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Microbial assembly and co‑occurrence 
network in an aquifer under press perturbation
Daniel Abiriga1,2*   , Andrew Jenkins1    and Harald Klempe1 

Abstract 

Purpose:  Thousands of aquifers worldwide have been polluted by leachate from landfills and many more remained 
threatened. Microbial communities from these environments play a crucial role in mediating biodegradation 
and maintaining the biogeochemical cycles, but their co-occurrence and assembly mechanism have not been 
investigated.

Method:  Here, we coupled network analysis with multivariate statistics to assess the relative importance of deter-
ministic versus stochastic microbial assembly in an aquifer undergoing intrinsic remediation, using 16S metabarcod-
ing data generated through Illumina MiSeq sequencing of the archaeal/bacterial V3–V4 hypervariable region.

Results:  Results show that both the aquifer-wide and localised community co-occurrences deviate from expecta-
tions under null models, indicating the predominance of deterministic processes in shaping the microbial communi-
ties. Further, the amount of variation in the microbial community explained by the measured environmental variables 
was 55.3%, which illustrates the importance of causal factors in forming the structure of microbial communities in 
the aquifer. Based on the network topology, several putative keystone taxa were identified which varied remarkably 
among the wells in terms of their number and composition. They included Nitrospira, Nitrosomonadaceae, Patulibac-
ter, Legionella, uncharacterised Chloroflexi, Vicinamibacteriales, Neisseriaceae, Gemmatimonadaceae, and Steroidobacte-
raceae. The putative keystone taxa may be providing crucial functions in the aquifer ranging from nitrogen cycling by 
Nitrospira, Nitrosomonadaceae, and Steroidobacteraceae, to phosphorous bioaccumulation by Gemmatimonadaceae.

Conclusion:  Collectively, the findings provide answers to fundamental ecological questions which improve our 
understanding of the microbial ecology of landfill leachate plumes, an ecosystem that remains understudied.

Keywords:  Contaminated aquifer, Pristine aquifer, Landfill leachate plumes, Groundwater contamination, Microbial 
community, Groundwater microbiology
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Introduction
Groundwater ecosystems harbour the largest terrestrial 
biome, accounting for up to 40% of the earth’s freshwater 
prokaryotic biomass (Griebler and Lueders 2009; Grie-
bler et  al. 2014). This rich biodiversity is threatened on 
a global scale because of groundwater contamination. 

There are thousands of cases of groundwater contamina-
tion globally due to landfill operations. A good amount 
of research has focused on characterising landfill lea-
chate chemistry (Kjeldsen et  al. 2002; Masoner et  al. 
2020; Zhao et al. 2018) and groundwater leachate plumes 
(Abiriga et al. 2020, 2021d; Bjerg et al. 2011; Christensen 
et  al. 2001). While research on leachate microbiology is 
now gaining momentum (Rajasekar et  al. 2018; Song 
et  al. 2015b; Staley et  al. 2018; Zainun and Simarani 
2018), our understanding of the microbial ecology of 
landfill-leachate-impacted aquifers remains scant. The 
chemical composition of landfill leachate is complex 
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(Christensen et  al. 2000; Eggen et  al. 2010; Moody and 
Townsend 2017; Mouser et  al. 2005) and may contain 
chemicals that are toxic to microorganisms in the lea-
chate-receiving groundwater. As landfill leachate produc-
tion may last for decades to centuries (Bjerg et al. 2011), 
the long-term release of toxic compounds can even 
result in permanently eliminating the native species due 
to chronic disturbances (Herzyk et  al. 2017; Song et  al. 
2015a). Thus, landfill contaminations are press perturba-
tions. Press perturbations are disturbances due to per-
sistent discharge of contaminants into an environmental 
medium such as groundwater, soil, lake, and river (Zhou 
et al. 2014).

The complex mix of contaminants in landfill lea-
chate limits the applicability of conventional treat-
ments for landfill leachates and necessitates more robust 
approaches. Natural attenuation is considered superior 
in this respect (Mouser et al. 2005). The better treatment 
outcome from natural attenuation signifies the roles of 
the intrinsic microorganisms, because biodegradation, 
which is a core process in natural attenuation, is medi-
ated by microbes. Studying the microbiology of landfill 
leachate plumes not only informs on the effect of the lea-
chate on the microbial communities, but also informs on 
the potential of the resident microbial communities to 
degrade contaminants in the plumes.

Previous microbiological studies from landfill leachate 
plumes (Abiriga et al. 2021a; Lu et al. 2012; Mouser et al. 
2005; Taş et al. 2018) have almost exclusively focused on 
one aspect of microbial ecology such as alpha diversity, 
beta diversity, or microbial functions. We previously 
showed how multiple factors can affect microbial com-
munity composition in an aquifer (Abiriga et al. 2021b). 
While these studies have given significant insights into 
the microbiology of landfill leachate plumes, the aspect 
of microbial co-occurrence and the relative importance 
of deterministic versus stochastic microbial commu-
nity assembly remains unexplored. Knowing whether 
microbial communities assemble deterministically or 
stochastically is very crucial in understanding how the 
communities evolve and sustain. This presents an impor-
tant knowledge gap in our understanding of the micro-
bial ecology of landfill-perturbed aquifers.

Network analysis has been successfully applied to 
study microbial co-occurrence across multitudes of hab-
itats (Barberán et al. 2012; de Vries et al. 2018; Horner-
Devine et  al. 2007; Ju et  al. 2014; Lupatini et  al. 2014; 
Williams et al. 2014) and has helped resolved aspects of 
microbial ecology that cannot be addressed by commu-
nity metrics such as alpha and beta diversities (Lupat-
ini et  al. 2014). Analysis of co-occurrence patterns can 
decipher otherwise inaccessible aspects of complex 
microbial systems such as providing information on the 

ecological traits of uncharacterised microbes that co-
occur with well characterised microbes (Barberán et al. 
2012; Fuhrman 2009; Williams et  al. 2014). This may 
allow such taxa, which are very difficult to cultivate in 
the laboratory, to be grown in a co-culture with the well 
characterised species (Lupatini et  al. 2014). The contri-
bution of deterministic processes in shaping the aquifer 
microbiology was quantified by applying a multivariate 
statistic by leveraging on the environmental data. Cou-
pling network analysis to multivariate statistics offers a 
better interpretation of microbial community data (Wil-
liams et al. 2014).

The main objectives of the study were to answer the fol-
lowing questions: (i) which taxa show strong and signifi-
cant interactions? (ii) Which are the keystone taxa and 
how do they compare among sampling wells? (iii) Do the 
microbial taxa in the aquifer assemble deterministically 
or stochastically? Answering these fundamental ecologi-
cal questions should give insight into the microbial ecol-
ogy of understudied landfill-perturbed environments.

Materials and methods
The study aquifer and field procedures
The study aquifer is a confined aquifer of Quaternary gla-
ciofluvial deposit located in southeast Norway (Fig.  1). 
The aquifer matrix is characterised by medium to high 
permeability sand and gravel (Abiriga et al. 2020; Klempe 
2004, 2015). It is a small aquifer fed by a small watershed 
(Klempe 2015). In the period 1974–1996, a municipal 
landfill was operated in the area and because no leachate 
containment system was in place, the leachate from the 
landfill contaminated the aquifer. Additional information 
on the study site is accessible elsewhere (Abiriga et  al. 
2020, 2021c, d; Klempe 2004, 2015).

Groundwater samples were collected twice a year, in 
spring and autumn, in 2018 and 2019 from four moni-
toring wells: R1 (the proximal well), R2 (the intermediate 
well) and R4 (the distal well) located in the contaminated 
aquifer, and R0 (the background well) located in a nearby 
uncontaminated aquifer (Fig.  1). The proximal, inter-
mediate, and distal wells are located downstream of the 
landfill at 26 m, 88 m, and 324 m, respectively. The proxi-
mal and intermediate wells are multilevel sampling wells 
constructed using the Waterloo Groundwater Monitor-
ing System, equipped with five and four levels, respec-
tively. The distal well consist of a cluster of three 25 mm 
diameter PVC pipes installed at different depths. In this 
study, however, only one level was considered in each 
of the wells: R104 (proximal), R203 (intermediate), and 
R402 (distal); all from the middle level of the aquifer.

In total, 48 groundwater samples were analysed, 
with three samples taken in spring and another three 
in autumn which makes 12 from each of the four wells 
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over the 2-year period. Groundwater samples from 
the proximal and intermediate wells were obtained by 
a repeated cycle of applying nitrogen pressure through 
drive valves and venting, until groundwater samples 
emerge through the Teflon tubes with a gentle pulsating 
flow. Samples from the distal well were taken using a 
hand pump, while those from the background well were 
taken using a submersible pump. In all the cases, sam-
ples were collected after purging the well volume (dis-
tal and background wells) and micro-purging (proximal 
and intermediate wells) in accordance with ISO 5667-
11 (2009). Samples for microbiology were collected 
in sterile 350 ml PETE bottles (VWR, UK) without 
headspace, while those for groundwater geochemistry 
were collected in 500 ml PETE bottles. pH and elec-
trical conductivity were determined onsite, while dis-
solved oxygen was fixed onsite and later determined 
in the laboratory using the Winkler method (Winkler 
1888). The samples were maintained at ≤ 4 °C in cooler 

boxes and transported to the laboratory at University of 
South-Eastern Norway.

Laboratory procedures
Groundwater chemical analyses have been described 
previously (Abiriga et al. 2021a). The samples were ana-
lysed for 15 physicochemical parameters: pH, dissolved 
oxygen, electrical conductivity, sodium, potassium, 
ammonium, calcium, magnesium, iron, manganese, chlo-
ride, nitrate, alkalinity, sulphate, and total nitrogen using 
standard analytical methods (Abiriga et al. 2021a).

A total of 300 ml of each of the samples for microbiol-
ogy in sterile PETE bottles was filtered through 0.2 μm 
polycarbonate membrane filter upon arrival at the labo-
ratory. The filters were stored at − 70 °C prior to DNA 
extraction. DNA was extracted from one half filters using 
DNeasy PowerSoil Kit (Qiagen, Germany), following the 
manufacturer’s instructions. DNA quantity was meas-
ured using Qubit Fluorometer 3.0 (Life Technologies, 
Malaysia), while the quality was assessed using Nanodrop 

Fig. 1  Sample site showing the landfill, sampling wells and the site hydrogeology
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spectrometer (Thermo Scientific, China) and 2% aga-
rose gel electrophoresis. The DNA samples were sent 
to Norwegian Sequencing Centre (https://​www.​seque​
ncing.​uio.​no), where PCR amplification, library prepara-
tion and sequencing were conducted. The V3-V4 hyper-
variable region of the 16S rRNA gene was amplified using 
the primer set 319F (5′-ACT​CCT​ACG​GGA​GGC​AGC​
AG-3′) (Lane 1991) and the modified 805R (5′-GGA​CTA​
CNVGGG​TWT​CTAAT-3′) (Apprill et al. 2015). Library 
preparation was conducted following the Fadrosh et  al. 
protocol (Fadrosh et  al. 2014), with the forward and 
reverse oligos consisting of an Illumina-specific adaptor 
sequence, a 12-nucleotide barcode sequence, a hetero-
geneity spacer, and the primer set. The 16S rRNA gene 
fragment library was sequenced using Illumina MiSeq, 
by applying the 300 bp paired-end protocol v3 (600-cycle 
kit) with 10% PhiX as the control library.

Sequence analysis
The DNA sequences were demultiplexed using a demul-
tiplexer accessible at https://​github.​com/​nsc-​norway/​
triple_​index-​demul​tiple​xing/​tree/​master/​src. During 
this step, barcode sequences and the heterogeneity spac-
ers were removed. The DNA sequences were quality-fil-
tered (primer trimming, and removal of short sequences 
and chimeras), dereplicated, merged, and assigned to 
amplicon sequencing variants using DADA2 (Callahan 
et al. 2016) plug-in for QIIME2 v.2019.1.0 (Bolyen et al. 
2019). All the steps were run using the default parame-
ters except the primer length (set to 20 bp) and minimum 
length of reads (set to 280 bp). The amplicon sequencing 
variants (ASVs) were subjected to taxonomic assignment 
using Naïve Bayes classifier algorithm trained on data 
from SILVA v.138 conducted in QIIME2 v.2020.2.0 (Bol-
yen et al. 2019). The library statistics are provided in the 
supplementary information (Table S3).

Statistical data analysis
Statistical analyses were performed using R v.4.0.2 (R 
Core Team 2020). The microbial community dataset used 
in all the analyses was classified at genus level of taxon-
omy. The alpha diversity (Shannon index) was calculated 
using package phyloseq v.1.38.0 (McMurdie and Holmes 
2013). Difference in Shannon diversity index across the 
sampling wells was tested for significance using one-way 
ANOVA with a post hoc Tukey’s HSD for pairwise com-
parisons. Differences in Shannon diversity index between 
2018 and 2019 and between autumn and spring were 
tested for significance using Student’s t test. Multivariate 
analyses: nonmetric multidimensional scaling (NMDS), 
permutational analysis of variance (PERMANOVA) 
(Anderson 2001), variation partitioning (Borcard et  al. 
1992), and rarefaction (Fig. S1) were performed using 

package vegan v.2.5.6 (Oksanen et  al. 2019). As water 
chemistry datasets are dimensionally heterogeneous 
(measured in different units), the data was standardised 
prior to variation partitioning, as was the microbial com-
munity dataset, which was square-root transformed and 
Hellinger standardised (Legendre and Gallagher 2001) 
prior to multivariate analysis. NMDS was used to visu-
alise beta diversity based on Bray-Curtis dissimilarity 
measure. The sample clusters in the NMDS were tested 
for significant difference using PERMANOVA on 9999 
permutations. Group homogeneity was assessed using 
function ‘betadisper’ (Anderson 2006). Likewise, the 
change in the beta diversity between the 2 years (2018 
and 2019) and seasons (spring and autumn) were ana-
lysed for significance using PERMANOVA on 9999 per-
mutations. The contribution of the measured variables 
in explaining the variation in the microbial community 
composition was analysed using variation partitioning 
(Borcard et  al. 1992). Total nitrogen and ammonium 
were removed from the dataset during variation parti-
tioning, due to missing observations. The species com-
munity dataset was used without filtering (background, 
proximal, intermediate, distal wells; N = 48, 1979 taxa) as 
it is important to perform the above analysis on the full 
community dataset. Statistical tests were considered sig-
nificant at P ≤ 0.05.

Prior to the network analysis, the community data 
from each of the wells was filtered by selecting taxa pre-
sent more than 5 times in at least 50% of the samples 
from each of the well. Subsequently, the 25 most abun-
dant taxa in the respective samples were chosen for 
further analysis. This reduced the number of taxa 
remarkably to only include the core members of the 
communities  (from 616 to 82 taxa in R0; 1103 to 94 in 
R104; 1223 to 117 in R203; and 1186 to 81 in R402). 
Thus reducing the network complexity and eliminating 
taxa that were rare and/or showed multiple zero abun-
dances, which should be avoided (Banerjee et al. 2018). 
From the quality filtered data, taxa co-occurrence based 
on Spearman’s rank correlations was calculated sepa-
rately for each of the wells. The co-occurrence network 
was generated using package igraph v.1.2.6 (Csardi and 
Nepusz 2006), using an R script from the literature (Ju 
et al. 2014) on Github (https://​github.​com/​Richi​eJu520/​
Co-​occur​rence_​Netwo​rk_​Analy​sis). Only taxa having 
significant positive correlations (Benjamini-Hochberg 
corrected Spearman’s rank correlations, ρ > 0.6; P < 
0.01) were displayed in the co-occurrence network. We 
focused exclusively on the positive associations because 
we think that in environmental systems such the studied 
aquifer, which is influenced by the operation of the land-
fill, microbial communities may need to cooperate and/
or prefer common conditions, since positive associations 

https://www.sequencing.uio.no
https://www.sequencing.uio.no
https://github.com/nsc-norway/triple_index-demultiplexing/tree/master/src
https://github.com/nsc-norway/triple_index-demultiplexing/tree/master/src
https://github.com/RichieJu520/Co-occurrence_Network_Analysis
https://github.com/RichieJu520/Co-occurrence_Network_Analysis
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may indicate common preference to conditions or coop-
erative associations (Fuhrman 2009). In our setting, such 
cooperative interactions may reflect co-metabolism, a 
function which is central in biodegradation in contami-
nated systems such as the present study aquifer, hence 
the need to focused on positive associations. Network 
visualization was performed in Gephi v.0.9.2 (Bastian 
et  al. 2009). The network topologies of the final model 
were compared with those generated from a random 
network according to the literature (Erdős and Rényi 
1960). The key network topological properties evaluated 
to identify community functions included betweenness 
centrality (the number of shortest paths going through a 
vertex (node)) used to delineate keystone taxa (Williams 
et  al. 2014; Guo et  al. 2022), node degree (the number 
of connections to other nodes) (Faust and Raes 2012; 
Guo et  al. 2022), and closeness centrality. In addition, 
parameter estimations: within-module connectivity (Zi) 
and between-module connectivity (Pi) for identifica-
tion of topological roles were calculated using package 
microeco (Liu et al. 2021). Prior to the network analysis, 
the taxa co-occurrence was evaluated for randomness 
by simulating a null community co-occurrence using 
the checkerboard-score (C-score) in package EcoSimR 
v.0.1.0 (Gotelli et  al. 2015) for each of the wells, which 
were treated as independent communities. The null 
community co-occurrence (null model) assumes that co-
occurrence patterns arise by chance (Gotelli et al. 2015).

Results
Community diversity metrics and variation partitioning
Alpha diversity was highest in the intermediate well 
and lowest in the distal well (Fig.  2a). Tukey’s honest 

significance difference (Table 1) indicates that the Shan-
non diversity index varied significantly between most 
of the combination of pairs except between the back-
ground and distal wells, and between the proximal and 
intermediate wells. Further, a t test performed on Shan-
non diversity index indicated non-significant differences 
between 2018 and 2019, and between spring and autumn, 
for nearly all the wells, except a significant seasonal dif-
ference in the background well (P = 0.04) and a signifi-
cant yearly difference in the distal well (P = 0.04) (Table 
S1).

Beta diversity analysis based on Bray-Curtis dis-
similarity metric shows distinct microbial commu-
nity composition across the wells, although a slight 
overlap between the proximal and intermediate wells 
exists (Fig.  2b). The first axis (NMDS1) separates the 
wells by aquifer type. The proximal, intermediate, and 
distal wells from the contaminated aquifer correlated 
positively with NMDS1, while the background well 
from the uncontaminated aquifer correlated negatively 

Fig. 2  a Shannon diversity index across the sampling wells, calculated from data collected in the period 2018-2019. Each point represents a 
sample. The asterisk indicates an outlier. b Nonmetric multidimensional scaling (NMDS) plot of sites based on Bray-Curtis dissimilarity distance. R0: 
background well; R104: proximal well; R203: intermediate well; R402: distal well

Table 1  Tukey’s honest significance difference for the pairwise 
comparisons for every combination

“lwr” and “upr” are respectively the lower and upper 95% confidence level

R0 background well, R104 proximal well, R203 intermediate well, R403 distal well

Comparison Mean difference lwr upr Adjusted P

R104-R0 0.8929 0.2247 1.5610 0.0047
R203-R0 1.110 0.4416 1.7779 0.0003
R402-R0 0.2119 − 0.4563 0.8800 0.8319

R203-R104 0.2169 − 0.4512 0.8850 0.8219

R402-R104 − 0.6810 − 1.3492 − 0.0129 0.0443
R402-R203 − 0.8979 − 1.5660 − 0.2297 0.0045
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with NMDS1. The second axis (NMDS2) separates the 
wells by the degree of groundwater contamination. The 
uncontaminated groundwater from the background 
well and the less contaminated groundwater from the 
distal well both correlated negatively with NMDS2. On 
the other hand, the more contaminated groundwater 
from the proximal and intermediate wells correlated 
positively with NMDS2.

The groups in the NMDS were tested for significant 
difference using PERMANOVA. Both the global and 
pairwise analyses showed statistically significant dif-
ferences across (F3.0 = 11.8, P = 0.001) and between 
the wells (Table 2). Similarly, differences in microbial 
community composition between spring and autumn 
and between 2018 and 2019 were tested. Results 

indicated non-significant differences in the microbial 
community composition between spring and autumn 
(F1.0 = 1.13, P = 0.273) and between 2018 and 2019 
(F1.0 = 1.11, P = 0.288).

The variation in the microbial community compo-
sition (Fig.  3) partitioned among the variables: water 
chemistry (47.6%, F = 4.29, P = 0.001), well (44.8%, F 
= 13.7, P = 0.001), and both season and time (year) 
(0.4%, P > 0.05). Removing the effects of covari-
ables resulted in explained variances of 7.5%, 4.5%, 
1.1%, and 0.7% for water chemistry, well, season, and 
year, respectively. Of the explained variance (55.3%), 
42.5% of this was accounted for by an interaction 
term between the groundwater chemistry and well, 
leaving only 12.8% of the variance attributable to the 
other terms in the model. The collective variance (that 
explained by all the variables together) was only 0.4%, 
and the unexplained variance was 44.7%. A summary 
of the groundwater geochemistry can be accessed from 
the supplementary information (Table S2).

Co‑occurrence network
Implementing the quality filtering and network selec-
tion criteria resulted in 33 nodes and 29 edges (back-
ground well), 70 nodes and 196 edges (proximal well), 
58 nodes and 86 edges (intermediate well), and 8 nodes 
and 13 edges (distal well) (Figs. 4 and 5). The taxa with 
the most number of connections were Nitrospira, Aci-
dobacteriae, and Babeliales in the background well with 

Table 2  PERMANOVA pairwise comparisons of microbial 
community composition between the wells

R0 background well, R104 proximal well, R203 intermediate well, R402 distal well
a P value adjusted using Bonferroni correction

Pairs F R2 P valuea

R0 vs. R104 14.99 0.405 0.0006

R0 vs. R203 16.32 0.426 0.0006

R0 vs. R402 15.54 0.414 0.0006

R104 vs. R203 6.66 0.232 0.0006

R104 vs. R402 8.34 0.275 0.0006

R203 vs. R402 9.85 0.309 0.0006

Fig. 3  Variation partitioning of proportions of variation in microbial community composition explained by water chemistry, year, season, and well. 
Values in parentheses indicate the variances explained by the respective variables but without removing the contribution from covariables
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Fig. 4  Co-occurrence network in the background (a) and proximal (b) wells. Each connection represents a strong positive and significant 
Spearman’s correlation (ρ > 0.6, P < 0.01) and the thickness of the connections is proportional to the correlation coefficient. The size of the nodes is 
proportional to the node degree (number of connections), and the node colours represent microbial phyla



Page 8 of 13Abiriga et al. Annals of Microbiology           (2022) 72:41 

all having 3 connections; Candidate Kaiserbacteria, 
Omnitrophales, and Chloroflexi in the proximal well 
with each having 15, 13, and 12 connections respec-
tively; Patulibacter, Legionella and Neisseriaceae in the 

intermediate well with each having 9, 8, and 7 connec-
tions respectively; and Chloroflexi and Nitrosomona-
daceae in the distal well with both having 2 connections 
(Figs. 4 and 5).

Fig. 5  Co-occurrence network in the intermediate (a) and distal (b) wells. Each connection represents a strong positive and significant Spearman’s 
correlation (ρ > 0.6, P < 0.01) and the thickness of the connections is proportional to the correlation coefficient. The size of the nodes is proportional 
to the node degree (number of connections), and the node colours represent microbial phyla
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Based on a combination of the network topological 
parameters (node degree, betweenness centrality, and 
closeness centrality), 19 taxa were designated as puta-
tive keystone taxa in the four communities (Tables S4–
S7); although when the Zi-Pi model was applied, neither 
network hubs nor module hubs were identified except a 
node connector (Figs. S2–S5). The keystone taxa varied 
between and among the four communities (wells) in both 
number and composition. Those in the background com-
prised three taxa: Nitrospira, Acidobacteriae, and Babe-
liales. The most diverse and numerous (eight) keystone 
taxa were from the proximal well and consisted of Vici-
namibacterales, Chloroflexi, Candidate Kaiserbacteria, 
Parcubacteria, Gemmatimonadaceae, Candidate phylum 
MBNT15, Omnitrophales, and Elusimicrobiota. Six key-
stone taxa were identified in the intermediate well which 
included Patulibacter, Legionella, Neisseriaceae, Nitros-
pira, Nitrosomonadaceae, and Steroidobacteraceae. The 
least diverse and the lowest number of keystone taxa was 
recorded in the distal well with Chloroflexi and Nitroso-
monadaceae as the only taxa.

A well-by-well basis simulation of null communities 
showed significant non-random taxa co-occurrence in 
the proximal, intermediate, and distal wells (Table  3). 
Among these wells, the standardised effect size (SES) was 
highest in the intermediate well, moderate in the distal 
well and lowest in the proximal well. The background 
well by contrast, showed a non-significant marginally 
higher C-score (2.9333) than expected under random 
null model (2.9301), with 70/1000 simulations occurring 
more than the observed C-score.

Discussion
The network complexity varied notably among the four 
communities, with the proximal well showing the most 
complex taxa co-occurrence network while the distal 
having the least complex structure (Figs. 4 and 5). Simi-
larly, the putative keystone taxa varied remarkably among 
the communities (Tables S4–S7). These results hint 
on inherent variations in community composition and 
interactions in  situ. Taxa such as Gemmatimonadaceae, 
Nitrospira, and Nitrosomonadaceae were identified as 

putative keystone taxa (Tables S4–S7). Bioaccumula-
tion of polyphosphate is a feature of two of the three 
species (as of writing this manuscript) of phylum Gem-
matimonadetes (Pascual et  al. 2018; Zhang et  al. 2003). 
Making phosphorous bioavailable can be viewed as pro-
vision of ‘public goods’ of the microbial community that 
increase its stability and diversity (Konopka et al. 2015). 
Nitrospira and Nitrosomonadaceae may be involved in 
nitrogen cycling, as both nitrate and ammonium were 
present in the groundwater samples (Table S2). Moreo-
ver, the identification of Nitrosomonadaceae in the back-
ground, intermediate, and distal wells suggest the taxon 
is a potential cosmopolitan taxon in the area. Whereas 
the Nitrospira was designated as a node connector in 
the intermediate well (Fig. S4), implying that it plays an 
important role in inter-module communication within 
the community (Guo et al. 2022).

Taxon Parcubacteria (Candidate Jorgensenbacteria 
and Candidate Kaiserbacteria) belonging to phylum 
Patescibacteria form an important part of the network 
particularly in the proximal well. Patescibacteria are 
episymbionts (Castelle et  al. 2018) and the strong cor-
relations with other taxa in the co-occurrence network 
may therefore suggest potential host-symbiont rela-
tionship. Network analyses provide starting point for 
empirical observation and hypothesis testing, as well 
as for identifying ecological traits (Banerjee et al. 2018; 
Fuhrman 2009; Williams et  al. 2014). Thus, the con-
nection of Patescibacteria to many cultivable microbes 
suggests a way forward in the in vitro co-cultivation of 
Patescibacteria. Currently, no cultured representatives 
of the taxon exist (Brown et al. 2015; Kantor et al. 2013; 
Wrighton et  al. 2012) and little is known about them 
(Castelle et al. 2018), yet they are abundant in ground-
water (Herrmann et al. 2019).

Well-by-well null models showed non-random com-
munity co-occurrences in the contaminated aquifer. 
Non-random co-occurrence implies deterministic factors 
operate to shape the microbial communities (Horner-
Devine et al. 2007). In the present study, the main driv-
ing factor is the landfill leachate and because this varies 
from well to well due to natural attenuation (Abiriga et al. 

Table 3  Results of null model simulations for the four different communities

SES standardised effect size, R0 background well, R104 proximal well, R203 intermediate well, R403 distal well
a Number of samples in each well
b Taxa were filtered to only include those present in abundances (counts) ≥ 10

Community Na Taxab C-scoreobserved C-scorerandom SES P value

R104 12 830 2.72 2.68 11.9 < 0.001

R203 12 709 2.56 2.50 21.9 < 0.001

R402 12 558 2.39 2.31 15.3 < 0.001

R0 12 473 2.933 2.930 1.35 0.07
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2020), a gradient exists and the communities from the 
wells showed idiosyncratic co-occurrence patterns. Thus, 
the proximal and distal wells represent opposing ends of 
a spectrum, with the proximal being highly influenced 
while the distal being least impacted. From an ecologi-
cal point of view, this presents differences in niche-based 
processes that may be characterised by successions anal-
ogous to those observed in perturbation experiments 
(Herzyk et al. 2017; Zhou et al. 2014) as conditions revert 
to normal. The low SES (Table 3) recorded in the proxi-
mal well indicates that the microbial taxa in the proximal 
well co-occur more than in the intermediate and distal 
wells. This attests to our assertion that environmental 
filtering due to the leachate is strongest in the proximal 
well due to its proximity to the landfill (Abiriga et  al. 
2021a). The strong disturbance in the proximal well like 
other perturbations, will increase cell mortality and niche 
selection, and decrease microbial diversity and ecological 
drift (Zhou et al. 2014), causing the taxa to coexist more 
than in the intermediate and distal wells.

In the intermediate well, disturbance is expected to be 
of an intermediate strength. The higher SES and alpha 
diversity in the intermediate well agree with the ‘inter-
mediate disturbance’ hypothesis that the highest diver-
sity occurs at an intermediate level of disturbance (Miller 
et  al. 2011; Svensson et  al. 2012). Probable mechanisms 
shaping the microbial community in the intermediate 
well are niche-based processes such as predation and 
symbiosis. Some of the endosymbionts showed higher 
abundance in the intermediate well (Fig. S6).

In the distal well where the influence of leachate is 
expected to be minimal due to leachate attenuation 
(Abiriga et al. 2020) gives room to other ecological pro-
cesses to drive the microbial community. This may 
include variable selection, competition, predation, and 
phylogenetic history. The same endosymbionts present in 
the intermediate well were also present here.

In contrast to the contaminated aquifer, the null model 
analysis of the background well showed only a marginally 
larger but non-significant observed C-score. This sug-
gests that the microbial community in the background 
well exhibits some degree of aggregation. Evidence of 
putative aggregation is the co-occurrence of 7% of the 
1000 simulations more than the observed. Possible expla-
nations for species aggregation are mutualistic and syn-
trophic interactions (Horner-Devine et al. 2007).

Identifying the ecological processes shaping com-
munity compositions in any system involves identify-
ing whether it is deterministic or stochastic. While our 
analysis does not identify the causal mechanistic pro-
cesses, the non-random community assembly patterns 
do indicate the dominance of deterministic processes 
(Horner-Devine et  al. 2007). Variation partitioning 

was employed to quantify the overall contribution of 
deterministic factors in shaping the microbial commu-
nity compositions across the four wells sampled. The 
model explained 55.3% of the variation in the micro-
bial community compositions, which is higher than 
that reported earlier (see below). Of the explained 
variance, the groundwater chemistry and well jointly 
accounted for most of the variance (42.5%), indicating 
that both the microbial community composition and 
the groundwater chemistry have similar spatial struc-
turing (Borcard et al. 1992), which is attributed to the 
influence of the landfill leachate (Abiriga et al. 2021b). 
Given that not all environmental variables are meas-
urable in any single study, the unexplained variance 
(44.7%) may represent both the unmeasured deter-
ministic and stochastic factors, although stochastic 
processes may play a partial role in shaping microbial 
community compositions (Stegen et al. 2012; Williams 
et al. 2014). We posit that in systems such as the pre-
sent aquifer, which is under press perturbation (Zhou 
et  al. 2014), deterministic processes are more impor-
tant than stochastic processes. At present, the nature 
of the sampling design does not allow a full account of 
any mechanistic processes (variable selection, homog-
enous selection, dispersal limitation, etc.) to be drawn, 
as samples were taken from one level in each well. Yet, 
there is a significant vertical variation in the aqui-
fer (see below). To ensure a full account for the entire 
aquifer, an in-depth analysis taking into consideration 
both the depth-wise (small scale) and longitudinal-
wise (bigger scale) processes will be conducted and 
communicated in a future manuscript.

Earlier, we reported a lower explained variance with 
variation partitioning, 33.2% (Abiriga et al. 2021b) ver-
sus 55.3% in the present study. The difference is due to 
the present study being restricted to a single level in 
the aquifer while the previous study included all the 
multilevel sampling system in each well, which sug-
gests that variation along the vertical axis is controlled 
by variables which we did not measure. This may be 
due to the  inherent variation arising from the aqui-
fer layering which may respond differently to changes 
in hydrologic regimes (Smith et  al. 2018), resulting in 
differences in the microbial community compositions 
across the depths in the aquifer (Abiriga et  al. 2021b). 
Sampling groundwater from only one level avoided this 
bottleneck. The small variance attributable to season 
(0.4%, Fig. 3) further indicates that seasonal variability 
due to differential response of aquifer layers to hydro-
logic regimes, which causes shifts in microbial com-
munities (Pilloni et al. 2019), was minimal. This finding 
has a serious implication for future studies on subsur-
face microbiology, where a great deal of attention needs 
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to be given in designing sampling for heterogeneous 
systems.

Conclusion
Our study shows taxa co-occurrence in four communi-
ties. Both the structure and complexity of the networks 
varied remarkable among the communities, which high-
lights inherent variations in composition and taxa inter-
actions in  situ. Similarly, the putative keystone taxa 
varied among the communities in composition as well 
as numerically. Putative biogeochemical cycling poten-
tials of the keystone taxa include carbon cycling, nitrogen 
cycling, and phosphorous cycling which may suggest taxa 
cooperation, although taxa with potential for symbiosis 
and parasitism were also present. The study identified 
deterministic processes as the driving force shaping the 
microbial community assembly in the landfill-leachate-
impacted aquifer, a finding further substantiated by 
employing variation partitioning, which indicated that 
the measured environmental variables explained most of 
the variation in the microbial community composition. 
The novelty of this research is the application of a com-
bination of network analysis, ecological null model analy-
sis, and multivariate statistics to microbial data from an 
environment which has not been previously studied for 
the ecological processes. Findings from this study should 
therefore advance our understanding of microbial com-
munity assembly in ecosystems subjected to press pertur-
bations from landfill operations.
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