methionine
sulfoxide reductase system, named MsrPQ, involves two
proteins encoded in the same operon. MsrP, which car-
ries out the reductase activity, is a periplasmic, soluble
protein with a molybdenum atom in its active site. It
was previously named YedY until its MSR activity was
discovered (Loschi et al. 2004). To be functional in vivo,
MsrP has to be specifically associated with MsrQ, an in-
tegral B-type heme-containing membrane-spanning pro-
tein, previously named YedZ (Drew et al. 2002). For the
reduction reaction, MsrP receives electrons from MsrQ
which in turn acquires electrons from quinones (Juillan-
Binard et al. 2017).

Role of MSRs in bacterial virulence
The role of bacterial msr gene in combating various
stresses within the host system has been well established.
Further, its role in virulence also has been shown in
many studies. An msrA gene deletion mutant of Myco-
plasma genitalium exhibited hypersusceptibility to H2O2

Fig. 4 Methionine sulfoxide (Met-SO) formation and repair by MSR: Under oxidative stress Met residues (free or protein bound) convert into Met-
SO, further oxidation results in sulfone formation. MSR reductively repairs Met-SO to Met
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in comparison to wild-type strain and showed decreased
ability to colonize in hamster lungs (Dhandayuthapani
et al. 2001). In certain bacteria, MsrA and MsrB activ-
ities are carried out by a single fused protein. In Neis-
seria gonorrhoeae, one such protein called PilB, which
was earlier supposed to have a role in pilin gene expres-
sion, was found homologous to both MsrA and MsrB of
E. coli (Skaar et al. 2002). PilB is found in both secreted
and cytoplasmic form, but only the secreted form of PilB
was involved in the oxidative stress survival of the bac-
teria which was evident from the increased sensitivity of
ΔpilB null mutant and mutant overexpressing truncated
form of PilB to hydrogen peroxide and superoxide com-
pared to the wild-type strain (Skaar et al. 2002). ΔmsrAB
double deletion mutant strain of Helicobacter pylori was
shown to be defective in host colonization in vivo sug-
gesting the role of MSR in pathogenesis and virulence of
H. pylori (Alamuri and Maier, 2004). In Campylobacter
jejuni, MsrA and MsrB proteins were found to protect
against oxidative and nitrosative stress. Moreover, the
ΔmsrAB double mutant strain of this bacteria showed a
severe growth defect in in vitro media due to accumula-
tion of Met-SO in proteins (Atack and Kelly, 2008).
msrA and msrB genes were very essential for the protec-
tion of Enterococcus faecalis against H2O2 stress, and the
deletion of these genes lead to attenuated virulence in
mice model studies (Zhao et al. 2010). The msrA and B

gene deletion mutant strain of E. coli was hypersuscepti-
ble to HOCl-mediated killing (Rosen et al. 2009). Myco-
bacterium tuberculosis lacking both MsrA and B were
shown to be hypersusceptible to nitrite and HOCl stress
(Lee et al. 2009). The msrA mutant strain of Staphylo-
coccus aureus were sensitive to H2O2 stress in vitro and
phagocytic cells. Further, this mutant was less adherent
to human lung epithelial cells and showed reduced sur-
vival in mouse model (Singh et al. 2015, Singh et al.
2018). In Francisella tularensis, the msrB deletion mu-
tant was shown to be defective in growth significantly in
comparison to wild type in in vitro media. Further, this
strain was hypersusceptible to H2O2 stress and showed
decreased growth in macrophages and defective in
colonization in mice (Saha et al. 2017) indicating that
MsrB contributes to virulence.

MSRs in Salmonella
In S. Typhimurium, three cytoplasmic MSRs namely,
MsrA, MsrB, and MsrC, have been reported. All the
three are present in cytoplasmic compartment. MsrA re-
pairs protein-bound as well as free Met-SO and is essen-
tial for the survival of this bacterium under oxidative
stress (Denkel et al. 2011; Trivedi et al. 2015). MsrB re-
pairs protein-bound Met-SO though it is dispensable for
stress survival of this bacterium (Denkel et al. 2011).
The msrA and msrC gene deletion strains are

Fig. 5 Model: Different stresses cause unfolding and covalent modifications in polypeptide chain resulting in protein inactivation and
consequently affect cellular survival. Chaperones can refold unfolded proteins. Protein repair enzymes (PIMT, MSR, and PPIase) can repair
covalently modified amino acids. The repair of damaged proteins not only restores their functions but also enhance cellular survival under
stress conditions
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hypersensitive to phagocytic cells and showed attenuated
virulence in mice and poultry (Denkel et al. 2011; Sar-
khel et al. 2017). Salmonella also harbors MsrP, though
the role of this protein in stress survival of most bacter-
ial pathogens including Salmonella is not known.

Conclusions
Different stresses induce unfolding and covalent modifi-
cations in bacterial proteins that result in protein inacti-
vation and consequently affecting cellular survival.
Chaperones can refold unfolded proteins. Covalently
modified amino acids are repaired by special enzymatic
systems (PIMT, MSR, and PPIase). The overall goal of
protein repair is to reactivate the damaged proteins
without their de novo synthesis, and this process helps
bacterial pathogens to overcome stress conditions, as
those encountered during the infection (Fig. 5). The
ways that can inhibit this process can pave the way to
develop novel prophylactic and therapeutic agents
against bacterial diseases.
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