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Abstract 

Purpose The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such 
as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-
based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of 
this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly 
confined to the realm of research.

Methods This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, 
and its prospective application for textile industries was appraised and produced to develop this assessment. Articles 
were divided into two categories based on the results of trustworthy educational journals: methods used to produce 
the diversity of microorganisms through fermentation processes and such approaches used to produce the diver-
sity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) 
techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile 
industry.

Results Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human 
health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series 
of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and acceler-
ated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in 
various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.

Conclusion Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhance-
ment and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation 
processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long 
and healthy lifestyle.
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Introduction
The textile industry has changed over time. In order to 
meet people’s demands, a variety of fibers have been man-
ufactured with polyester, cotton, and viscose being the 
most popular (Felgueiras et al. 2021). The 17 Sustainable 
Development Goals (SDGs) and 169 sub-targets included 
in the UN’s 2030 Agenda serve as a global benchmark 
for the shift to sustainability. The agenda recognizes the 
interconnectedness of various challenges, including pov-
erty, health, industry, innovation, and infrastructure, 
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clean water and sanitation, and environmental degrada-
tion, among others, and that they can only be addressed 
jointly (Weiland et al. 2021; Provin et al. 2021). A micro-
bial enzyme isolated from natural ecosystems has unique 
properties that could make them good candidates for 
improving biomass conversion efficiency into value-
added goods, chemicals, and fuels. However, research 
into the composition of cellulosic biomass and the nat-
ural sources of microbial enzymes that drive biomass 
conversion efficiency is still in its early stages (Haile and 
Ayele 2022; Mukherjee et  al. 2022). Cellulosic biomass 
bioconversion based on biotechnology has the potential 
to be a long-term solution for the creation of new prod-
ucts with added value. Enzyme-based bioprocessing can 
reduce the unfavorable effect of fiber damage due to the 
precise reaction specificity given by enzymes for par-
ticular or targeted textile finishing. Enzyme bioprocess-
ing has the potential to improve the performance and 
quality of the textile materials produced, as well as save 
water, energy, and chemicals (Nayak et  al. 2021; Bood-
hoo et  al. 2022; Bilal et  al. 2022). Cellulases have been 
routinely used throughout cellulose-based materials for 
their advantages over traditional processes, as well as for 
quality enhancement and texture maintenance. Microbial 
cellulase is effective in replacing pumice stones in bio-
stoning and removing excess color to give denim a soft, 
worn appearance (Vélez-Mercado et  al. 2021; Perumal 
et al. 2022). Novozymes, DSM, DuPont, Amano Enzymes 
Inc., etc. are prominent players in cellulase enzyme pro-
duction worldwide (Singh et  al. 2021). Cellulase-based 
products like DeniMax® (Novozymes) and ValumaxA 
838 have permitted an easy and cost-effective creation of 
new shades and finishes in the textile industry (Agrawal 
2017; da Silva et al. 2021).

Also, microbes such as bacteria, fungus, and actino-
bacteria produce cellulolytic enzymes, which have a 
wide range of applications in agriculture, textiles, pulp 
and paper, food and beverage, brewing and winemaking, 
detergent manufacturing, and bioconversion for value-
added industrial products (Kumar et al. 2022; Lin 2022; 
Shukor et al. 2022).

The aim of this review begins with an overview of cel-
lulase, classification and structure, cellulase-producing 
microbes and diversity of cellulase-producing microbes 
are also addressed, as well as fermentative processes for 
microbial cellulase production, strain improvement of 
microbes for enhanced cellulase production, and numer-
ous textile industrial applications of microbial cellulase.

Microbial cellulase‑classification and structure
Many reserves of powders, bagasse, shells, brans, and 
residual cakes have all been used to improve the produc-
tion of microbial cellulases from residual lignocellulosic 

biomass (Liu 2020). These residues are ubiquitous and 
sufficient in all parts of the world, and incinerating them, 
which is the most common processing method, affects 
ecosystems’ environmental quality. As a result, process-
ing residual lignocellulosic biomass can be economically 
attractive for the bioproducts it can produce, in addition 
to being an appropriate environmental alternative (Luo 
et al. 2013; Roth et al. 2020). The most important strategy 
is the enzymatic hydrolysis of cellulosic biomass, which 
provides specificity, stereoselectivity, and greater conver-
sion yields (Mumtaz et al. 2022; Wahart et al. 2022).

Microbial enzymes isolated from natural ecosystems 
have unique characteristics that could make them good 
candidates for improving biomass conversion efficiency 
into value-added products (Bussler et al. 2021). The term 
“cellulase” refers to all cellulolytic enzymes, systems, and 
structures, including cellulases produced by either cell-
bound or extracellular microorganisms, as well as cel-
lulase that differs in their mechanisms of action (Korsa 
et  al. 2022; Mattam et  al. 2022; Elsababty et  al. 2022). 
The following types of cellulase have been described 
with their mechanisms of action and illustrated in Fig. 1; 
endoglucanase (EC 3.2.1.4) is a type of glucanohydrolase 
that cleaves glycoside linkages at random and binds to 
the noncrystalline component of cellulose, hydrolyzing 
amorphous sections more quickly due to weaker hydro-
gen bonds. It randomly breaks irregular cellulose chain 
sites, resulting in single polysaccharides or oligosaccha-
rides of various lengths (Cremonesi and Casoli 2021; Ber-
isio et al. 2022; de Souza et al. 2022). Exoglucanase (EC 
3.2.1.91): 1, 4-β-D-glucan and cellobiohydrolases (I and 
II) are enzymes that bind and break elementary fibrils 
to create crystalline cellulose. It produces cello-oligosac-
charides or disaccharides such as cellobiose or glucose by 
cleaving the ends of cellulose fibers (Islam and Roy 2018; 
Abuajah et al. 2022).

β-Glucosidase (EC 3.2.1.21): cleaves/hydrolyzes the 
disaccharide molecule cellobiose into simpler sugars 
and releases glucose monomers. From the nonreducing 
terminal glycosyl residues in cello-oligosaccharides, it 
cleaves cellobiose and other cello-oligomers into single 
sugars called glucose monomers (Saroj and Narasimhulu 
2022; Raj et al. 2022).

Cellulase‑producing microbes
No one microorganism in nature can produce a com-
prehensive and balanced collection of enzymes capa-
ble of efficiently degrading all types of lignocellulosic 
biomass, as demonstrated (Chukwuma et  al. 2021; 
Gomes et al. 2022) (Fig. 2). This is to be expected, given 
that plant biomass is destroyed by a complete commu-
nity of organisms in the natural environment (in fact, 
developing a single organism capable of decomposing 
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lignocelluloses into sugars alone is a major goal of con-
solidated bioprocessing).

As a result, several solutions for enhancing the indus-
trial lignocellulose degradation process have been 
explored (Guan et al. 2022; Saravanan et al. 2022; Zainu-
din et al. 2022).

Microalgae, bacteria, and fungi create more extracel-
lular cellulase, which helps to dissolve crystalline cellu-
lose. Due to its immense biochemical diversity, the ability 
to generate bulk cultures, and the simplicity of genetic 
modification, enzymes released by these microorganisms 

Fig. 1 The structures of cellulase (Linton 2020)

Fig. 2 The major cellulase-producing microorganisms modified from Leo et al. (2019)



Page 4 of 21Korsa et al. Annals of Microbiology           (2023) 73:13 

are suitable for large-scale synthesis (Tapia-Tussell et al. 
2020; Iram et al. 2022; Danso et al. 2022).

Diversity of cellulase‑producing microbes
Microorganisms from a range of environmental envi-
ronments have generated pathways for the creation of 
extracellular enzyme systems for the conversion of cel-
lulosic substrates to simpler sugars and related products 
(Cheung and Vousden 2022). The decomposition of this 
cellulose material is discovered to be aided by cellulolytic 
microbes such as bacteria, actinomycetes, and fungi. Cel-
lulolytic microorganism diversity and functions are gen-
erally influenced by soil structure and composition (Joshi 
et al. 2021; Greff et al. 2022; Tang et al. 2022). Since many 
enzyme-producing microorganisms are found in marine 
habitats, this environment is essential for exploring com-
mercially useful enzymes (Vilela et  al. 2021). For exam-
ple, it has been found that forest soil has a higher number 
of cellulolytic microbes in comparison with agricultural, 
arid, garden soil, and compost (Tang et  al. 2022). Cel-
lulolytic microorganisms can be found in rotting grasses, 
leaves, and wood as well as in cotton bales, sewage sludge, 
silage, compost heaps, muds, decaying plant matter, and 
extreme environments like hot, acidified volcanic envi-
ronments, and alkaline springs. They can also be found in 
soil, swamps, marshes, water bodies, and seawater sedi-
ments. They have also been associated with secondary 
microorganisms through symbiotic relationships (Wil-
son 2011; Leo et  al. 2019; Kaur et  al. 2020; Thapa et  al. 
2020). A number of seven bacterial isolates from the gen-
era Ochrobactrum, Acinetobacter, Pseudoxanthomonas, 
Paenibacillus, Stenotrophomonas, and Comamonas were 
found in the composting leachate made from wheat straw 
(Mohammadipour et al. 2021). Three taxa of cellulolytic 
bacteria belonging to the families Aeromonas, Bacillus, 
and Exiguobacterium were isolated from sedimentary 
water samples of the lake (Chantarasiri 2021). In the 
Indo-Burma Biodiversity Hotspot, three cellulolytic fungi 
with significant FPase activity were isolated. Talaromy-
ces verruculosus SGMNPf3 (KC937053), Trichoderma 
gamsii SGSPf7 (KC937055), and Trichoderma atroviride 
SGBMf4 were all characterized, identified, and reported 
to GenBank (KC937054) (Goyari et  al. 2014). Also, 
microbial cellulases are produced by the green microal-
gae Chlamydomonas reinhardtii, Gonium pectoral and 
Volvox carteri (Guerriero et al. 2018).

Bacterial‑producing cellulase
Cellulase-producing microorganisms distributed in the 
soil are broadly among many genera of a domain in the 
bacteria (Garcia et al. 2022). Enrichment of new micro-
bial groups with high cellulase activity from uncultivated 

or forest soil is significant for the study of new species 
and functions that are relevant to fundamental concerns. 
Micromonospora, Acidothermus, Paenibacillus, Strepto-
myces, and Pseudomonas are examples of unique or new 
taxa of cellulolytic species that suggest that the ecosys-
tem could be an attractive platform for the investigation 
of new enzymes for polysaccharide or cellulose degrada-
tion (Larson and Bagley 2022; Poulsen et al. 2022). Vari-
ous bacteria could break down synthetic textile colors, 
such as azo dyes, triphenylmethane dyes, and anthraqui-
none dyes, have been researched. Bacterial degradation 
can be achieved using a single bacterial isolate or a con-
sortium of microorganisms (Shukla et al. 2021).

As microbes secrete cellulose that is free of higher 
biopolymers, bacterial cellulose provides a low-cost 
feedstock (Kumar et  al. 2019). Bacterial cellulose syn-
thesis is a more cost-effective method of obtaining a 
quantity because microbial cellulose is pure and free of 
lignin, hemicelluloses, and pectin (Gedarawatte et  al. 
2021; Avcioglu 2022). Plant cellulose recovery is diffi-
cult and expensive due to the presence of nondegradable 
sources of polysaccharides of such components (Indum-
athi et al. 2022; Krishnaswamy et al. 2022). It is produced 
from coconut water by Gluconacetobacter (Acetobacter) 
xylinus for different applications (Singhania et  al. 2022; 
Tureck et  al. 2022). Bacterial cellulose is characterized 
by a three-dimensional structure made up of a super-
fine arrangement of cellulose nanofibers (3–8 nm). Their 
purity provides for successful application in biomedical 
products such as animal feeds, artificial cardiovascular 
tissues shown in (Table  1) below, and wound-covering 
scaffolds (Meng et al. 2019). The optimization of cellulase 
using bacterial species strain is used for the production 
of cellulase at the optimum condition of different param-
eters for industrial application (Gad et al. 2022; Montes 
et al. 2022).

Cellulase‑producing fungi
Fungi are considered harmful microbes, although they 
are now an essential industrial raw material for a variety 
of applications (Bangar et al. 2022; Paul and Joshi 2022). 
It is possible that dynamic cellulose decomposers are to 
blame for the planet’s decomposition. Furthermore, the 
framework for the synthesis of cellulases by fungal cel-
lulosomes was more desirable, since it was resistant to 
environmental changes. When compared to Aspergillus 
and Humicola species, Trichoderma species are consid-
ered the most appropriate species for cellulase synthesis 
and use in the industry (Mattam et al. 2022; Christopher 
et al. 2022).

However, genetically modified strains of Aspergil-
lus can produce cellulase in a relatively higher amount 
(Singh et  al. 2021). Over the years, various cellulolytic 
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fungal spectrums have been collected and identified, and 
these numbers have continued to produce significant. 
An impressive assemblage of over 14,000 fungi that were 
active together with cellulose and added insoluble fibers 
were previously reported. Trichoderma viride and Tricho-
derma reesei, for example, support cellulase formation in 
suitable conditions, such as solid and submerged fermen-
tation (Idris et al. 2017; Zhao et al. 2021). Fungal species 
are favored for cellulase synthesis because they release 
large volumes of extremely versatile extracellular cellu-
lase (Monclaro et al. 2022; Lübeck and Lübeck 2022). By 
secreting a variety of hydrolytic and oxidative catalysts, 
fungal cellulases can hydrolyze lignocellulosic biomass. 
The best-characterized cellulolytic organisms are white-
rot fungi, such as Phanerochaete chrysosporium, and soft-
rot fungi, also including Fusarium solani, Penicillium 
funiculosum, Talaromyces emersonii, Trichoderma kon-
ingii, and Trichoderma reesei, as shown in Table 2 below. 
Aspergillus fumigatus, Aspergillus nidulans, Aspergil-
lus aculeatus, Aspergillus niger, Aspergillus oryzae, and 
Aspergillus niger are the most widely used commercial 
microorganisms with high cellulolytic potential (Faheina 
Junior et al. 2022 et al. 2022; Isola et al. 2022; Santos et al. 
2022; Vasco-Correa et al. 2022). A total of 88 filamentous 
fungal strains were identified, and cellulase-producing 
fungi screening revealed that 16 strains from the genera 
Penicillium, Trichoderma, Aspergillus, and Talaromyces 
had variable cellulolytic activity (Tomico-Cuenca et  al. 

2021; Lübeck and Lübeck 2022). Trichoderma harzi-
anum isolate LZ117 is the most potent generator of these 
strains. A comparison of the transcriptomes of Tricho-
derma harzianum LZ117 and Trichoderma harzianum 
K223452, a control strain purified on cellulose, revealed a 
focused control of gene transcription essential to protein 
synthesis (Li et  al. 2020; Pang et  al. 2021; Mondal et  al. 
2022). Cellulase production optimization utilizing fun-
gal species strains for the industry is critically shown in 
Table  2 below. Optimizing the parameters for cellulase 
production at the optimum condition of different param-
eters for industrial applications is critical (Gad et al. 2022; 
Helal et al. 2022).

Cellulase‑producing actinomycetes
Actinomycetes are gram-positive mycelial microscopic 
organisms that are ubiquitous in soil and are particularly 
important for their role in the utilization of organic mate-
rials and the delivery of bioactive chemicals, with most 
isolates being indicated to do so (Al-Shaibani et al. 2021; 
Rani et  al. 2021). A few studies suggested that separat-
ing actinomycetes from marine sediments could be use-
ful for isolating novel actinomycetes with the potential 
to produce a useful new product. Actinomycetes, on the 
other hand, are known for producing a variety of extra-
cellular enzymes that degrade polymers, including chi-
tinase, lipase, and cellulase (Phuoc et al. 2020; Javed et al. 
2021; Sudarshan et  al. 2022). Actinomycetes have long 

Table 1 Some cellulase-producing bacterial species strain

CMC carboxymethyl cellulose, °C Celsius, Hr hours, S/No. species number, Temp. temperature, Max maximum

Bacteria

S/no Species strain Incubation 
time (days)

pH Temp (°C) Substrate Max. enzyme 
activity (U/mL)

References

1 Pseudomonas fluorescens 2 10 40 Glucose 1.5 Sethi et al. (2013)

2 Enhydrobacter sp. ACCA2 3 6.5 30 CMC 2.61

3 Micrococcus sp 3 8 37 CMC 0.9490 Nisha (2015)

4 Micrococcus sp 4 5 25 CMC 102 Mmango-Kaseke et al. (2016)

5 Bacillus licheniformis - 6.5 43.35 CMC 42.99 Shajahan et al. (2017)

6 Pseudomonas sp 4 7 40 CMC 0.0067 Shaikh et al. (2013)

Bacillus sp 4 7.5 50 CMC 0.0093

7 Paenibacillus terrae ME27-1 2.5 8 28 Wheat bran 2.08 Liang et al. (2014)

8 Streptomyces 2.5 6 40 CMC 0.26 Fatokun et al. (2016)

9 Ochrobactrum haematophilum - 6.3 44.2 CMC 3.55 Parkhey et al. (2017)

10 Bacillus sp. C1AC55.07 2.25 32 - 0.366 Diasa et al. (2014)

11 Paenibacillus sp. 1 7 40 CMC 2655 Islam and Roy (2018)

12 Bacillus VITRKHB 1 7.83 25.84 Xylose 192 Singh et al. 2014

13 Bacillus licheniformis HI-08 - 7 45 Sugarcane bagasse 393.99 Afzal et al. (2019)

14 Bacillus sp. SM3-M8 2 7 45 CMC 3.198 Rasul et al. (2015)

15 Bacillus sp. - 6 50 CMC 5.21 Shah et al. (2015)

16 Bacillus subtilis (KFY-40) 2 6 55 CMC 16.62 ± 1.85 Naresh et al. (2019)
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been thought of as intermediate species between bacte-
ria and fungi. They create a mycelial network of branch-
ing filaments, similar to fungi, but they are thinner, have 
muramic acid-containing cell walls, prokaryotic nuclei, 
and are susceptible to bactericidal antibiotics, just like 
bacteria (Gong et al. 2020). They are therefore real bac-
teria, despite their obvious fungal appearance. Mycobac-
teria and Corynebacteria are related to actinomycetes 
(Melgarejo et al. 2021; Streletskii et al 2022). They include 
the aerobic Nacardia, Actinomadura, Dermatophilus, 
and Streptomyces species, as well as the anaerobic Actino-
myces, Arachnia, Bifidobacterium, and Rothia species. 
Actinomyces, the most common pathogenic genus, is 
anaerobic or microaerophilic and non-acid fast, whereas 
Nacardia species are aerobic and maybe acid fast (Viswa-
nathan and Rebecca 2019; Patel et al. 2020; Subathra Devi 
et al. 2022).

Swarna and Gnanadoss. (2020) reported that Strep-
tomyces sp. LCJ10A, Streptomyces sp. LCJ11A, Strep-
tomyces sp. LCJ13A, Streptomyces sp. LCJ14A, and 
Streptomyces sp. LCJ16A identified from Pichavaram 
mangroves are indeed very efficient in producing eco-
nomically important enzymes such as lipase, cellu-
lase, and asparaginase. Such enzymes can be valuable 
resources for novel biotechnological processes and can 
contribute to the discovery of new biological understand-
ing (Vijayakumar 2021; Abdel-Azeem et  al. 2021; Sen-
gupta et al. 2020) which was shown in (Table 3) below.

Actinomycetes that produce cellulase have been iso-
lated and characterized as belonging to the following 

genera: Asanoa, Dactylosporangium, Kitasatospora, Non-
omuraea, Streptomyces, and Streptosporangium (Putri 
and Setiawan 2019), Streptomyces and Nocardia (Meli-
ani et al. 2022), and Streptomyces sp. MS-S2 (Danso et al. 
2022). The optimization of cellulase using Actinomycetes 
species strain for the industry is of immense importance 
to optimize the parameters for cellulase production 
(Sivasankar et al. 2022; Sudarshan et al. 2022; Rodrigues 
et al. 2022) in Table 3.

Cellulase‑producing archaea
In-depth studies have been carried out on the structure 
and development of the methanogenic archaeal species 
that participate in the biomass-degrading microbial com-
munities found in biogas plants (Maus et  al. 2018). The 
majority of the Archaea cellulase observed comes from 
intensive surroundings. Certain cellulase genes were 
identified in Desulfurococcus fermentans and Thermogla-
dius cellulolyticus, whereas hyperthermophilic Archaea 
include Pyrococcus furiosus, Pyrococcus horikoshii, and 
Sulfolobus solfataricus (Graham et  al. 2011; Leo et  al. 
2019; Larson and Bagley 2022; Kabaivanova et al. 2022). 
Maus et  al. (2017) studied that the hydrogenotrophic 
route, which represents the final phase of the anaero-
bic digestion (AD) chain, was anticipated to create CH4 
by seven of the examined methanogenic Archaea. Two 
species, Methanoculleus bourgensis and Defuviito gatu-
nisiensis, were found to have a dominant role in biogas 
microbial communities among the microorganisms 
investigated (Camargo et  al. 2021; Malik and Furtado 

Table 2 Some cellulase-producing fungi species strain

CMC carboxymethyl cellulose, °C Celsius, Hr hours, S/No. species number, Temp. temperature, Max maximum

Fungi

S/no Species strain Inc. time (days) pH Temp (°C) Carbon source Enzyme 
activity (U/
mL)

References

1 Scopulariopsis brevicaulis 5 5 40 Sugarcane bagasse 18.18 Akinyele et al. (2020)

2 Trichoderma sp. 5 5 40 Sugarcane bagasse 4.11 Akinyele et al. (2020)

3 Trichoderma longibrachiatum 7 4 55 Cellulose 10.61 Leghlimi et al. (2013)

4 Penicillium bilaiae 2 5 40 Cellulose 5.9 Soeka and Ilyas (2020)

5 Aspergillus niger – 4.5 28 Sawdust 0.1813 Acharya et al. (2008)

6 Aspergillus niger - 4.5 30 Oil palm frond 2.38 Tai et al. (2019)

7 Aspergillus fumigatus 4 5 50 CMC 526.3 Liu et al. (2011)

8 Trichoderma viride 4 4 - CMC 1.066 El Baz et al. (2018)

9 Trichoderma sp. 6.5 45 CMC 1.98 Gautam et al. (2011)

10 Aspergillus tubingensis 4 4.8 40 Corn stover 86.4 Imran et al. (2017)

11 Penicillium sp. – 5 30 Corncob 15.787 Ire et al. (2018)

12 Aspergillus niger 3 5 40 Glucose 0.9 Sethi and Gupta (2014)

13 Trichoderma reesei 6 5.5 37.5 Pineapple 9.23 Saravanan et al. (2012)

14 Penicillium chrysogenum 6 5 30 CMC 0.552 Kaur and Joshi (2015)
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2022; Jo et al. 2022). Das et al. (2019) studied the charac-
terization of extremely halophilic archaeal isolates from 
Indian salt pans, and screening for hydrolytic enzyme 
production Halophilic archaea is multi-stress-tolerant 
organisms, and their catalysts are of specific importance 
because they are generally stable and functional under 
extreme temperatures and low water activity. Because of 
their improved functionality in extreme circumstances 
encountered in numerous industries, the search for novel 
extremozymes is continuing. Haloferax, Halorubrum, 
Halococcus, Haloarcula, Halogeometricum, and Haloter-
rigena were among the six genera studied (Junior et  al. 
2022; Leoni et al. 2022).

Cellulase‑producing microalgae
Microalgae are microscopic organisms that contain 
chlorophyll and are found in freshwater and marine 
habitats (Shokrkar and Keighobadi 2022; Melendez et al. 
2022). Cellulase is produced by the microalgae Chlorella 
homosphaera, Nannochloropsis sp., Rhizoclonium sp., 
Chlorococcum infusionum, Haematococcus pluvialis, 
Chlorella sp., and Scenedesmus sp (Zuorro et  al. 2016; 
Sharma and Yazdani 2016). Because of its high abun-
dance of vital nutrients and minerals, microalgal bio-
mass has gained a lot of interest in the industrial world. 
Low biomass production, an uneven carbon-to-nitro-
gen (C/N) ratio, refractory cellular components, and the 

high cost of microalgal harvesting are all key roadblocks 
to algal biomass valorization (Shah and Mishra 2020; 
Tawfik et al. 2022).

Fermentative processes for microbial cellulase production
Today, industrial demand for microbial production of 
cellulase is being met by production methods using sub-
merged fermentation (SMF) processes and solid-state 
fermentation (SSF). Cellulolytic microorganisms are 
known as true cellulolytic microorganisms, which can 
degrade natural cellulose (Faheina Junior et al. 2022 et al. 
2022; Santos et al. 2022). Microbial enzymes that domi-
nate commercial applications due to their high levels of 
expression and secretion can create free cellulases. Solid-
state fermentation (SSF) and submerged fermentation 
(SMF) are the two basic techniques for producing cel-
lulases, and they differ in terms of environmental condi-
tions and modes of conduction (El Sheikha and Ray 2022; 
Nascimento et al. 2022; Chmelová et al. 2022). Verifiable 
analysis of the volume of water present in the reaction 
is one of the most important characteristics in separat-
ing these types of cycles. Water activity to support cell 
growth and metabolism, on the other hand, does not 
approach the water’s maximum binding capacity with a 
solid matrix (Teles et al. 2019; Nisar et al. 2022; Kalogero-
poulou et al. 2022).

Table 3 Some cellulase-producing actinomycetes species strain

CMC carboxymethyl cellulose, °C Celsius, Hr hours, S/No. species number, Temp temperature, Max maximum

Actinomycetes

S/no Species strain Inc. time (days) pH Temp (°C) Carbon source Enzyme 
activity (U/
mL)

References

1 Streptomyces DSK59 4 6.5 45 CMC 0.027 Budihal et al. (2016)

2 Streptomyces auranticus 8 7 30 CMC 233.56 Abou-Dobara et al. (2015)

3 Streptomyces viridobrunneus 
SCPE-09

5 4.9 50 Wheat bran 2.00 Da Vinha et al. (2010)

4 Streptomyces sp. 12 - 35 CMC and husk 59.56 Ishchi and Ragi (2019)

5 Streptomyces thermocopro-
philus TC13W

5 6.5 40 CMC 925 Sinjaroonsak and Chaiyaso 
(2020)

6 Streptomyces drozdowiczii 3 5 50 CMC 0.595 Grigorevsk et al. (2005)

7 Thermomonospora 3 5 50 CMC 23 George et al. (2001)

8 Streptomyces sp. Bse 7–9 4 7 30 Bagasse 4.496 Ratnakomala et al. (2019)

9 Microbispora cellulosifor-
mans sp.

- 7 28 D-Fructose, D-glucose, 
lactose

- Gong et al. (2020)

10 Streptomyces anulatus 
NEAE-94

5 7 37 D( +) glucose( −) fructose 27.31 El-Naggar and El-Shweihy 
(2020)

11 Streptomyces mexicanus 
NRRLB 24,916

5 7.5 35 Glucose 23.10 Das et al. (2017)

12 Streptomyces griseorubens 
AB184139

6 7 45 CMC 4.5 Prasad et al. (2013)

13 Streptomyces sp. F2621 - 9 30 Ball-milled wheat straw 22.41 Tuncer et al. (2004)



Page 8 of 21Korsa et al. Annals of Microbiology           (2023) 73:13 

Submerged fermentation (SMF)
Industrially important enzymes have traditionally been 
obtained from submerged fermentation (SMF) because 
of the case of handling and greater control of environ-
mental factors such as temperature and pH (Oh and Jin 
2020; Mitri et  al. 2022; Intasit et  al. 2022). Because of 
the consumption and high cost of enzymes, submerged 
fermentation currently produces commercial enzymes, 
and several of the possible uses have been industrial-
ized. When compared to SSF, SMF offers better control 
of environmental characteristics, lower labor costs, fewer 
space requirements, and lower scale-up requirements 
(Libardi et al. 2019). Ramamoorthy et al. (2019) reported 
that when utilizing an SMF to make cellulase, the follow-
ing issues are frequently encountered: the production of 
cellulase causes an increase in the viscosity of the culture 
broth. Enhanced agitation to counteract it may result in 
uncontrollable foaming, secreted cellulase within the 
culture broth may cause partial saccharification (of the 
lignocellulosic biomass) and concentration of sugars 
(glucose and xylose), a lower dissolved oxygen percent 
(DO%) in the broth due to the growing fungus’s acceler-
ated uptake of oxygen, and a decreased oxygen hold up 
due to an increase in the viscosity (Hosseini et al. 2022; 
Kabatesi and Wang 2022).

In the submerged fermentation, extracellular endoglu-
canase activity was also detected, and the four strains 
had similar enzyme excretion patterns. The extracellular 
activity was lowest in the Klebsiella sp. (B2) strain, albeit 
this difference was not significant when compared to the 
other strains. In Petri dishes, the results were found to 
be consistent with CMC growth patterns and enzymatic 
hydrolysis profiles (Barbosa et  al. 2020; Kurt and Cek-
mecelioglu 2021).

Solid‑state fermentation (SSF)
Solid-state fermentation relies on the utilization of less 
expensive substrates for cellulase synthesis, making it 
more cost-effective (Dessie et  al. 2022; Chilakamarry 
et  al. 2022). The technology is promising because of 
the high product concentration, low dewatering costs, 
and low infrastructure and expertise requirements. 
Solid-state fermentation offers higher cellulase yields 
than submerged fermentation, and production costs 
are decreased significantly with the right technology, 
improved bioreactor design, and a competitive cellulase 
production process. The ingredients of the medium also 
influence the synthesis of enzymes by different bacteria 
(Kieliszek et  al. 2021; Nabot et  al. 2022). For the pro-
duction of microbial metabolites, solid-state fermenta-
tion used complex substrates such as sugarcane bagasse, 
wheat bran, wheat straw, rice bran, rice straw, corncobs, 
banana waste, wheat flour, cornflour, mustard oil cake, 

sesame oil cake, cotton oil cake, cassava flour, steamed 
rice, sayo hulls, sago humps, and apple pomance (El 
Sheikha and Ray; 2022; Santos et al. 2022). For example, 
the filamentous fungus Trichoderma reesei RUT C30 
was used for cellulase production using wheat bran as 
substrate under SSF (Singhania et  al. 2007). SSF meth-
ods are mostly employed for enzyme production as this 
process is very simple and cost-effective (Bala and Singh 
2019; Siqueira et al. 2020). The temperature maintenance, 
pH maintenance, moisture maintenance, lack of homo-
geneous mass transfer, uneven fungal growth in the SSF 
media, and lack of a methodology to estimate the exact 
fungal biomass concentration are all problems with scal-
ing up SSF in an industrial application (Ramamoorthy 
et al. 2019; Pandey and Negi 2020; Prabhu et al. 2022).

Strain improvement of microbes for enhanced cellulase 
production
Strain improvement is inevitable if cellulase production 
has to be reached an industrially feasible level. Engi-
neering cellulases to improve their properties to meet 
robust industrial applications is often required (Dey 
et  al. 2021; Ugbenyen and Ikhimalo 2021; Adnan et  al. 
2022). Filamentous fungi natively secrete various cel-
lulases when growing on lignocellulose wastes. Improv-
ing cellulase expression by random mutagenesis is the 
classical approach. Random mutagenesis, site-specific 
mutagenesis, or their combinations have been used to 
obtain tailor-made enzymes for industrial applications 
(Bhati and Sharma 2021; Jeennor et al. 2022). Improved 
cellulase production from Aureobasidium pullulans 
Y-2311–1, thanks to genome shuffling and bacteria. On 
day 1, one strain produced through genome shuffling 
(Aureobasidium pullulans GS23) had the highest over-
all cellulase activity, which was sixfold higher than the 
wild-type strain. In comparison with the wild-type strain, 
the Aureobasidium pullulans GS23 strain reported a 
6.95-fold and 1.52-fold increase in exoglucanase and 
b-glucosidase activity, respectively (Baldwin et al. 2020). 
Understanding the whole-genome sequence and func-
tions makes determining the target regions for genetic 
changes much easier. Targeted strain engineering, 
whether for better cellulase production in fungi or meta-
bolic engineering, necessitates effective ways of introduc-
ing controlled genetic changes into an organism (Jiao 
et al. 2021; Olukunle et al. 2021).

For a long time, the low effectiveness of gene target-
ing has made obtaining a reasonable number of trans-
formants by homologous integration or deletion of the 
expression cassette a considerable difficulty. Because 
of their ability to grow on the less expensive substrate, 
they had become prospective sources of metabolites for 
industrial use. Years of research and industrial use have 
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gathered knowledge about fungal genetics (Papzan et al. 
2021; Poonsrisawat et  al. 2022). Engineering CBDs (cel-
lulose-binding domains) of cellulases, molecular clon-
ing, and gene expression were used to boost cellulase 
activity (Sharma et al. 2022; Calzada et al. 2021). A novel 
approach for enhancing catalytic activity is to use a new 
technique called substrate-induced gene-expression 
screening (SIGEX) in conjunction with fluorescence-acti-
vated cell sorting (FACS). Through bacterial mutagenesis, 
cellulase activity in cellulase-producing thermophiles was 
also increased. For example, Bacillus sp. strain C1 was 
mutagenically treated with NTG (N-methyl-N′-nitro-
N-nitrosoguanidine), and altered clones were obtained 
(Singhania et al. 2021). The cost of the cellulase enzyme 
and its stability are the two most important considera-
tions in its application. Cotton preparations, wool, and 
dyeing treatment all require cellulases. Novel cellulases 
with higher process compatibility, high specific activ-
ity, better specificity, and stability are being identified 
from new lineages of cellulolytic organisms due to their 
broad uses and ever-increasing demand (Adebami and 
Adebayo-Tayo 2020; Srivastava et al. 2022). Because of its 
effectiveness, strain enhancement for cellulase produc-
tion using mutagenesis agents has gotten a lot of interest. 
UV, X-rays, gamma radiation, ethyl methanesulfonate 
(EMS), N-methyl-N-nitro-N-nitrosoguanidine (NTG), 
and mustards have all been used as mutagenic agents 
(Sangkharak et al. 2012; Faheina Junior et al. 2022 et al. 
2022). Lu et  al. (2020) studied, based on phylogenetic 
position and phenotypic characteristics, the high-yield 
bacteria cellulase-producing strain Komagataeibacter 
sp. nov. CGMCC 17,276 was assigned as a novel species 
in the Komagataeibacter genus with good properties of 
rapid cell growth and high bacterial cellulase production. 
Under static and agitated conditions, properties analysis 
of bacterial cellulose generated by Komagataeibacter sp. 
nov. CGMCC 17,276 revealed strongly cross-linked cel-
lulose nanomaterial (Betlej et al. 2021).

Ryngajłło et  al. (2020) reported that a recombinant 
strain of Komagataeibacter xylinus 10,245 was produced 
for the composite synthesis of bacterial cellulose and chi-
tin. In Komagataeibacter xylinus, an operon including 
three Candida albicans UDP-GlcNAc synthesis genes 
(AGM1, NAG5, and UAP1) was expressed under the 
control of a promoter. The modified strain was able to 
produce activated cytoplasmic UDPGlcNAc monomers 
that cellulose synthase could use to join glucose and Glc-
NAc to form a chimeric polymer. To boost transforma-
tion efficiency, pyr4 deletion in the fungus Trichoderma 
reesei SN1 was used to create a pyr4 Disruption Strain 
from a uracil auxotroph strain, SP4 (Saravanakumar et al. 
2020; Zheng et al. 2020). The glucose output of SPB2 is 
65.0% higher than that of SP4 when corncob residues 

are saccharified with crude enzyme (Fierro et  al. 2022; 
Rosolen et al. 2022).

These results reveal the feasibility of strain improve-
ment through the development of an efficient genetic 
transformation platform to construct a balanced cel-
lulase system for biomass conversion (Qian et  al. 
2016). After UV irradiation and NTG treatment, Cel-
lulomonas sp. strain M23, a significant strain that pro-
duces a high amount of cellulase, was selected from 
328 mutant strains to boost cellulase production from 
Cellulomonas sp TSU-03 (Kothari et  al. 2019; Yanagi-
sawa et al. 2022). In comparison with the wild type, the 
maximum value of cellulase activity 2008 U/mg protein 
was attained, as well as a significant potential for cellu-
lase production by fermentation using a growth medium 
containing carboxymethyl cellulose (CMC) as the major 
substrate (Sangkharak et  al. 2012). Sadhu et  al. (2013) 
studied that after mutagenesis with N-methyl-N′-nitro-
N-nitrosoguanidine (NTG) as a mutagenic agent, a puta-
tive mutant (C1M26) of Bacillus sp. (MTCC10046) was 
screened from the wild C1 strain. In comparison with the 
wild-type C1 strain, the mutant C1M26 generated more 
cellulase. These results in increased cellulase synthe-
sis due to regulatory gene mutations or cellulase mRNA 
stability. Sequential mutagenesis with three mutagens 
of ultraviolet irradiation (UV), N-methyl-N′-nitro-N-
nitrosoguanidine (NTG), and ethyl methanesulfonate 
improved the activity of Streptomyces durhamensis 
(EMS) (Golinska et al. 2020; Lakshmi et al. 2020; Azouz 
2021). The cellulase activity of the mutant Streptomyces 
durhamensis GC23 was improved to 1.86-fold compared 
to the wild strain (vs15) after mutagenesis, and the cel-
lulase activity of the mutant Streptomyces durhamensis 
GC23 was further optimized to twofold that of the wild 
type (Lakshmi et al. 2020).

Application of microbial cellulase for textile industries
Cellulases are a type of hydrolase that can degrade lig-
nocelluloses. They are widely applied in numerous sec-
tors because they are made from renewable resources 
and waste. They have a wide range of uses in textiles, 
detergents, and other biotechnology fields, with a 
recent concentration on the textile industry (Ejaz et  al. 
2021). Denim washing with cellulase is a common eco-
friendly procedure for achieving a pleasing look and 
non-abrasiveness in cotton textures and denim. How-
ever, previous enzymatic denim washing methods used 
acid cellulase (Trichoderma reesei) and neutral cellulase 
(Humicola isolens), both of which had the problem of 
causing indigo color back staining on the cloth. Although 
it has been suggested that pH is the most important fac-
tor in preventing back stains, there have been no reports 
on the use of cellulase for denim washing under soluble 
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circumstances. Under basic conditions, a soluble base 
stable endoglucanase from alkalothermophilic Ther-
momonospora sp. (T-EG) was used for denim finishing 
(Imran et al. 2019; Sampathkumar et al. 2019). The tex-
tile industry meets one of humanity’s most fundamen-
tal necessities while also contributing significantly to 
many country’s economic growth. The demand for tex-
tile materials is increasing as the population grows and 
per capita consumption of textiles rises (Ahmed and 
Bibi 2018; Provin et al. 2021; Skiba et al. 2022). The tra-
ditional method of textile wet processing, on the other 
hand, involves a series of steps before it leads to a fin-
ished fabric, which requires the use of high salt concen-
trations, harsh chemicals, and a large amount of water 
and energy consumption, all of which are critiqued due 
to their environmental cost. The employment of enzymes 
in textile wet processing is guided by an understand-
ing of the environment (Son et  al. 2022; Ambaye et  al. 

2022). Enzymes introduce biotechnology into the textile 
industries, which appears to strike a reasonable compro-
mise between industrial demands and environmentally 
responsible product development (Aggarwal et al. 2020; 
Singhania et al. 2022). It is important to note that recent 
technological breakthroughs in the field of bio-based 
processing have resulted in significant changes in the tex-
tile industry, which is increasingly becoming more eco-
logically conscious (Fasiku et al. 2020; Nursyirwani et al. 
2020; Kabir and Koh 2021). Resizing, scouring, dyeing, 
coloring, and finishing are five key applications of tex-
tile wet processing, as illustrated in Fig. 3. However, the 
most common enzyme-based industrial processes, such 
as biodesizing, bioscouring, and biobleaching, have expe-
rienced industrial biotechnological breakthroughs and 
now outperform the efficacy and effectiveness of chem-
ical-based processing for wet textile preparatory pro-
cesses (Rahman et al. 2020; Rajulapati et al. 2020).

Fig. 3 Microbial cellulase application for textile industries (Biernat 2019; Jayasekara and Ratnayake 2019)
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Biostone washing
One of the most important aspects of producing a faded 
look is denim washing. Previously, stone washing was 
done by providing it with a soft feel and the desired 
appearance. The pumice stone removes color particles 
from the yarn surface in the denim fabric after wash-
ing. The faded effect is obtained by ring dyeing denim 
fabric and heavy abrasion during the stone washing pro-
cess (Mazotto et al. 2021; Periyasamy and Tehrani-Bagha 
2022). To achieve the fading effects, oxidative bleaching 
chemicals with or without the inclusion of stones have 
also been used. Denim washing is one of the key areas in 
getting a faded look. Earlier stone washing is used to be 
done to achieve a soft feel and the desired appearance. 
During washing, the pumice stone, and scraps of the 
dye particles from the yarn surface in the denim fabric. 
Due to the ring dyeing of denim fabric and heavy abra-
sion during the stone washing process, the faded effect 
is achieved. Oxidative bleaching agents with or without 
the addition of stones have also been used to get the fad-
ing effects (Costa et al. 2021; Mustafa et al. 2022). Denim, 
which is made of twill weave fabric colored in indigo 
colors and has a well-worn appearance, has gained a lot of 
favor over the years. The traditional use of pumice stones 
(with or without an oxidizing agent such as potassium 
permanganate) for stone washing denim has some draw-
backs (Korsa et  al. 2022), including machine damage, 
drainage system blockage, issues with residue removal on 
the pumice stones, the need for a large number of stones 
for even small batches, and the risk of excessive abrasion 
damaging the fabric. Over the years, denim-heavy-grade 
cotton twill, dyed with indigo colors and a well-worn 
look, has churned commendable popularity. The conven-
tional use of pumice stones (with or without oxidizing 
agent like potassium permanganate) for “stone washing” 
of denim suffers from numerous practical snags includ-
ing impairment of machine parts, blockage of the drain-
age system, issues of removal of residues on the pumice 
stones, requisite for a large number of stones for even 
small batches, and the possibility of excessive abrasion 
that may damage the fabric (Bağıran et  al. 2021; Hasan 
et al. 2021; Islam 2021).

Among others, cellulases have received considerable 
interest in the textile industry for mercerization, scour-
ing, bio-polishing, laundering, and “stone” finishing 
(Korsa et  al. 2022). Periyasamy and Venkatesan (2019) 
reviewed that the indigo dye on the denim surface is 
loosened by the cellulase, which is referred to as “bios-
toning.” Several pumice stones can be replaced by a tiny 
quantity of enzymes, making handling easier. The bios-
toning procedure decreases denim fabric degradation, 
processing machinery wear, and pumice dust produc-
tion (Rahman et al. 2020; Eid and Ibrahim 2021; Pandit 

et al. 2022). During the process, a pumice stone can lose 
up to 50% of its weight and produce a large amount of 
pumice grit, which can result in pumice sludge. The use 
of enzymes instead of pumice stones is environmen-
tally friendly (Eid and Ibrahim 2021; Hoque et al. 2021; 
Mevada et  al. 2022). Pazarlioğlu et  al. (2005) reported 
that back staining and tissue stiffness have previously 
limited the use of acid cellulases, such as those produced 
by Trichoderma, in biostoning, and anti-redeposition 
chemicals or bleaching agents have been employed to 
counteract this during washing phases. Neutral cellu-
lases, on the other hand, have a less aggressive effect. 
Another widely used application of enzymes in the fin-
ishing of textile products (cotton and other cellulose-
based fibers) is biopolishing. The indigo dye is on the 
fabric’s surface, and cellulases remove the surface fibers 
to reveal the white string (Aggarwal et  al. 2019; Islam 
2021; Arbab et  al. 2022). Rashid and Rahman (2020) 
studied that due to its great differences and attrac-
tive color look, acid wash on denim jeans is becoming 
increasingly fashionable. Clothes with an indigo or sulfur 
base can be washed in acid. Tumbling denim garments 
with pumice stones presoaked in a solution containing 
sodium hypochlorite (5 to 10%) or potassium perman-
ganate is the most common method of acid washing (3 
to 6%).

Biopolishing and finishing
Cellulases act on small-fiber ends that protrude from the 
fabric surface in biopolishing, where mechanical action 
removes these fibers and polishes the fabrics, resulting in 
a smooth glossy appearance with improved color bright-
ness, hydrophilicity, and moisture absorbance, an envi-
ronmentally friendly process, and uniformly improved 
finishing (de Souza Lima et al. 2022; Gupta and Kelkar-
Mane 2022). Trichoderma reesei’s endoglucanase II is 
thought to be the most effective enzyme for finishing 
cotton fabrics and biostoning denim garments. However, 
during finishing and biostoning, commercially available 
endoglucanase II is frequently blended with other cel-
lulase components, particularly endoglucanase I, result-
ing in hydrolysis and weight loss of garments (Kinet et al. 
2015; Pandit et  al. 2022). To eliminate the presence of 
additional cellulose components, we extracted the endo-
glucanase II gene from Trichoderma reesei and expressed 
it in Pichia pastoris under the control of a methanol-
inducible AOX1 promoter. When the endoglucanase II 
gene of Trichoderma reesei is heterologously produced 
in Pichia pastoris, it produces an enzyme that does not 
cause cellulosic fiber weight loss when used in denim 
washes (Amengual et al. 2022; Saif et al. 2022) and biopol-
ishing, a great improvement over the use of commercially 
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available Trichoderma reesei cellulase (Rather et al. 2022; 
Khan et al. 2022; Sivasankar et al. 2022).

Bioscouring
The scouring method of today is chemically based and 
incredibly alkaline. Chemical procedures are unspecific; 
thus, they attack not just the contaminants but also the 
cellulose, causing harm to the strength qualities. Fur-
thermore, due to high COD, BOD, and TDS levels in the 
effluents, present procedures are harmful to the environ-
ment. In the last 10–12 years, a wide range of studies on 
cotton bio-preparation have been performed (Chavan 
et  al. 2020; Sen et  al. 2021; Laga 2022). Bioscouring, an 
environmentally friendly way of eliminating impurities 
from fabrics using enzymes, is one of the alternative pro-
cesses that has been studied in recent years to improve 
scouring efficiency while lowering ecological impact. The 
conventional scouring method, which uses a harsh envi-
ronment, is gradually being replaced by an enzyme-based 
method that is more environmentally friendly (Jaga-
janantha et al. 2022; Sharma et al. 2022). Bioscouring is 
a wettability-boosting method in which enzymes remove 
non-cellulosic sticky molecules from a piece of fabric 
without destroying its cellulose content, such as pectin, 
natural waxes, esters, grease, dirt, and oil. Bioscouring is 
a process in which enzymes remove non-cellulosic vis-
cous compounds from a piece of fabric without degrading 
its cellulose content, such as pectin, natural waxes, esters, 
grease, dirt, oil, and so on, to boost the fabric’s wettability 
(Jagajanantha et al. 2022; Pandit et al. 2022). Degumming 
and scouring have traditionally been done in alkaline and 
high-temperature environments (pH 10 and 95 °C). This 
requires rigorous treatment of alkali-containing effluent 
after the process, which consumes a lot of energy and 
damages fibers. This results in poor fabric quality and 
stability, as well as a labor-intensive and costly process. 
Toxic effluents are produced during chemical treatment, 
which is hazardous to the environment and also dam-
ages the fabric material (Al-Dhabi et al. 2020; Rajulapati 
et  al. 2020). High heterologous expression of an alka-
line pectate lyase (APL) as a key enzyme is used in mild 
bioscouring pretreatment processes with reduced envi-
ronmental pollution and energy consumption, whereas 
traditional chemical treatment methods are carried out 
under high pH and temperature conditions with high-
energy and effluent treatment costs, particularly in the 
textile industry (Radhakrishnan 2022; Tatta et  al. 2022). 
However, due to the slim profits of the textile industry, 
the production cost of APL restricts its application in the 
bio-textile industry (De Oliveira et al. 2021; Nguyen et al. 
2021a, b; Ramesh et al. 2021).

Due to their high price, APLs produced by Bacillus 
subtilis, Pichia pastoris, or Aspergillus niger now on the 

market are mainly food grade for use in food and fodder 
and were not suited for the bio-treatment of textiles. As 
a result, it is critical to raise APL’s fermentation output 
and lower production costs to optimize its applicability 
for the bio-treatment of textiles (Singh et al. 2020; Zhen 
et al. 2020).

Biocarbonization and wool scouring
The dyeing of wool with suitable dyes usually necessi-
tates an acidic bath, the pH of which is determined by 
the dyestuff levelling qualities. It is well established that 
using low pH values results in improved dye exhaustion 
(greater dye uptake). However, in terms of the excellent 
performance and quality of wool goods, the reliance on 
levelling qualities on pH is equally crucial (Gouveia et al. 
2008; El-Sayed et al. 2021). Wool carbonization, a proce-
dure that uses sulfuric acid to remove plant residues from 
wool, has unfavorable environmental and wool quality 
consequences. Enzymatic treatment of wool with cel-
lulases and pectinases may increase the decomposition 
of vegetable matter, allowing it to be easily removed and 
reducing the amount of sulfuric acid required for the car-
bonizing process (Chowdhury and Pandit 2022). Wool 
scouring is an essential part of the manufacturing process 
that removes contaminants from raw wool such as wool 
greases, detergents, dirt, and other impurities (Awchat 
2022; Chowdhury and Pandit 2022).

Because of the tightening of environmental standards, 
the cost of effluent treatment and sludge disposal gener-
ated during the traditional scouring process utilizing an 
aqueous solution or solvents is becoming a growing con-
cern for the textile industry (El-Newashy et al. 2021; Kaur 
and Verma 2021). In wool scouring, enzymes such as 
xylanase, pectinase, savinase, and resinase can be used to 
improve process efficiency and reduce water consump-
tion and scouring effluents (Maiti et  al. 2018; Sharma 
et al. 2022).

Defibrillation of lyocell
Surface fibrils released during fibrillation treatment are 
removed during the enzyme treatment of the fibrillated 
lyocell fabric. Because of the specific hydrolysis that 
occurs during enzymatic treatment, the mechanical char-
acteristics are degraded more quickly. The enzyme treat-
ment can affect all of the fibers in the fabric, whereas the 
mechanical defibrillation treatment affects only the sur-
face fibers (Ibbett et al. 2013; Berto et al. 2021; Mazotto 
et al. 2021).

Lyocell fibers were exposed to different doses of a 
cross-linking substance to investigate the fibrillation 
propensity.

An ideal concentration was discovered to minimize 
fibrillation. Held to account was the influence of physical 
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parameters on the fibrillation index. Birefringence, inher-
ent viscosity, and relative crystallinity are among them 
(Rahman et al. 2021; Abbasi Moud 2022).

A large degree of irregular superficial fibrillation can be 
found in lyocell fabric. There are no quantifiable modi-
fications in linear density or fiber diameter since the 
underlying fibers that make up the majority of the fabric 
are unaffected by the mechanical treatment (Zhang et al. 
2018; Artigas-Arnaudas et al. 2022).

Fabrics made from cellulosic fibers such as cotton, 
viscose, ramie, linen, and lyocell (lyocell is a pure cel-
lulosic fiber made from wood pulp that shows fibril-
lation on the surface after being solvent spun with 
amino oxide) were used. These fibers tended to gen-
erate “fuzz” (short fibers protruding from the surface) 
and “pilling” (fluffy/loosened fuzz adhered to the 
surface), both of which were regarded as unfavorable 
characteristics of cellulosic fabrics (Hildebrandt et  al. 
2021; Tian et al. 2022).

Conclusion
The biological aspects of cellulosic biomass process-
ing will be the focus of future cellulase and cellulolytic 
microbe research. The use of cellulase at appropriate 
levels for the purpose has various advantages, includ-
ing being ecologically friendly, causing less damage to 
clothes without sacrificing fabric strength, reducing 
equipment wear, increasing garment load in the machine, 
and improving garment quality. The various cellulases 
are expected to attack the cellulosic fibers’ surface (rep-
resenting bundles of fibrils), then attach to the exposed 
fibrils on the yarn surface, and hydrolyze the latter, 
leaving the fiber core intact. The release of the surface-
adhered dye is enhanced by mechanical action as a result 
of controllable/tunable hydrolysis of the fiber surface. 
Enzyme-based textile processing is cost-effective, envi-
ronmentally benign, non-hazardous, and uses little water. 
In cellulose-based textiles, cellulases have been exten-
sively recognized for their advantages over traditional 
processes, as well as for quality enhancement and fabric 
maintenance. Microorganisms’ cellulases are effective in 
replacing pumice stones for bio-stoning and removing 
excess color from denim to give it softness and a worn 
appearance. Finding innovative cellulolytic enzymes with 
higher functioning necessitates the use of cutting-edge 
technologies.
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