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Abstract 

Purpose Arbuscular mycorrhizal fungi (AMF) play a key role in medicinal plant species, besides their ecological role 
in shaping plant communities. Knowledge about the diversity and structure of AMF communities associated with 
the endangered Prunus africana is valuable in the conservation and domestication of the species for its medicinal 
products.

Methods We investigated the diversity and structure of AMF species communities in the rhizosphere soils of P. 
africana trees occurring in four fragmented Afromontane forests found in Cameroon (Mount Cameroon and Mount 
Manengouba) and Kenya (Chuka and Malava) using Illumina Miseq sequencing of 18S rRNA gene amplicons.

Results A total of 64 virtual taxa (VT) belonging to eight genera were detected, namely Glomus (43 VT), Claroideoglo-
mus (6 VT), Paraglomus (5 VT), Acaulospora (4 VT), Diversispora (3 VT), and Archaeospora, Pacispora, and Scutellospora 
with 1 VT each. Scutellospora heterogama VTX00286 was the most abundant and common species in all four sites 
(49.62%). Glomeraceae and Gigasporaceae were the most abundant families found across the sites, while Acaulo-
sporaceae, Pacisporaceae, and Archaeosporaceae were rare, represented by < 1% of all the detected taxa.

Conclusion Our data shows a high diversity of AMF species associated with P. africana and variable community struc-
ture partially shaped by local edaphic factors.
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Background
Prunus africana (Hook F.) Kalkman (Rosaceae) is among 
the few endemic trees found across all the Afromontane 
forests (White 1978; Kadu et al. 2013; Vinceti et al. 2013). 
It is an endangered species whose distribution range 
spans more than 22 African countries (Kadu et al. 2013; 
Vinceti et al. 2013). It has a wide distribution across frag-
mented Afromontane forests caused by anthropogenic 
disturbance. The bark of the medicinal P. africana tree is 
the most harvested and internationally traded non-tim-
ber forest product in Africa (Cunningham et  al. 2016). 
Consequently, the bark of the tree is a high source of 
income for local communities where the species is found 
and is used in traditional pharmacopoeia to treat diseases 
such as stomach aches, urinary, and bladder infections, 
among others (Betti 2008; Bii et  al. 2010; Otieno and 
Analo 2012; Mwitari et al. 2013; Koros et al. 2016). The 
phytochemical compounds in the tree’s bark are used to 
treat benign prostate hyperplasia and potentially treat 
prostate cancer (Komakech et al. 2017). The high demand 
for the bark has led to unsustainable exploitation of the 
P. africana population for several decades, leading to a 
threat to the species in its natural habitat. The species is 
listed as vulnerable in Appendix II of CITES (Cunning-
ham et al. 2016). One of the key strategies to conserve the 
threatened P. africana is to facilitate its domestication. 
Therefore, knowledge of the occurrence, diversity, and 
interactions with its soil symbionts such as mycorrhizal 
fungi in natural habitats is crucial information for the 
cultivation of P. africana for ex situ regeneration.

Arbuscular mycorrhizal fungi (AMF) are symbiotic 
soil microorganisms belonging to the subphylum Glom-
eromycotina (Spatafora et al. 2016) present in almost all 
ecosystems and are associated with c 71% of terrestrial 
plants (Brundrett and Tedersoo 2018). Indeed, c 70 to 
80% of the overall plant’s inorganic phosphate (Pi), is pro-
vided by the fungus (Hoeksema et  al. 2010). AMF spe-
cies supply N and microelements like Zn, Fe, Mn, and Cu 
to their host (Adesemoye and Kloepper 2009). Besides 
nutritional function, AMF species can stimulate the 
plant’s immune system (Cameron et al. 2013), and allevi-
ate biotic stress like soil pathogens, and abiotic stress like 
drought and salinity of the host plant (Morte et al. 2001; 
Begum et al. 2019; Nanjundappa et al. 2019; Porter et al. 
2019). In return, c 3 to 20% of the carbon (C) assimilated 
by the plant is allocated to the fungus (Bravo et al. 2017; 
Treseder et al. 2018). AMF species play a key role in eco-
system maintenance by shaping the plant community 
structure (Lin et  al. 2015; Bauer et  al. 2020). AMF spe-
cies can modulate the soil structure and texture through 
their extraradical mycelium networks and contribute 
to soil stability (Rillig et al. 2010; Pellegrino et al. 2020). 
Despite the ecological importance of AMF species, very 

little is known about their community composition in 
African tropical forests, particularly in Afromontane for-
ests. AMF species community composition and diversity 
vary from one ecosystem to another, mostly due to the 
variation of environmental factors and host species (Hel-
gason et al. 1998; Lovelock et al. 2003; Opik et al. 2010; 
Rodríguez-Echeverría et  al. 2017). In an earlier study, 
Wubet et  al. (2004) indicated the presence of Glomus-
dominated AMF types from roots of P. africana and 
spores obtained from trap cultures of indigenous soils 
from two dry Afromontane forests of Ethiopia. Previous 
studies have reported AMF species’ effect on medici-
nal plant species’ secondary metabolites. For instance, 
Almeida et  al. (2018) recorded a variation of bioactive 
compounds in Mikania laevigata and Mikania glomerata 
(Asteraceae) when inoculated with Rhizosphagus irregu-
laris. These authors observed an increase of diterpene 
kaurenoic acid in M. laevigata leaves whereas a decrease 
of tricaffeoylquinic was reported in M. glomerata with R. 
irregularis inoculum. Recently, Tchiechoua et  al. (2020) 
showed that indigenous AMF species from the rhizos-
phere soil of P. africana were able to improve the growth 
and modulate the phytochemical compounds of vegeta-
tively propagated P. africana plants in glasshouse condi-
tions. Therefore, for the first time, we investigated the 
composition and structure of AMF species in the rhizo-
sphere soil of P. africana found in four eco-climatically 
different Afromontane forests in Cameroon and Kenya, 
using Illumina MiSeq sequencing of the 18S rRNA gene. 
We also explored which edaphic factors could potentially 
affect AMF communities within these forests.

Results
Overall sequencing information and taxonomy 
composition
The rarefaction curves showed that the intensity of sam-
pling for all soil samples was sufficient to identify the 
majority of AMF present in all four sites (Additional 
file  4). All data obtained from the Illumina sequencing 
were deposited in the Sequence Read Archive (SRA) at 
NCBI under accession number PRJNA657954.

A total of 16,736,209 trimmed reads obtained from 7 
soil samples were clustered into 16,279 operational taxo-
nomic units (OTUs) and assigned to the phylum Glom-
eromycota by using the MaarjAM database (Opik et  al. 
2010). Sample CT2 was discarded due to its low number 
of reads (16 reads). OTUs were grouped into eight fami-
lies, namely Gigasporaceae (49.62%)-the most abundant 
across the samples, followed by Glomeraceae (37.3%), 
Claroideoglomeraceae (4.40%), Diversisporaceae (2.4%), 
Paraglomeraceae (2.15%), Acaulosporaceae (0.6%), 
Pacisporaceae (0.4%), and Archaeosporaceae (0.02%), 
while the rest (3.11%) were unclassified families (Fig. 2). 
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Diversisporaceae, Acaulosporaceae, Pacisporaceae, and 
Archaeosporaceae were unique to Cameroonian sites 
(MC and MM) (Fig. 1).

At the species level, 64 AMF virtual taxa (VT) were 
identified as belonging to the genera Glomus (43 VT; 
67.1%), Claroideoglomus (6 VT; 9.4%), Paraglomus (5 
VT; 7.8%), Acaulospora (4 VT; 6.2%), Diversispora (3 
VT; 4.7%), Archaeospora (1 VT; 1.6%), Pacispora (1 VT; 
1.6%), and Scutellospora (1 VT; 1.6%) (Fig.  1). Diversis-
pora species were not detected in sample CT1 from the 
Chuka site. Archaeospora and Pacispora had one spe-
cies each, detected in samples MC2, MM1, and MM2, 
all from the Cameroonian sites. Scutellospora hetero-
gama (VTX00286) appeared to be the most common VT 
across all sample sites with the highest number of reads 
(Fig. 2, Additional file 1).

The four sites shared 39 VT (52% of the total number 
of different taxa identified) (Fig.  3). Cameroonian sites 
had the highest number of unique VT (27 VT from 
seven genera, namely Glomus, Acaulospora, Archae-
ospora, Claroideoglomus, Diversispora, Pacispora, and 
Paraglomus; (Additional file 2). Mount Cameroon (MC) 
had the highest number of unique species (10 AMF 
species), representing 13.3% of all species identified, 
whereas Chuka Tharaka-Nithi (CT) had one unique 
AMF species (Fig. 3).

AMF community diversity
Considering samples from Cameroon, the observed 
OTUs index in sample MM1 was the highest with 
8195, whereas sample MC1 was the lowest with 3919. 
The highest observed OTUs in samples from Kenya 

were scored in MK1 with 5369 and the lowest in CT 
with 4079. However, there was no significant difference 
between samples from Cameroon and Kenya (Kruskal–
Wallis test P = 0.7237). Shannon index for richness 
species was higher in three of the four samples from 
Cameroon (HMM2 = 7.52, HMC2 = 7.55, and HMM1 = 7.56) 
compared to the samples from Kenya (HCT1 = 6.88, 
HMK1 = 7.21, and HMK2 = 7.23) (Fig.  4). Nevertheless, 
there was no significant difference between the Shan-
non indices of the two countries (Kruskal–Wallis test, 
P = 0.1573). Evenness estimated using the Simpson 
index was highest in MM2, but with no significant dif-
ference between the provenances (Fig. 4).

The non-metric multidimensional scaling (NMDS) 
using the Bray–Curtis dissimilarity distance matrix 
showed that AMF species communities from Malava 
and Kakamega had more similarity to each other, while 
samples from Cameroon had less similarity (Fig. 5). The 
stress value of 0.014, indicates a good representation of 
ordinate.

Physicochemical parameters of the P. africana rhizosphere 
soil from Cameroon and Kenya
The physicochemical parameters of P. africana rhizos-
phere soil, collected in Cameroon and Kenya sites are 
shown in Table 1. The P. africana rhizosphere soils were 
acidic. Soil acidity was significantly higher in CT and 
MM than in MK and MC sites. The % C, total P (ppm), 
Na (ppm), and EC (mS/cm) were significantly higher 
in MC and MM (Cameroonian sites) than in MK and 
CT (Kenyan sites). In contrast, % N, and the Ca (ppm) 

Fig. 1 Relative abundance of AMF families in the rhizosphere soil of P. africana 
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content were significantly higher in MK and CT than in 
MC and MM sites.

Relationship between soil physicochemical properties 
and AMF communities
The physicochemical analyses of P. africana rhizos-
phere soil indicated that the available P concentration 
in samples from Cameroon was almost fivefold greater 
than in samples from Kenya, whereas the concentration 

of total N in samples from Kenya was significantly 
higher compared to samples from Cameroon (Table 1). 
However, there was a weak correlation between AMF 
species community composition and physicochemi-
cal parameters when the db-RDA analysis was per-
formed on Bray–Curtis dissimilarity distance (Fig.  6). 
The eigenvalues of the first two axes of db-RDA were 
0.09 and 0.02, and the first axis explained 79% whereas 
the second explained 19% of the variance in the AMF 

Fig. 2 Relative abundance of the 75 merged taxa identified in the rhizosphere soils of P. africana 
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Fig. 3 Venn diagram of unique and shared merged taxa. A Unique and shared merged taxa between pooled Cameroon and Kenya samples. B 
Unique and shared merged taxa among the four sites Chuka, Malava, Mount Cameroon, and Mount Manengouba

Fig. 4 AMF alpha diversity of AMF in the rhizosphere soils of P. africana. The observed OTUs, The Chao1, the ACE, the Shannon, and the Simpson 
indexes were considered
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species–physicochemical parameters relationship. The 
abundance of AMF species in samples from MK was 
positively correlated with the available P in the soil and 
negatively correlated with the total N and K. In addi-
tion, total N and K were positively correlated to the 
abundance of AMF species in MC and CT (Fig. 6).

Discussion
The present study aimed to assess the community 
composition and diversity of AMF in the rhizosphere 
soil of P. africana found in four fragmented Afromon-
tane forests of Cameroon and Kenya, using Next 
Generation Sequencing technology. We obtained a 
total of 16,736,209 sequences, clustered into 16,279 
OTUs, representing eight Glomeromycotina families 
(Gigasporaceae, Glomeraceae, Claroideoglomeraceae, 
Diversisporaceae, Paraglomeraceae, Acaulosporaceae, 
Pacisporaceae, and Archaeosporaceae), with a total 
of 64 virtual taxa (VT). Our study shows a high spe-
cies richness compared to an earlier study of AMF 
associated with P. africana in dry Afromontane 

forests of Ethiopia using low-throughput sequenc-
ing and internal transcribed spacer (ITS) as a marker 
gene method on roots and trap cultures (Wubet et al. 
2004). They identified taxa belonging only to three 
AMF families: Glomeraceae, Diversisporaceae, and 
Archaeosporaceae (Wubet et  al. 2004). However, the 
difference in the detection of AMF associated with P. 
africana is also likely due to the methods used: high- 
vs low-throughput sequencing, and rhizosphere soil 
vs root and spores from trap cultures. In our study, we 
observed that the Gigasporaceae family had the high-
est number of OTUs, with the only VT identified to 
species level (Scutellospora heterogama VTX00286) 
found in all four sites. Members of Gigasporaceae are 
known to be nearly as dominant as those of Glomer-
aceae in Afrotropical biomes and are reported to be 
overrepresented in the tropics biogeography data-
base (Stürmer et al. 2018). At the species level, several 
studies using low-throughput (Moreira et  al. 2006; 
Lakshmipathy et  al. 2012; Wetzel et  al. 2014; Pereira 
et al. 2020) to high-throughput (Schlaeppi et al. 2016; 

Fig. 5 Non-metric multidimensional scaling plot of AMF community composition in the rhizosphere soils of P. africana 

Table 1 Physicochemical parameters of P. africana rhizosphere soil samples

Values followed by the same letter do not differ significantly according to the ANOVA test, P < 0.05, n = 4

Site code pH  (H2O) EC (mS/cm) %C %N P (mg  L−1) K (mg  L−1) Na (mg  L−1) Ca (mg  L−1)

MK 6.8a 0.14c 7.6c 0.78a 7.9c 564a 18c 5316a

CT 5.9b 0.12d 8.3c 0.83a 6.00d 555a 11d 4470b

MC 6.7a 0.26a 14.9a 0.57b 37.3a 255b 81a 4085d

MM 6.2b 0.22b 12.4b 0.66b 35.1b 565a 77b 4339c
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Egan et  al. 2018; Marinho et  al. 2019) have revealed 
the presence of Scutellospora species (Gigasporaceae) 
in samples from tropical environments. Contrary to 
findings from these studies, Opik et  al. (2010) found 
that the Gigasporaceae family was underrepresented 
in Africa. However, in our study, the only representa-
tive of the Gigasporaceae family represented 6% of the 
total VT. In contrast, the Glomeraceae family had 43 
VT, representing 67.1% of the taxa identified. This is 
not surprising since numerous studies have shown that 
members of the Glomeraceae family are ubiquitous 
and cosmopolitan, found in nearly all continents and 
climatic zones (Opik et  al. 2010; Stürmer et  al. 2018; 
Lara-Pérez et al. 2020).

Although we did not observe a significant differ-
ence in AMF in terms of alpha diversity indices, AMF 
diversity was generally higher in Cameroonian than in 
Kenyan rhizosphere soil samples. Similarly, the Venn 
diagrams (Fig.  4) showed that Cameroonian samples 
had more unique AMF species, representing 36% of the 
total VT, whereas Kenyan samples only had 12% of the 
total VT. On the other hand, the beta diversity showed 
a distinct community composition between the sam-
ples from different country provenances, suggesting 
a strong influence of local biotic and abiotic factors as 
reported for other studies in the tropics (Alguacil et al. 
2015; Stevens et al. 2020).

Various biotic and abiotic factors can explain the dif-
ferences in the diversity indices and community struc-
ture of AMF. Zhao et  al. (2017) showed that soil clay 
content was negatively correlated with the AMF diver-
sity in a semi-arid mountain in China, while Vieira 
et  al. (2020) indicated that higher soil clay content 
was found with less AMF richness in soil samples in 
a tropical semi-arid region of Brazil. In this study, we 
found differences in a few physicochemical properties 
among sites, and are likely to have influenced local the 
diversity and structure of AMF species communities in 
these Afromontane sites. For instance, the application 
of db-RDA using Bray–Curtis distance dissimilarity 
showed that available P, the total N, and the K content 
were correlated with the AMF community structure. In 
contrast, soil pH did not appear to be one of the fac-
tors shaping the AMF composition at any of the sites 
investigated. A similar observation was made by Abde-
daiem et al. (2020), even though soil pH has previously 
been shown to be one of the main factors besides avail-
able P that influence the AMF community composi-
tion (Bainard et  al. 2014; Trevizan Chiomento et  al. 
2019). Previous studies found a negative correlation 
between available P and AMF community composition 
diversity (Bainard et  al. 2014; Abdedaiem et  al. 2020). 
Besides, none of the soil parameters measured signifi-
cantly impacted the AMF community composition in 
the rhizosphere soil of P. africana. Similar observations 
were made in a study by Manoharan et  al. (2017) that 

Fig. 6 Relationship between soil physicochemical parameters and AMF community in the rhizosphere soil of P. africana 
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investigated AMF species diversity under the influence 
of agricultural management practices. Our results sug-
gest that soil physicochemical parameters and other 
factors, including climate, should be considered when 
studying the AMF community composition and diver-
sity in rhizosphere soil. For instance, the geographical 
distance was also identified as one of the main factors 
influencing the AMF community composition and 
diversity when considering aspects like climate, soil 
type, land use type, and vegetation type (Xu et al. 2016; 
Hontoria et al. 2019; Huang et al. 2019). Therefore, the 
differences we observed in the community composition 
of AMF species might also be attributed to other local 
factors yet to be established, than only to the physico-
chemical composition of the rhizosphere soil of P. afri-
cana in these forests.

Conclusions
Using 18S Metagenomics in this study revealed a higher 
diversity and distinct composition of AMF communities 
associated with P. africana than in previous studies. Our 
data showed that the AMF communities in Cameroon 
sites had a higher VT diversity than those in Kenyan 
sites. Moreover, Scutellospora heterogama VTX00286 
was identified as the most common and abundant VT, 
but there were also other common and unique VT across 
all the sites studied. Our findings also showed that cor-
relation between AMF species composition and physico-
chemical parameters, especially N, P, and K. This study 
has provided insights into the AMF communities and 
species found in the rhizosphere of P. africana, and will 
be crucial in informing the development of culturable 
inoculum to support propagation and conservation work 
in these forests.

Methods
Study sites
The study was carried out in four Afromontane sites 
in Cameroon and Kenya (Fig.  7). In Cameroon, the 
two targeted sites were Mount Cameroon (MC) and 
Mount Manengouba (MM), 120  km from each other. 
The MC site is in the South-West Region of Cameroon 
at 04°08′34.3″ N; 09°07′21.0″ E, 2280  m above sea level 
(masl). The annual rainfall in MC is one of the highest in 
the world ranges between 1800 mm and 12,000 mm with 
two seasons; the dry season from November to February 
and the rainy season from March to October. The mean 
temperature is 25  °C and the relative humidity ranges 
between 75 and 80% throughout the year (Fonge et  al. 
2019). The vegetation in MC is mainly composed of a 
dense layer of graminaceous species and tall herbaceous 
species belonging to the Acanthaceae and Begoniaceae 

families. The main tree species include Agauria sp. 
(Ericaceae), Crassocephalum mannii (Asteraceae), 
Hypericum sp. (Hypericaceae), and a less dense popula-
tion of P. africana (Nkeng et  al. 2010). The MM site is 
located between the Littoral and South-West Regions 
at 05°01′50.8″ N; 09°49′31.7″ E, 1968 masl. The MM site 
is dominated by dense undergrowth, including Aframo-
mum sp., Acanthaceae, Brillantaceae, Begoniaceae, 
and Gramineae family, while the main trees species are 
Harungana madagascariensis (Hypericaceae), Maesa 
lanceolata (Primulaceae), Polyscias fulva (Araliaceae), 
and P. africana (Nkeng et  al. 2010). Both MC and MM 
sites have volcanic soil types (Andosol) that vary from 
loam to silt loam, and the top layer is rich in organic 
matter (Manga et al. 2014; Tegha and Yinda 2016). Both 
mountains are located on the Cameroon Volcanic Line 
magmatism (De Plaen et al. 2014). In Kenya, the two tar-
geted sites were the Chuka forest (CT) and Malava for-
est (MK) separated by approximately 320  km. The CK 
site is located near Chuka Tharaka-Nithi in the Cen-
tral Province of Kenya at 0°17′45.57″ N, 37°36′52.85″ 
E, 1620 masl. The annual rainfall is bimodal and ranges 
from 1500 to 2500 mm. The vegetation in the CT site is 
dominated by a range of species, including Podocarpus 
latifolia (Podocarpaceae), Artemisia afra (Asteraceae), 
Croton macrostachus (Euphorbiaceae), and P. africana 
among others. The soils are red with high clay content, 
and Nitisols, Cambisols, and Andosols are the main soil 
groups (Kaburi and Medley 2011; Mugo 2015). The MK 
Forest is located in Kakamega in the Western province 
at 0°27′57.57″ N, 34°52′8.55″ E, 1615 masl. The annual 
temperature in the region is about 25 °C with a hot and 
wet climate, and annual rainfall ranges between 1500 
and 2000 mm (Seswa et al. 2018). The dominant species 
include P. africana and several other species belonging 
to Euphorbiaceae, Moraceae, Rubiaceae, Acanthaceae, 
Fabaceae, and Bignoniaceae (Additional file  1) (Seswa 
et al. 2018).

Soil sampling and analysis
Soil sample collection
In each of the four sites (Mount Cameroon: MC; Mount 
Manengouba: MM; Chuka Tharaka-Nithi: CT; Malava 
Kakamega: MK) (Additional file 4), 20 mature P. africana 
trees (≥ 30 cm dbh) were randomly selected. Rhizosphere 
soil samples were collected from each tree at four cardi-
nal points by following the roots from the trunk to the 
fine roots, and at about 20 cm from the trunk. Each sam-
ple consisted of approximately 50 g of soil collected asep-
tically at a depth of 30 cm, after removing the surface soil 
litter. The samples from each tree were then pooled and 
thoroughly mixed to form a composite sample of 200  g 
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Fig. 7 Sampling sites where rhizosphere soils of P. africana were collected. The yellow pins indicate all the sampling points in this study
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per tree. Subsequently, the composite samples from each 
tree were further pooled and thoroughly to form a com-
posite sample of 4 kg per site. For soil chemical analyses, 
a subsample of 500  g from each composite sample was 
air-dried at ambient temperature. The remaining sub-
samples were taken to the laboratory and stored at 4  °C 
for further analyses.

Soil chemical analyses
Soil samples were analyzed to determine the pH  (H2O) 
at a soil: water ratio of 1:2.5, electrical conductivity (EC), 
percentage of carbon (% C), total nitrogen (% N), avail-
able phosphorus (P), potassium (K), sodium (Na), and 
calcium (Ca), present in the soil samples at the Kenya 
Forestry Research Institute (KEFRI) soil analysis labora-
tory as described by Odee et al. (2002).

Soil DNA extraction
For each composite soil sample stored at 4°C, 100  g 
was ground using a mortar and pestle. A duplicate 
subsample of 0.25  g of the ground soil was used to 
extract gDNA using the DNeasy PowerSoil kit follow-
ing the supplier’s recommendation (Qiagen, Hilden, 
Germany). Quantification and quality control of 
extracted DNA was done using a NanoDrop™ 2000 
spectrophotometer (Thermo Scientific, USA) and 
0.8% agarose gel electrophoresis. The concentration of 
extracted DNA was normalized to 25  ng/µl in a total 
volume of 50 µl. Amplification of the small subunit of 
the rDNA (SSU rDNA) region was conducted using 
the primer pairs AML1/AML2 known to have better 
specificity and coverage for AMF diversity (Lee et  al. 
2008). However, previous studies have mentioned that 
non-target amplification PCR reaction was done using 
the Taq PCR Kit (New England, BioLabs® Inc, USA), 
in a reaction volume of 50  µl, containing 5  µl of 10X 
Standard Taq Reaction Buffer, 1  µl of 10  mM dNTPs, 
1  µl of 10  µM AML1 (forward), 1  µl of 10  µM AML2 
(reverse), 5  µl of 25  ng/µl DNA template, and 0.5  µl 
of 0.5 U Taq DNA polymerase. Thermocycling condi-
tions were as follows: initial denaturation at 94 °C for 
3 min, followed by 35 cycles at 94 °C for 1 min, 58 °C 
for 1 min, 72 °C for 1 min, and a final extension step at 
72 °C for 10 min.

Library preparation and Illumina MiSeq sequencing
Before library preparation, PCR products were puri-
fied using the QIAquick® PCR purification kit (Qia-
gen, USA). Quantification was done using NanoDrop™ 
2000 spectrophotometer (Thermo Scientific, USA) and 
the PCR purified products were normalized to 30 ng/

µl. Amplicons were further diluted to 0.5  ng/µl using 
nuclease-free water and quantified by Qubit® fluorom-
etry (Thermo Scientific, USA), and used for library 
preparation. The library construction was done using 
Nextera XT DNA Sample Preparation Kit (Illumina, 
San Diego, USA) following the manufacturer’s proto-
col. This protocol started with an enzymatic reaction 
called tagmentation where the enzyme transposase 
fragmented and tagged the amplicon samples with 
adapters in random positions. The sequencing indi-
ces were added to the fragmented amplicons through 
a PCR reaction of 12 cycles. This step was followed 
by amplicon purification and size selection using 
AMPure® XP beads (Beckman Coulter, USA) technol-
ogy. The products were quantified using Qubit® fluo-
rometry with the dsDNA HS (High Sensitivity) Assay 
kit (Thermo Scientific, USA), and the quality and size 
were checked using the Agilent TapeStation 2000 sys-
tem (Agilent Technologies, USA). The quantified and 
sized amplicons were normalized, pooled at equimolar 
concentrations, and then submitted for sequencing to 
Illumina MiSeq 300PE reads.

Bioinformatics and statistical analyses
All bioinformatics analyses were performed using the 
Quantitative Insights Into Microbial Ecology (QIIME2) 
version 2019.10 (https:// docs. qiime2. org/ 2019. 10/) 
(Caporaso et  al. 2010). The FASTQ files contain-
ing the forward and the reverse reads obtained were 
first checked for quality control using FastQC v0.11.7 
(Andrews 2010). The sequences were then demulti-
plexed to assign each read to a specific sample using 
q2-demux, and then, the sequences were denoised 
and trimmed to retain only bases with a quality 
score greater than 25. The sequences were then trun-
cated from the 3′ end of the forward and the reverse 
sequences at 240 and 200  bp, respectively, using the 
qiime deblur plugging pipeline (Amir et  al. 2017). 
Sample CT2 was discarded due to the low number of 
sequence reads (< 1000). Picking and clustering of the 
operational taxonomic units (OTUs) were done using 
the Silva database (https:// www. arb- silva. de/) and the 
taxonomy assignment was done using MaarjAM 5 data-
base (Opik et al. 2010)(http:// maarj am. botany. ut. ee/) as 
a classifier in QIIME2 q2-feature-classifier plugin with 
97% similarity (Bokulich et al. 2018). The features table 
also known as the OTUs table and the taxonomy table 
generated from QIIME2 were extracted and imported 
into R 4.0 (R Core Team 2020) as phyloseq objects for 
downstream analyses. All statistical analyses were per-
formed using the R software version 4.0 (R Core Team 
2020) unless otherwise specified. To estimate the AMF 
OTUs diversity among the samples from Cameroon 

https://docs.qiime2.org/2019.10/
https://www.arb-silva.de/
http://maarjam.botany.ut.ee/
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and Kenya separately, the count reads were transformed 
and normalized into relative abundance (Lemos et  al. 
2011) using the “filter.taxa()” function of the phyloseq 
package (version 1.32.0) in R software (McMurdie and 
Holmes 2013). The significant difference between the 
alpha diversity metrics of AMF taxa from Cameroon 
and Kenya was calculated using the Kruskal–Wallis 
test. The beta diversity was carried out to compare the 
AMF community between the different samples using 
the non-metric multidimensional scaling (NMDS), 
based on the Bray–Curtis dissimilarity distance matrix 
with the function “metaMDS()” of the vegan package 
(version 2.5–6). The dissimilarity matrices were then 
plotted on the principal coordinate. The relationship 
between the main soil physicochemical parameters and 
the AMF community composition was tested using the 
distance-based redundancy analysis (db-RDA) (Leg-
endre and Andersson 1999), applying the function 
“capscale” of the vegan package version 2.5–6 (Oksanen 
et  al. 2019) in R (version 4.0). A Venn diagram analy-
sis was conducted to identify unique and shared AMF 
communities among the samples and provenance in the 
online interactive tool Venny (https:// bioin fogp. cnb. 
csic. es/ tools/ venny/).
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