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Abstract 

Purpose:  Alkaline-fermented foods (AFFs) play an essential role in the diet of millions of Africans particularly in the 
fight against hidden hunger. Among AFFs, soumbala is a very popular condiment in Burkina Faso, available and afford-
able, rich in macronutrients (proteins, lipids, carbohydrates, essential amino acids, and fatty acids), micronutriments 
(minerals, B group vitamins), and fibers. Bacillus spp. are known to be the predominant microbial species in AFFs and 
thus have elicited enhanced interest as starter cultures or probiotics. However, few data exist on identification and 
safety attributes of relevant Bacillus species from African AFFs, particularly from Burkinabe soumbala.

Methods:  This study aimed to genotypically characterize 20 Bacillus strains previously isolated from soumbala, using 
PCR and sequencing of the 16S rRNA genes, and to evaluate their safety attributes.

Results:  Phylogenetic analysis revealed that the strains were most closely related by decreasing numbers to B. cereus, 
B. subtilis, Bacillus sp., B. tropicus, B. toyonensis, B. nealsonii, B. amyloliquefaciens, Brevibacillus parabrevis, and B. altitudinis. 
Among the isolates, 10 were β-hemolytic and 6 were γ-hemolytic while 4 were of indeterminate hemolysis. The 6 
γ-hemolytic (presumptively non-pathogenic) strains were susceptible to all tested antibiotics except bacitracin. Strains 
F20, and F21 were the most sensitive to imipenem (38.04 ± 1.73 mm and 38.80 ± 1.57 mm, respectively) while strain 
B54 showed the weakest sensitivity to bacitracin (11.00 ± 0.63 mm) with high significant differences (p < 0.0001).

Conclusion:  The findings highlight identification and safety quality of Bacillus strains which could be further charac-
terized as probiotic-starter cultures for high-quality soumbala production.
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Background
Alkaline-fermented foods (AFFs) have a long history 
and form a significant part of the diet of many indig-
enous communities in Africa with special reference 

to nutritional values, safety, and commercial poten-
tial (Parkouda et  al. 2009; El Sheikha and Montet 2015; 
Ouoba 2017). They are among the most established of the 
numerous fermented foods of Africa and often are the 
most domineering components of the foods in which they 
are used. They are produced from the seeds and leaves 
of various plants. Mainly used as food condiments, they 
are deemed to improve texture, flavor, increase shelf-life, 
enhanced bioavailability of micronutrients, and reduced 
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content (or complete elimination) of anti-nutritional fac-
tors and toxic compounds among other benefits (Ouoba 
2017). Some of these foods have been found to provide 
useful probiotic effects when they are directly consumed 
(Farnworth 2005; Franz et al. 2014). Consequently, global 
interest in them continues to rise for their benefits as 
health-promoting functional foods (Adebo et  al. 2017). 
Among various AFFs, soumbala is a fermented food con-
diment manufactured from the cotyledons of the seeds of 
Parkia biglobosa (“néré”) which is highly appreciated in 
Burkina Faso. Different variants and names of this con-
diment exist among many indigenous communities in 
Sub-Saharan Africa countries (Abdou-Souley et al. 2020; 
Dabiré et al. 2020; Owusu-Kwarteng et al. 2020; Kambire 
et  al. 2021). It has a pungent ammoniac aroma but for-
tunately a pleasant taste and is used as a food flavoring. 
It is produced from spontaneous mixed fermentation 
of Parkia biglobosa seeds, in a process which involves a 
complex and significant microbial biodiversity responsi-
ble for its inherent desirable characteristics.

Several studies on micro-biodiversity of soumbala 
using culture-dependent and culture-independent meth-
ods have reported the predominance of Bacillus species 
(Ouoba 2017; Adjoumani et al. 2019; Dabiré et al. 2021). 
Presently, studies are more focused on the identification, 
characterization, and classification of technologically rel-
evant microorganisms from legumes-based fermented 
foods (El Sheikha and Hu 2018; El Sheikha et  al. 2018; 
Akpi et al. 2020; Compaoré et al. 2020; Owusu-Kwarteng 
et al. 2020). This is aimed at being able to develop appro-
priate starter cultures for use in pilot and industrial pro-
cesses for GMP-driven production of these condiments. 
Studies in this area strive to deploy different accurate 
and reliable methods including variant PCR techniques 
(ITS-PCR, qPCR, repPCR, species-species PCR, RT-
PCR, etc.) combined with sequencing of 16S rRNA 
genes (Sarkar et  al. 2002; Ouoba et  al. 2004; El Sheikha 
et  al. 2018; Adjoumani et  al. 2019) and whole-genome 
sequencing (WGS) to secure definitive characterization 
of candidate isolates. These tools had helped to clarify 
the nomenclatural confusion and generalization caused 
by classical (phenotypic) taxonomic methods. Thereby, 
molecular technologies were present as an alternative, 
offering advantages such as accuracy, specificity, sensitiv-
ity, and speed (El Sheikha and Hu 2018). Through these 
recent identification tools, B. subtilis have been reported 
as major Bacillus species involved in the fermentation 
process for soumbala production (Ouoba 2017; Adjoum-
ani et al. 2019). Indeed, based on complete genomic data 
from over 30 different Bacillus species, two clearly differ-
entiated groupings, a “B. subtilis clade” and a “B. cereus 
clade” were identified (Bhandari et  al. 2013). Thus the 
genus “Bacillus stricto-sensu” was proposed for only the 

monophyletic subtilis clade with B. subtilis as its type 
species” (Bhandari et  al. 2013). However, members of 
genus Bacillus are heterogenous, some are lacking a com-
mon evolutionary history, and have become associated 
with regular re-identification and re-classification with 
continual appearance of new species (Logan 2004). Con-
sequently, it is clear that the taxonomical history of this 
genus is far from complete.

Bacillus species are very significant in various bio-
technological applications and certain strains such as 
B. clausii, B. coagulans, B. licheniformis and B. subti-
lis have worldwide record of safe use with humans and 
animals. These strains have been classified as “generally 
recognized as safe” (GRAS) and have been found useful 
as human probiotics or in animal feed supplements. They 
have been established as safely present as part of human 
and animal gut microbiota and have been associated with 
stimulation of the immune system (Cutting 2011; Ilin-
skaya et al. 2017). Furthermore, several of such Bacillus 
species are involved in the preparation of traditional fer-
mented dishes in Africa and Asia, foods that for millen-
nia have been safely consumed, and identified as possible 
candidates for commercial production of starter cul-
tures for food fermentation (Anal 2019; Akpi et al. 2020; 
Nwagu et al. 2020).

Antibiotic resistance among commercially avail-
able probiotic Bacillus spp. or starter cultures has been 
reported (Hoa et al. 2000; Adimpong et al. 2012; Lee et al. 
2017). However, very limited data exist on the antimi-
crobial susceptibility profiles of technologically relevant 
Bacillus species from AFFs, particularly from soum-
bala. Taking into account this limited data, genotyp-
ing of microbial species and their safety evaluation are 
important in the microbiological risk assessment process 
prior to their use as probiotic-starter cultures in the food 
industry. Thus, the present study aimed to genotypically 
characterize 20 Bacillus spp. isolated from soumbala 
and further evaluate their safety characteristics as food 
condiment.

Results
16S rRNA gene sequencing
The comparison of the 16S rRNA gene sequences 
(Fig.  1) of the putative Bacillus strains obtained gave 
similarity rates ranging from 90.01 to 100% and 91.58 
to 100%, with type strains available at NCBI and EzBi-
ocloud, respectively (Table  1). Strains F24, F21, O34 
and F44 showed similarity levels of 90.01%, 90.08%, 
94.74%, and 96.65% with B. subtilis, B. benzoevorans, 
B. nealsonii and B. subtilis, respectively. Strains B54, 
F20, F32, G23 and O52 showed 99.14%, 99.14%, 99.79%, 
99.56%, and 100% similarity to B. nealsonii, B. tropi-
cus, B. amyloliquefaciens, Brevibacillus parabrevis and 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1423
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B. altitudinus, respectively. Strains F26, F48, G37, O48 
and O49 showed 99.88%, 99.79%, 99.90%, 99.90%, and 
99.90% similarity levels with B. subtilis, respectively. 
Strains B21, F6, O28, O44, and O46 all presented 100% 
similarity with B. cereus. According to these varying 

similarity levels, the presumptive Bacillus strains iso-
lated from soumbala in this study, with similarity lev-
els ≥ 99%, were phylogenetically very close to B. subtilis 
(F26, F48, G37, O48 and O49), B. cereus (B21, F6, O28, 
O44, and O46),

Fig. 1  Scheme of 16S rDNA portion with primer position and regions covered by amplified fragments

Table 1  Comparative taxonomic identification of Bacillus species by 16S rRNA sequencing

Bacillus strains NCBI EzBioCloud

Identified species Similarity (%) Accession number Identified species (accession number) Similarity (%)

B21 B. cereus ATCC 14579 100 NR_​074540.1 B. cereus ATCC 14579 (AE016​877) 100

B54 B. nealsonii 99.14 NR_​044546.1 B. dakarensis (LT707​409) 97.51

F6 B. cereus ATCC 14579 100 NR_​074540.1 B. cereus ATCC 14579 (AE016​877) 100

F20 B. tropicus 99.14 NR_​157736.1 B. cereus ATCC14579 (AE016​877) 100

F21 B. benzoevorans 90.08 NR_​044828.1 B. benzoevorans (D78311) 97.99

F24 B. subtilis 90.01 NR_​027552.1 B. subtilis (ABQL0​10000​01) 91.58

F25 B. toyonensis 98.94 NR_​121761.1 B. toyonensis (CP006​863) 99.85

F26 B. subtilis 99.88 NR_​027552.1 B. cabrialesii (MK462​260) 100

F32 B. amyloliquefaciens 99.79 NR_​117946.1 B. siamensis (AJVF0​10000​43) 100

F44 B. subtilis 96.65 NR_​027552.1 B. tequilensis (AYTO0​10000​43) 97.86

F48 B. subtilis 99.79 NR_​027552.1 B. subtilis (ABQL0​10000​01) 99.90

G23 Brevibacillus parabrevis 99.56 NR_​113589.1 Brevibacillus parabrevis (RHHV0​10000​40) 100

G37 B. subtilis 99.90 NR_​112116.2 B. tequilensis (AYTO0​10000​43) 100

O28 B. cereus 100 NR_​115526.1 B. cereus ATCC 14579 (AE016​877) 100

O34 B. nealsonii 94.74 NR_​044546.1 B. nealsonii (EU656​111) 95.88

O44 B. cereus 100 NR_​115714.1 B. cereus ATCC 14579 AE016​877 100

O46 B. cereus 100 NR_​115714.1 B. cereus ATCC 14579 (AE016​877) 100

O48 B. subtilis 99.90 NR_​027552.1 B. tequilensis (AYTO0​10000​43) 99.90

O49 B. subtilis 99.90 NR_​112116.2 B. tequilensis (AYTO0​10000​43) 100

O52 B. altitudinis 100 NR_​042337.1 B. altitudinis (ASJC0​10000​29) 100

https://www.ncbi.nlm.nih.gov/nucleotide/NR_074540.1?report=genbank&log$=nucltop&blast_rank=1&RID=FVCPCUTD016
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/nucleotide/NR_044546.1?report=genbank&log$=nucltop&blast_rank=1&RID=0SAV14ET013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20dakarensis
https://www.ezbiocloud.net/16SrRNA?ac=LT707409
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=226900
https://www.ncbi.nlm.nih.gov/nucleotide/NR_074540.1?report=genbank&log$=nucltop&blast_rank=1&RID=FVK9Z36A01R
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/nucleotide/NR_157736.1?report=genbank&log$=nucltop&blast_rank=2&RID=FDN9566201N
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1456
https://www.ncbi.nlm.nih.gov/nucleotide/NR_044828.1?report=genbank&log$=nucltop&blast_rank=7&RID=FX877VHV013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20benzoevorans
https://www.ezbiocloud.net/16SrRNA?ac=D78311
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1423
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=9&RID=H9YCRX7N016
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20subtilis
https://www.ezbiocloud.net/16SrRNA?ac=ABQL01000001
https://www.ncbi.nlm.nih.gov/nucleotide/NR_121761.1?report=genbank&log$=nucltop&blast_rank=1&RID=FDS945PT016
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20toyonensis
https://www.ezbiocloud.net/16SrRNA?ac=CP006863
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=FY1PDFHG013
https://www.ezbiocloud.net/16SrRNA?ac=MK462260
https://www.ncbi.nlm.nih.gov/nucleotide/NR_117946.1?report=genbank&log$=nucltop&blast_rank=3&RID=FFYY29E4016
https://www.ezbiocloud.net/16SrRNA?ac=AJVF01000043
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=FG4R9TE0013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20tequilensis
https://www.ezbiocloud.net/16SrRNA?ac=AYTO01000043
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=G0814MM0016
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20subtilis
https://www.ezbiocloud.net/16SrRNA?ac=ABQL01000001
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113589.1?report=genbank&log$=nucltop&blast_rank=1&RID=FGFXJE0801R
https://www.ezbiocloud.net/taxonomy?tn=Brevibacillus%20parabrevis
https://www.ezbiocloud.net/16SrRNA?ac=RHHV01000040
https://www.ncbi.nlm.nih.gov/nucleotide/NR_112116.2?report=genbank&log$=nucltop&blast_rank=1&RID=0URVKGF5016
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20tequilensis
https://www.ezbiocloud.net/16SrRNA?ac=AYTO01000043
https://www.ncbi.nlm.nih.gov/nucleotide/NR_115526.1?report=genbank&log$=nucltop&blast_rank=1&RID=0KVC5YNS013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/nucleotide/NR_044546.1?report=genbank&log$=nucltop&blast_rank=8&RID=FGZJZ6KT013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20nealsonii
https://www.ezbiocloud.net/16SrRNA?ac=EU656111
https://www.ncbi.nlm.nih.gov/nucleotide/NR_115714.1?report=genbank&log$=nucltop&blast_rank=2&RID=FH13EG3S01R
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/nucleotide/NR_115714.1?report=genbank&log$=nucltop&blast_rank=1&RID=0KMHCMYS013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20cereus
https://www.ezbiocloud.net/16SrRNA?ac=AE016877
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=FV4G2VJR01R
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20tequilensis
https://www.ezbiocloud.net/16SrRNA?ac=AYTO01000043
https://www.ncbi.nlm.nih.gov/nucleotide/NR_112116.2?report=genbank&log$=nucltop&blast_rank=1&RID=FGNP6VRR013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20tequilensis
https://www.ezbiocloud.net/16SrRNA?ac=AYTO01000043
https://www.ncbi.nlm.nih.gov/nucleotide/NR_042337.1?report=genbank&log$=nucltop&blast_rank=1&RID=FV0D3K1C013
https://www.ezbiocloud.net/taxonomy?tn=Bacillus%20altitudinis
https://www.ezbiocloud.net/16SrRNA?ac=ASJC01000029
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B. nealsonii (B54), B. tropicus (F20), B. toyonensis 
(F25), B. amyloliquefaciens (F32), Brevibacillus para-
brevis (G23) and B. altitudinis (O52). However, the 
Bacillus strains with a similarity level between 90 and 
97% could be affiliated to the genus Bacillus (F21, F24, 
O34, and F44).

Phylogenetic tree analysis
Phylogenetic tree analysis revealed that strains B21, F6, 
O28, O44 and O46 are closely related to B. cereus (Fig. 2). 
Similarly, strains G37, O48 and O49, F32, O52 and B54 
have a very close phylogenetic relationship to B. subtilis, 
B. velezensis, B. altitudinis and B. nealsonii, respectively. 

Fig. 2  Phylogenetic tree of Bacillus strains based on 16S rRNA constructed by neighbor joined method with Alicyclobacillus acidocaldarius as 
outgroup. Legend: B. = Bacillus. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa 
analyzed. Numbers next to the branches are the percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 
(1000 replicates). This analysis involved 55 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion 
option)
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Strains F25, F44 and O34 are related to B. toyonensis. 
However, strains F20, F21, F24, F26, F48 and G23 can be 
related to any Bacillus sp. member of “B. subtilis clade” or 
“B. cereus clade.”

Safety assessment of Bacillus strains
Hemolysis activity
Out of the 20 identified Bacillus strains, ten (G37, F25, 
F32, B21, O28, O34, O44, O46, O49, and O52) were 
found to be β-hemolytic (formation of clear zone around 
the bacterial colonies), four (G23, F6, F48, 048) showed 
indeterminate hemolytic activity while the remaining six 
(F20, F21, F24, F26, F44, B54) were γ-hemolytic (absence 
of clear halo around the bacterial colonies, Fig. 3). These 
γ-hemolytic Bacillus strains were selected as non-patho-
genic for antibiogram analysis.

Antibiotic susceptibility
The analysis of antibiogram showed that all tested Bacil-
lus strains were found to be susceptible to almost all anti-
biotics except bacitracin for which they were all resistant 
(Table 2). Strains F20 and F21 showed the highest vulner-
ability to imipenem with 38.04 ± 1.57mm and 38.80 ± 
1.57 mm sensitivity diameters, respectively, while strain 
B54 showed the lowest sensitivity to bacitracin (11.00 ± 
0.63 mm) with high significant differences (p < 0.0001).

Discussion
Soumbala, like other traditional fermented food condi-
ments, has a diverse microbiota dominated by Bacillus 
species responsible for its fermentation process, flavor 
development and bio-preservation and development of 
the characteristic organoleptic features (Ouoba 2017; 
Adjoumani et  al. 2019). However, the presence of B. 

cereus and B. cytotixicus in this product could be a poten-
tial source of food poisoning and therefore a public health 
concern (Adjoumani et  al. 2019). The complexity of 
micro-biodiversity of indigenous fermented condiments 
makes it difficult to identify and characterize the relevant 
functional microorganisms using single conventional 
methods. However, developed molecular tools have given 
alternative to conventional methods because genome 
sequence is independent of phenotypic characteristics 
and vary among species. Thus, PCR analysis and 16S 
rRNA gene sequencing have become very useful for the 
identification of microorganisms from various sources 
due to their simplicity, speed and reliability (Unban 
et al. 2020). In the present study, sequencing of the gene 
encoding 16S rRNA and comparison of the sequences of 
presumptive Bacillus spp. revealed similarity rates rang-
ing from 90.01 to 100% with type species in NCBI and 
EzBioCloud (Table  1). Based on the identification crite-
ria, BLASTn allowed the entire Bacillus spp. studied with 
a similarity rate between 90 and 97%, and ≥ 99% to be 
assigned to the corresponding genus and species, respec-
tively. The phylogenic tree analysis showed that 6 strains 
(F20, F21, F24, F26, F48 and G23) were phylogenetically 
related to Bacillus sp., 5 strains (B21, F6, O28, 044 and 
O46) to B. cereus, 3 strains (G37, O48 and O49) to B. sub-
tilis, 2 strains (F25 and F44) to B. toyonensis and the oth-
ers to B. nealsonni (B54) and B. velelensis (F32). Previous 
studies on 16S rRNA genes sequencing of Bacillus spp. 
isolated from soumbala and other similar food condi-
ments reported the identification of B. subtilis group spe-
cies and B. cereus sensu lato group species (Ouoba et al. 
2004; Adjoumani et  al. 2019). It has been noted that B. 
subtilis, B. pumilus, B. clausii, B. licheniformis, B. val-
lismortis, B. mojavensis, B. lentus, B. coagulans, B. fusi-
formis, B. atrophaeus, and B. amyloliquefaciens, “can be 

Fig. 3  Hemolytic activity of Bacillus strains. Legend: T = negative control, a = γ-hemolysis, b = β-hemolysis
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reliably identified using a 16S rRNA gene sequencing” 
(EFSA 2007). Although 16S rRNA gene sequencing is 
considered an accurate identification tool, the majority 
of strains displayed high similarity to almost two differ-
ent type species in GenBank databases. Moreover, some 
strains were assigned as Bacillus sp. due to the weakness 
of similarity level (between 90 and 97%). These observa-
tions could be explained by the limit of this technique 
for microbial identification of organisms in this complex 
and often nebulous group. Indeed, previous studies have 
shown that this approach alone does not allow precise 
difference between B. subtilis and B. amyloliquefaciens 
(Porwal et al. 2009; Sumpavapol et al. 2010) and between 
B. cereus and B. thuringensis (Chang et al. 2003; Bhandari 
et  al. 2013) due to the high similarity observed in these 
species. Thus, gyrA and gyrB genes sequencing have been 
reported to be more informative and discriminatory for 
the identification of Bacillus species, subspecies and 
strains (Chun and Bae 2000; Chen and Tsen 2002; Lefevre 
et al. 2016). Distinct phenotypic traits such as degree of 
pathogenicity, food spoilage enzyme potential, thermo-
type and colony morphology are also used as important 
criteria for the classification of B. cereus strains (Tolieng 
et  al. 2018). Presently, identification of microorganisms 
from various sources is benefiting from techniques based 
on the combination of 16S rRNA gene sequencing with 
MALDI-TOF-MS and chemometric or whole-genome 
sequencing. Thus, the identification of Bacillus strains 
of this study could be more accurately done using this 
multi-factorial analysis.

Although Bacillus strains are recognized as princi-
pal bacteria responsible for flavor development and, 
bio-preservation of fermented oil seed foods, concern 
for the safety of the resulting foods is an important fac-
tor for consideration before their use as starter cultures 
or for probiotics formulation, given that some strains 
are known pathogens or are able to transfer antibiotic 
resistance genes. Hence, hemolytic activity and anti-
biotic susceptibility are important criteria for assess-
ing the safety of bacteria of food interest (Nwagu et  al. 
2020). Hemolysis, whether partial (α) or complete (β) 
indicates virulence. Indeed, β-Hemolysis is an indication 
that bacteria contain cytotoxic phospholipases (Soroku-
lova et  al. 2008) and the hemolytic factor decreases the 
amount of hemoglobin available as an iron source for 
the host (Şeker 2010). Thus, of the 20 Bacillus strains 
tested for hemolytic activity, only 6 strains showed non-
hemolysis and were γ-hemolytic on sheep blood agar 
plates. This is similar to probiotic Bacillus cereus strains 
BC1, and BC2 (Nwagu et al. 2020), Bacillus strains (Lee 
et al. 2017) and B. polyfermenticus CJ6 (Jung et al. 2012). 
They were unable to lyse blood cells (erythrocytes). This 
inability of Bacillus strains to lyse host blood cells once 

ingested is an additional advantage required for probiotic 
qualification (Nwagu et  al. 2020). These non-hemolytic 
strains were therefore selected as GRAS to assess their 
sensitivity to antibiotics commonly used in medicine, as 
they must not harbor antibiotic resistance genes trans-
ferable to other bacteria including pathogens (Danielsen 
and Wind 2003; Compaoré et al. 2013). Indeed, bacterial 
antibiotic resistance is due to either (i) intrinsic proper-
ties (natural phenotypic traits) or (ii) the acquisition of 
resistance genes through mobile genetic elements, such 
as plasmids and transposons, or the mutation of indig-
enous genes (Sharma et al. 2014). All the six γ-hemolytic 
Bacillus spp. strains were susceptible to almost all antibi-
otics tested including those recommended by European 
Food Safety Agency (EFSA 2008), except for bacitracin 
for which they were all resistant (table  2). Strains F21, 
and F20 were the most sensitive to imipenem (38.80 ± 
1.57 mm and 38.04±1.73 mm, respectively) while strain 
B54 displayed the weakest sensitivity to bacitracin (11.00 
± 0.63 mm) with a very high significant difference (p ≤ 
0.0001). Similar results were reported for susceptibility 
of Bacillus species to several antibiotics (Compaoré et al. 
2013; Thankappan et al. 2015; Kavitha et al. 2018; Nwagu 
et  al. 2020). Furthermore, our findings are in line with 
that reported by Adimpong et al. (2012) on the resistance 
of Bacillus strains to bacitracin. Indeed, the resistance 
of some Bacillus strains to certain antibiotics could be 
intrinsic/natural or acquired and linked to the presence 
of resistance genes involved in the production of resist-
ance enzymes to these antibiotics (Adimpong et al. 2012; 
Compaoré et al. 2013). However, natural resistance would 
cause less risk than acquired resistance in transferring 
resistance genes to other pathogenic bacteria. Indeed, 
antibiotic resistance has become a major global concern 
because resistant bacteria can be transmitted from the 
food chains to humans (Bell et  al. 2018). The sensitiv-
ity to a wide range of antibiotics suggests that isolated 
Bacillus strains may not carry antibiotic resistance genes 
that can be transferred to pathogenic microorganisms. 
The current finding indicates that, genotypically, Bacil-
lus spp. isolated from soumbala belonged to B. subtilis 
or B. cereus clades. Some of these Bacillus strains were 
γ-hemolytic and susceptible to the majority of antibiot-
ics tested and currently used as medicines. These strains 
could be further investigated as potential probiotic-
starter cultures for optimization and valorization of the 
production of high-quality, therapeutic and functional or 
health-promoting soumbala.

Conclusion
This study highlights the identification of Bacillus spp. 
from soumbala, fermented seeds of Parkia biglobosa, 
as B. subtilis or B. cereus group species. The evaluation 
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of safety quality allowed the selection of non-hemolytic 
Bacillus strains with a wide antibiotic sensitivity spec-
trum. These presumptively selected safe Bacillus strains 
need more investigation for probiotic properties to 
further confirm their safety quality as potential probi-
otic-starter cultures for the development of novel tech-
nological processes for production of therapeutic and 
health-promoting functional fermented foods.

Materials and methods
Bacterial strains and cultivation conditions
Bacterial strains used in this study were previously iso-
lated from soumbala and identified as Bacillus spp. 
based on their phenotypic profiles and PCR analysis 
(Dabiré et  al. 2021). Stock-cultures were maintained in 
brain heart infusion supplemented with 20% glycerol at 
− 80 °C. Working cultures were made by inoculating 10 
mL nutrient broth with frozen-stock culture then incu-
bated at 37 °C overnight in a standard incubator without 
agitation.

Genotypic characterization
Genomic DNA preparation for PCR and sequencing reactions
Overnight-culture of each Bacillus strain was streak-
placed on Tryptic Soy Agar (TSA) and incubated at 37 
°C under aerobic conditions for 24 h. Genomic DNA was 
extracted from a single colony of each strain using the 
thermal chock technique. The DNA extracts were sub-
jected to PCR amplification and sequencing using facili-
ties available at Genoscreen society (Lille, France). This 
service included a single PCR amplification of rDNA fol-
lowed by Sanger sequencing of 16S rRNA portion encod-
ing the 30S ribosomal subunit. The variable regions V1 
to V5 (Fig. 1), used to discriminate the different bacterial 
populations by comparison with an international refer-
ence database, were targeted.

PCR amplification of 16S rRNA genes
PCR amplification of 16S rRNA genes of all the isolates 
was performed with primer pairs P8 (5′-AGA​GTT​TGA​
TCC​TGG​CTC​AG-3′) and P535 (5′-GTA​TTA​CCG​CGG​
CTG​CTG​GCAC-3′), and 338-1040F (5′-CTC​CTA​CGG​
GAG​GCAG-3′) and 338-1040R (5′-GAC​ACG​AGC​TGA​
CGACA-3′) used to amplify approximately 550 bp and 
750 bp, respectively. These primers are specific to the 
universal conserved regions and allowed the amplifica-
tion of a fragment of approximately 1500 bp from the 
genomic DNA of each strain. The reaction mixture con-
sisted for each fragment; 0.3 mM dNTP-mix (Fermentas, 
Germany), 0.5 mM MgCl2, 0.5 pmol.μL-1 each primers, 
0.24 μL DreanTaqTMDNA polymerase (1.25 U.μL-1) (Fer-
mentas, Germany) and 2 μL of the extracted genomic 
DNA. The volume of the PCR mixture was adjusted to 50 

μL with sterile MilliQwater. A positive control and a neg-
ative one were used in each case. The PCR program was 
performed as follows: an initial denaturation at 95 °C for 
12 min followed by 40 cycles consisting of a denaturation 
phase at 95 °C for 30 s, a hybridization phase at 58 °C for 
30 s, an elongation phase at 72 °C for 1 min, and a final 
elongation phase at 72 °C for 10 min. The obtained ampli-
cons were stored at 4 °C. In order to check for successful 
PCR amplification, 10 μL of the PCR products were ana-
lyzed by electrophoresis using 1.5% agarose gel in 1XTBE 
(1 h, 100 V). PCR products were purified using GFX™ 
PCR DNA and Gel Band Purification Kit (GE Healthcare) 
by following the manufacturer’s instructions. The molec-
ular weights of the amplified DNA fragments were cal-
culated using 50- to 1500-bp size markers (QXDNA size 
marker, QIAGEN). The efficiency of the PCR amplifica-
tion was checked by application of 1 μL PCR product on 
QIAxcel (QIAGEN) with the DNA Fast Analysis param-
eters. The individual validated PCR products were then 
sequenced.

16S rRNA gene sequencing
After a purification step of the PCR products on the 
membrane (Macherey Nagel), the samples were assayed 
by a fluorimetric method (SYBR Green). They were 
then sequenced in two directions using the same prim-
ers according to an optimized protocol. The resulting 
sequence reactions were purified on Sephadex-G50 gel 
(GE Healthcare) loaded on an ABI 3730XL capillary 
sequencer.

Bioinformatics’ analysis and data processing
Sequences analysis
Raw sequences were optimized with Auto Peak Trace 6 
RP software (Nucleics) then assembled into contigs using 
Sequencher V4.9 software (Gene Codes Corporation). 
Obtained 16S rRNA genes were subjected to BLAST 
against those of other bacteria available in GenBank at 
NCBI, a generalist database using the BLASTn option1 
(Zhang et  al. 2000) and a specialized one EZbiocloud2, 
for bacterial 16S rRNA sequences (Yoon et al. 2017), to 
define the phylogenetic affiliation of the isolates.

Phylogenetic tree construction
Obtained sequences were checked and manually cor-
rected using BioEdit software version 7.2. The alignment 
of the sequences was carried out by the MEGAX.10 soft-
ware using the Muscle algorithm. The phylogenetic rela-
tionship between the different species identified in this 

1  http://​www.​ncbi.​nlm.​nih.​gov/​genba​nk/
2  https://​www.​ezbio​cloud.​net/

http://www.ncbi.nlm.nih.gov/genbank/)
https://www.ezbiocloud.net/
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study and those existing in the NCBI database was car-
ried out using a nearest neighbor consensus analysis with 
Alicyclobacillus acidocaldarius (NR_​112638.1) as out-
group. The robustness of the tree branches was assessed 
by bootstrap analysis with 1000 replicas as previously 
described (Felsenstein 1985; Tamura and Nei 1993; 
Kumar et al. 2018).

Identification criteria for the bacterial strains studied
The identification criteria proposed by Drancourt et  al. 
(2000) were used for the identification of bacterial strains 
at the genus and species level.

Nucleotide accession numbers
The nucleotides sequences of the Bacillus strains deter-
mined found in this study have been assigned as Gen-
Bank accessions N° MZ773​904-​MZ773​923 (i.e., B21 = 
MZ773904, B54 = MZ773905, F6 = MZ773906, F20 = 
MZ773907, F21 = MZ773908, F24 = MZ773909, F25 = 
MZ773910, F26 = MZ773911, F32 = MZ773912, F44 = 
MZ773913, F48 = MZ773914, G23 = MZ773915, G37 = 
MZ773916, O28 = MZ773917, O34 = MZ773918, O44 
= MZ773919, O46 = MZ773920, O48 = MZ773921, 
O49 = MZ773922, and O52 = MZ773923).

Safety assessment
Hemolysis test
Bacillus strains were tested for hemolysis on Columbia 
agar (OXOID Ltd, PB pH 7.5 ± 0.2, Wesel, Germany) 
supplemented with 5% (V/V) sheep blood (CA-SB) by 
streaking fresh culture on the blood agar plates followed 
by incubation at 37 °C under aerobic conditions for 
24–48 h. The sheep blood was obtained aseptically from 
veterinary animal medicine research laboratory of “Ecole 
Nationale de santé animale,” Ouagadougou, Burkina Faso. 
Isolates that formed a clear or green halo around bacte-
rial strains were assessed as β-hemolytic or α-hemolytic, 
respectively. Isolates without any halo around the colo-
nies were denoted γ-hemolytic (Kavitha et  al. 2018). 
Thus, the γ-hemolytic bacteria were considered non-
hemolytic and then selected for antibiotic susceptibility.

Antibiotic susceptibility of Bacillus strains
Antibiotic susceptibility of selected non-hemolytic Bacil-
lus strains (B54, F20, F21, F24, F26, and F44) was evalu-
ated by using the disk diffusion method according to the 
recommendations of the European Committee on Anti-
microbial Susceptibility Testing (EUCAST, 2019). Com-
mercial antibiotic disks with defined concentrations 
according to Clinical and Laboratory Standards Institute 
standards (CLSI, 2012) were used. An aliquot of 1 mL of 
each Bacillus strain at the concentration of 106 CFU/mL 

(0.5 McFarland) was spread-plated with sterile beads on 
Muller-Hinton (MH) agar (Hi-media, India). Afterwards, 
the plates were allowed to dry for 1 h. Antibiotic disks 
were placed on the agar plate inoculated with each Bacil-
lus strain.

After incubation for 24 h at 37 °C, the diameters of the 
inhibition zones around the antibiotic disks were meas-
ured with an electronic ruler (Hardened, China). This 
enabled to indicate whether the strain was susceptible 
“S,” intermediate “I,” or resistant “R” to antibiotics accord-
ing to CLSI standards (2012). The antibiotic disks, of a 
number of 20 included amikacin (ANK, 30 μg), amoxi-
cillin-clavulanic acid (AMC, 30 μg), ampicillin (AMP, 10 
μg), bacitracin (BA, 10 μg), cefuroxime (CXM, 30 μg), 
chloramphenicol (C, 30 μg), ciprofloxacin (CIP, 5 μg), 
cotrimoxazole (TS, 25 μg), ceftriaxone (CTR, 30 μg), dox-
ycyclin (DO, 30 μg), erythromycin (E, 15 μg), gentamicin 
(CN, 10 μg), imipenem (IMP, 10 μg), nitrofurantoin (F, 30 
μg), oxacillin (OXA, 5 μg), pefloxacin (PEF, 5 μg), peni-
cillin G (PEN, 10 μg), piperacillin (PRC, 10 μg), trimeth-
oprim-sulfamethoxazole (SXT, 25 μg), and vancomycin 
(VA, 5 μg).

Statistical analyses
The analysis of variance (one-factor ANOVA) was per-
formed with the XLSAT software version 2016.02.27444 
at the significance level (α = 0.05). In case of significant 
difference between the studied parameters, the ranking 
of the means was done according to the Newman-Keuls 
test.

Abbreviations
AFFs: Alkaline-fermented foods; GRAS: Generally recognized as safe.
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