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Abstract 

Background The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which 
was characterized by a different abundance of bacteria in several age groups.

Main body Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, 
hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use 
of prebiotics and probiotics may be able to prevent or reduce this disruption.

Conclusion The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut 
microbiota changes with aging, and interventions to modulate gut microbiota.

Keywords Gut microbiota, Aging, Inflammatory disease, Metabolism, Probiotic

Introduction
Estimated to be 10 times more common than human 
host cells, commensal bacteria are found in billions in 
the human gastrointestinal system (Ramakrishna 2007). 
Known as “microbiota” the human body contains a wide 
variety of bacterial species and, to a lesser extent, viral 
and eukaryotic microorganisms. Since most microorgan-
isms are found in the human gut, it can be referred to as 
an “organ of the microbiome.” The “gut microbiota” is the 
term used to refer to all gut bacteria together, whereas the 
“gut microbiome” refers to the genes that they are con-
nected with (Sender et al. 2016). When one or more ele-
ments of the microbiota disappear, the microbiota profile 
is characterized by low diversity (Jeffery et al. 2016). Gut 
bacteria may mainly colonize hosts vertically, acquired 
from parents early in life and persisting after that. Alter-
natively, bacteria can also persist due to repeated recol-
onization of the host; persistence is possible through 
repeated reintroduction. Thus, dispersal strategies, bac-
terial transfer, and colonization of new environments 
may all contribute to persistence (Hildebrand et al. 2021).
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The population of microbes known as the microbiota 
is not uniform. Instead, it is made up of a complex spec-
trum of microbial communities that interact with the 
host and one another in ways that have an impact on the 
health of the host (Clemente et  al.  2012). The two pri-
mary phyla of bacteria are Bacteroidetes and Firmicutes, 
with several smaller subphyla, including Fusobacteria, 
Cyanobacteria, Proteobacteria, Verrucomicrobia, and 
Actinobacteria (Vemuri et al. 2018). The gut microbiota, 
which is regarded as an endocrine organ involved in pre-
serving energy balance and host immunity, has recently 
been discovered to play a crucial role in the development 
of metabolic diseases (Clarke et  al. 2014a, b). The gut 
microbiota mainly steady throughout adulthood, but as 
we age, disruptions emerge due to endogenous variables 
like cellular stress and external factors, including antibi-
otic consumption (Kohl et  al. 2012). Major physiologi-
cal changes brought on by aging include altered immune 
function, metabolism, and gut microbial composition 
(dysbiosis), which can result in a variety of gastrointes-
tinal inflammatory diseases and autoimmune illnesses. 
Due to the disruption of gut homeostasis, there is immu-
nosuppression and a low-grade inflammatory response 
(Franceschi 2007; Magrone and Jirillo 2013; Ostan et al. 
2008).

A large variety of physiological, genetic, metabolic, 
and immunological systems are impacted by the compli-
cated process of aging. This involves a weakened capac-
ity to maintain a healthy, effective metabolic function 
as well as an immunological response. According to 
Alarcón and Rojo (2020), this illness is characterized by 
a gradual deterioration of cellular physiological function-
ing that impacts the immune system, causes inflamma-
tion, and metabolic problems, all of which are risk factors 
for developing other chronic diseases (Alarcón and Rojo 
2020). Having access to health care for a longer period of 
time does not always imply living longer (WHO 2019). 
Frailty, which is described as “a condition of greater 
sensitivity to an inadequate resolution of homeosta-
sis after a stressful event, which raises the likelihood of 
unfavorable consequences, including falls, delirium, and 
disability,” unfortunately frequently presents itself nega-
tively as people age (Clegg et  al. 2013). For elderly per-
sons, in particular, the potential effects of gut microbiota 
on health are significant. This is due to the possibility 
that age-related alterations in innate immunity, sarcope-
nia, and cognitive function—all of which contribute to 
frailty—may be tempered by the microbiota. Independ-
ent investigations and cell culture-based research both 
demonstrate that the gut microbiota of older individu-
als varies from that of younger individuals. There is no 
age or time limit at which the profile of the microbiota 
abruptly changes. Changes happen instead gradually and 

over time. More senior citizens desire or want the abil-
ity to live independently. Weakness is the main barrier 
to independent existence. Frailty does not result from 
chronological aging but from the accumulation of ill-
nesses. The human gut microbiota is one “organ” that 
cannot be anticipated to follow a typical course of physi-
ological decline. Although gut bacterial cells do not age 
on their own, aging may bring on disorders linked to the 
stomach and gut bacteria (O’Toole and Jeffery 2015). 
Centenarians have a microbiota that differs from that of 
the elderly (Biagi et al. 2010), consistent with the general 
trend of age-related microbiota. Lifestyle, especially diet, 
plays an important role, as aging is often associated with 
a decrease in the amount and variety of fiber-rich foods, 
and there is often a risk of malnutrition (Claesson et al. 
2012). The homeostasis of numerous genetic, metabolic, 
and immunological systems may be preserved in order 
to slow down the aging process, according to recent 
research that has made significant strides in this area. 
Disturbances in the composition and function of the gut 
microbiome are intimately tied to several clinical con-
cerns, including exposure to numerous medications and 
antibiotics, dietary changes, and constipation, which is 
frequently associated with age (Ivanov et al. 2008; Oda-
maki et al. 2016).

Gut microbiota composition across the life cycle
Maintaining the integrity of this superorganism is crucial 
for optimum health since  1013 human cells and  1014 com-
mon bacteria make up the physiological sequence of the 
gut microbiota throughout the human life cycle. Humans 
gradually develop a stable gut microbiota throughout 
an age-related physiological sequence that is impacted 
by both the host’s internal characteristics and outside 
stressors (Kim et al. 2011). The gut microbiota in people 
changes throughout time (Mateos et al. 2018). The pro-
cess through which the microbiota changes over time due 
to host or ecological changes is known as “physiologi-
cal succession” (Hamady et  al. 2008). This dynamic gut 
microbial community expands quickly at birth (primary 
exposure), undergoes fast change before the age of three, 
notably during the weaning period (transition phase), 
stabilizes (stable phase), and then changes with aging 
(regression) occur (Ling et  al. 2022). Understanding the 
precise pattern of gut microbiota growth throughout a 
person’s life provides insight into the function and pro-
cesses of bacteria in host health and illness (Fig. 1).

Initial exposure
Long before the infant develops its unique microbiota, 
the gut is initially colonized. The primary determi-
nant of the first microbial implantation is the maternal 
microbiome. Growing data supports the idea that during 
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pregnancy, the mother’s microbiota is transferred to the 
fetus (Selma-Royo et  al. 2021). Bacterial transmission 
across the placenta occurs naturally throughout devel-
opment, and microbes present in the uterus may cause 
colonization in the growing fetus. These microbes inter-
act well with the healthy maternal immune system, caus-
ing immunological tolerance and avoiding fetal rejection 
(Escobar et  al. 2020). Along with intrauterine exposure, 
factors including the way a baby is born, the gestational 
age, the kind of feeding, the use of antibiotics, and the 
surroundings all have an impact on how the gut micro-
biota develops early (Ganal-Vonarburg et  al. 2020; Van-
denplas et  al. 2020). It is acknowledged that one of the 
critical determinants of early colonization is the method 
of delivery. While the gut microbiota of babies delivered 
by cesarean delivery resembles the mother’s skin micro-
biota, that of normally born infants is comparable to their 
mothers’ vaginal and intestinal microbiota (Dominguez-
Bello et al. 2010; Liu et al. 2019). In infants born through 
cesarean section, the development of the gut microbiota 
is postponed during the postpartum period, which in turn 
delays immune system maturation (Magne et  al.  2017; 
Olszak et al. 2012). One of the most significant influences 
on the composition of the gut microbiota after delivery 
is the fetal age (C. J. Hill et al. 2017). Compared to their 
peers, preterm babies (those born at fewer than 37 weeks 

of gestation) have a distinct microbiota composition. 
According to Hesla et al. (2014) research, preterm new-
borns exhibited significantly more Proteobacteria in their 
gut microbiota than infants of normal gestational age did 
in the first week (Hesla et  al. 2014). According to Kor-
pela et  al. (2018), the microbiota develops after birth in 
four phases, with Staphylococcus, Enterococcus, Entero-
bacter, and ultimately Bifidobacterium dominating each 
stage. However, the Enterococcus phase was only seen 
in extremely preterm children and seems to be a rare 
occurrence. It appears that it postpones the succession of 
microorganisms. The sterile atmosphere of the neonatal 
intensive care unit, cesarean birth, mother and baby anti-
biotic exposure, and other difficulties specific to preterm 
newborns may affect the gut microbiota’s normal pattern 
of absorption (Ling et al. 2022). Mother-to-infant micro-
bial transmission is restricted when mothers are exposed 
to antibiotics close to the time of delivery because this 
decreases the variety and richness of the maternal gut 
microbiota (M. Gibson et  al. 2016). Greater than fetal 
age is the impact of antibiotic usage on the microbiome 
(Zhou et  al. 2020). Compared to babies whose mothers 
got antibiotics, Arboleya et  al. (2016) discovered that 
babies who did not get antibiotics had greater Firmicutes 
levels and lower Proteobacteria levels. The administration 
of perinatal antibiotics was hypothesized to be the cause 

Fig. 1 Overview of the development of gut microbiota
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of the lower levels of Bifidobacterium and Bacteroidetes 
and the abundance of Clostridium and Lactobacillus in 
newborns delivered via cesarean section (Rutayisire et al. 
2016), which is connected to the concurrent changes 
in the level of Short-chain fatty acid (SCFAs) (Arboleya 
et  al. 2016). The influence of nutrition on gut coloniza-
tion is another significant element. Due to its high con-
centration of special oligosaccharides, breast milk aids 
in the formation of a healthy microbiome in babies. The 
oligosaccharides and glycoproteins included in human 
milk can encourage the development of good microbes 
and inhibit harmful germs (Cong et al. 2016). Breast milk 
microbiome is the primary source of bacteria like Bifido-
bacterium, which has health advantages beyond nutrition 
(Benítez-Páez et al. 2020). These microbiota components 
may be vertically passed from mother to newborn during 
nursing. The bacterial makeup of breast milk is impacted 
by the stage of lactation, gestational age, birth method, 
mother food, and antibiotic exposure (Rogier et al. 2014). 
In addition to the aforementioned elements, the first 
colonization of the gut microbiota is also influenced by 
the surrounding environment, the length of hospitaliza-
tion, birth weight, gender, genetic variables, race/ethnic-
ity, maternal education, and maternal illnesses (Xu et al. 
2020).

Transitional phase
Weaning causes the gut microbiota’s composition to shift 
in a significant way. For newborns, the progressive switch 
from a diet high in milk to one that also contains other 
foods is a special and important event, but it may also be 
difficult on the host gut’s physiology (Lallès et al. 2007). 
When solid food is introduced, the gut microbiota enters 
a new stage of growth marked by a sharp rise in bacterial 
population and evolution toward a makeup more resem-
bling that of the adult microbiota (Subramanian et  al. 
2014). Proteobacteria and Actinobacteria are replaced 
as the main members of the newborn microbiota by Fir-
micutes and Bacteroidetes phyla due to the addition of 
dietary supplements and new nutrients during weaning 
(Fallani et al. 2011; Koenig et al. 2011). Consuming foods 
high in protein and fiber, such as meat, cheese, and Dan-
ish rye bread, is particularly linked to increased alpha 
diversity. Consuming more protein enriched the Lachno-
spiraceae family and decreased saccharolytic bacteria like 
those in the Bifidobacteraceae family, whereas increasing 
Prevotellacea numbers was associated with higher fiber 
intake (Laursen et al. 2016). Faecalibacterium prausnitzii 
and Akkermansia muciniphila are absent or present in 
early infancy and reach adult levels by 12  months and 
24 months, respectively (Yassour et al. 2016). In addition 
to having an impact on the variety and composition of 
the gut microbiota, the timing of supplemental feeding 

(3 and 12 months) also has an impact on the concentra-
tion of SCFAs throughout the first year of life (Differding 
et al. 2020). The weaned group’s fecal microbial popula-
tion undergoes considerable alterations as a result of the 
consumption of an amylose corn starch diet, with Prevo-
tella, Veillonella, and Collinsella levels linked with pro-
pionate synthesis significantly rising (Wang et  al. 2019). 
The “weaning response,” as it was dubbed by Nabhani 
et al. was discovered to be a potent immunological reac-
tion brought on by the increasing microbiota at weaning. 
Inhibition of weaning causes pathological imprinting for 
increased susceptibility to colitis, allergic inflammation, 
and cancer later in life (Al Nabhani et al. 2019).

Stable phase
The human gut microbiota changes into adult compo-
sition 3  years after birth (Caporaso et  al. 2011; Rajilić‐
Stojanović et  al. 2009; Wu et  al. 2011). Firmicutes and 
Bacteroidetes predominate in the stable, mature micro-
biota, characterized by increased bacterial diversity (Ho 
et al. 2018). In contrast to the first two phases, where Bifi-
dobacterium predominated, the adult intestinal microbi-
ota is dominated by Bacteroides and Eubacterium, which 
are referred to as the major microbiome. Although these 
genera may be a normal component of the intestinal bac-
terial community, Veillonella has been linked to various 
infections, and an abundance of intestinal bacteroids 
is linked to a higher body mass index in young children 
(Brook 1996; Lagier et al. 2012; Schwiertz et al. 2000; Vael 
et al. 2011). The adult-type gut microbiota may be catego-
rized into three groups, or enterotypes, according to the 
primary microbiome: Bacteroides, Prevotella, and Rumi-
nococcus (Costea et al. 2018; Manimozhiyan et al. 2011). 
Each of these three enterotypes, which are typically flex-
ible, represents several stable states in the human gut 
microbiota. The gut microbiota can be disturbed by 
several diseases, including those brought on by probiot-
ics, antibiotics, and dietary changes. A healthy micro-
biota must be maintained by homeostatic equilibrium 
among microbial communities and between microbes 
and the host gut interface. Our resistance to diseases 
linked to dysbiosis is facilitated by a robust microbiome 
(Ling et al. 2022). Beyond the capacity of the gut micro-
biota, the change from a main steady state to an alternate 
steady state can put the host in a pre-disease state and 
predispose them to chronic illnesses (Goyal et al. 2018). 
It implies that a critical factor in both health and disease 
is the flexibility of gut microbes (Sommer et al. 2017). By 
contrasting gut microbiomes and how they interact with 
tolerant and vulnerable hosts, omics research might find 
indicators of resilience. Increased gut microbiome flex-
ibility can result in new disease prevention techniques 
by neutralizing or suppressing illness triggers, as well as 
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by finding and encouraging species and activities that are 
beneficial to health (Rosier et al. 2018). According to ear-
lier studies, dietary interventions with significant compo-
sitional alterations can impact and modify the enterotype 
within 4 days (Kovatcheva-Datchary et al. 2015; Wu et al. 
2011). Enterotypes, however, seem stable after around 
10  days (Wu et  al. 2011). According to Morrison et  al. 
lowering soluble fiber can have an impact on the produc-
tion of microbial metabolites that are crucial for con-
trolling outcomes in the areas of metabolism, immunity, 
behavior, and neurobiology (Morrison et al. 2020).

Retrogression
The gut microbiota’s makeup and activity are significantly 
influenced by aging. Less fiber consumption, ongoing 
home care, the use of antibiotics, and the use of non-
steroidal anti-inflammatory drugs (NSAIDs) may all 
be risk factors for these alterations (O’Toole and Jeffery 
2015). As people get older, the microbiota in their intes-
tines undergoes several changes, including a reduction 
in the variety of species present, an increase in the vari-
ation between people, an increase in the prevalence of 
proteobacteria, and a decrease in the prevalence of pro-
biotic bacteria like Bifidobacterium. The breakdown of 
the intestinal mucosal barrier and a greater vulnerability 
to pathogen infection may be related to these alterations 
(Claesson et al. 2012; Lahtinen et al. 2009). The propor-
tions of Firmicutes and Bacteroidetes have changed, one 
of the most significant microbiota traits in older adults. 
Younger persons have greater proportions of Firmicutes, 
whereas older adults have greater amounts of Bacteroi-
detes. As a result, one sign of aging is a decline in the 
Firmicutes/Bacteroidetes ratio (Mariat et al. 2009). Once 
someone enters long-term care, species linked with vari-
ety, such as Prevotella and allied taxa, see a dramatic 
drop in abundance (Claesson et  al. 2012). Furthermore, 
recent studies have shown that aging is accompanied 
by changes in the dynamic network and an increase in 
the number of dominating species (Biagi et  al. 2016; 
Rampelli et al. 2020). Elderly persons in excellent health 
have higher abundances or richer populations of some 
health-related groups in their gut microbiota, such as 
Christensenellaceae, Bifidobacterium, and Akkermansia 
(Biagi et al. 2016). Since they have achieved the pinnacles 
of life by avoiding, eliminating, or postponing chronic ill-
nesses, centenarians serve as examples of healthy aging 
(Biagi et al. 2010). Chinese researchers (Luan et al. 2020) 
found that Faecalibacterium prausnitzii, a species with 
anti-inflammatory properties, was much more prevalent 
in centenarians’ gut microbiota throughout the transi-
tion from health to death. In contrast to Eubacterium 
limosum’s more than tenfold growth, the microbiota of 
centenarians showed a considerable decline (Biagi et  al. 

2010). When compared to other age groups, centennial 
gut communities had much higher levels of Akkerman-
sia muciniphila, a bacterium that is frequently used as an 
indication of a healthy gut community (Biagi et al. 2010). 
Two strains of Bacteroides, one strain of Ruminococ-
caceae, and one strain of Desulfovibrio were found to be 
associated with age and residency in healthy elderly Bir-
mingham residents by a team of Chinese scientists (Zhao 
et al. 2011).

Gut microbiota and human metabolism
To provide energy for biological functions and growth, 
intestinal microbiota consumes food components (carbo-
hydrates, proteins, and lipids) and host-derived compo-
nents, such as expelled epithelial cells and mucus. These 
mechanisms produce metabolites that have an impact 
on human health and metabolism. SCFAs are produced 
as a result of carbohydrate fermentation and are used by 
the host (Ramakrishna and Roediger 1990). Protein fer-
mentation generates phenolic compounds that might 
harm the host (Windey et  al. 2012). These metabolites 
can be detoxified by the liver and the gut (Ramakrishna 
et  al. 1989). Additionally, the gut bacteria produce sev-
eral chemicals, including vitamin K and vitamin B com-
pounds. It is doubtful that the host will be able to directly 
access vitamin B12, which is created by the gut flora. 
Because of the way vitamin B12 is metabolized, it must 
attach to factor R in the stomach, move to the intrinsic 
factor in the small intestine, and then be absorbed (Ram-
akrishna et al. 1989).

The gut microbiota and obesity
Studies in germ-free mice, who are typically thin, showed 
that the gut flora of normal mice increased body weight 
by more than 50% when they were given the transplanted 
flora (Bäckhed et al. 2004), demonstrating the importance 
of gut microbiota in the control of body weight. This is 
linked to an increase in the expression of genes from 
microorganisms that produce the enzymes necessary 
for the metabolism of SCFAs and the enzymatic break-
down of complex carbohydrates and sugars. Obese mice’s 
intestinal microbiota exhibited a decline in bifidobacte-
ria compared to wild-type mice’s microbiota, along with 
the presence of Halomonas and Sphingomonas in the 
cecum, which likely plays a role in storing energy from 
carbohydrates that are not digested in the small intes-
tine (Turnbaugh et al. 2006). Studies of human relation-
ships worldwide show that obese persons have altered 
gut microbiotas compared to lean people, but the spe-
cific microbial communities affected by these alterations 
vary (Turnbaugh et  al. 2009). There have been several 
attempts to clarify the nature of the connection between 
obesity and gut microbiota (Zsálig et  al. 2023). Many 
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microbial genes have been discovered to be shared by 
co-twins in studies of twin pairs matched for body mass 
index, indicating the existence of a core microbiome. 
Obese twins had bacteria and actinobacteria, but there 
were no appreciable alterations in the phylum Firmicutes, 
decreased microbial diversity, or alterations in the genes 
regulating metabolic pathways (Brand et  al. 2021). Sev-
eral microbial communities that are a part of the phylum 
Firmicutes are significant fermenters of carbohydrates 
and may aid in preserving energy from carbs. Microbial 
fermentation products influence energy metabolism and 
salvage through a number of neuroendocrine processes 
in addition to directly supplying energy in the form of 
SCFA (Canfora et  al. 2017). By enhancing the oxidation 
of fatty acids in skeletal muscles and decreasing glyco-
gen storage in the liver, this enzyme’s activation may be 
necessary for germ-free mice to maintain their leanness 
(Li et al. 2022). In conclusion, the data we currently have 
pointed to the gut microbiota as being a significant fac-
tor in the emergence and maintenance of obesity. Their 
function might be influenced by how they interact with 
the genetic components of the host. Their enhanced abil-
ity to absorb energy from the large intestine by ferment-
ing unabsorbed carbohydrates is one of the methods by 
which they cause obesity. Increased fatty acid uptake into 
fat cells and reduced fatty acid oxidation in skeletal mus-
cle are the results of soluble substances released by the 
small intestine as a result of hormonal changes caused by 
SCFA nuclear receptors (Amorim et al. 2020). Addition-
ally, increased intestinal permeability causes low-grade 
systemic inflammation in various organs, contributing 
to insulin resistance and its ensuing metabolic conse-
quences (Ramakrishna 2013).

Gut microbiota and energy malnutrition
Intestinal mucosal inflammation may be linked to a lean 
body habit (Ramakrishna et al. 2006). In cases with tropi-
cal enteropathy, a subclinical inflammatory disease of the 
intestinal mucosa marked by lymphoplasmacytic inflam-
matory cell infiltration of the intestinal lamina propria, 
a lean body habitus may be present (Venkatraman et al. 
2003). In animal models of overt colitis, changing the gut 
microbiota (by giving the animals certain microbial com-
munities) reduces intestinal inflammation and increases 
body weight (Nanda Kumar et  al. 2008). Studies on the 
gut microbiota and malnutrition are still in their infancy, 
and it is unclear how the two are related or whether 
changes in the gut microbiome are what cause malnutri-
tion. Weight loss and a reduction in amino acid and car-
bohydrate metabolism were observed in gnotobiotic mice 
fed a Malawian diet and subsequently transplanted with 
the gut microbiota of Kwashiorkor children (Smith et al. 

2013). That the gut microbiota has a role in the onset of 
malnutrition follows logically.

Gut microbiota and mineral absorption
Lactobacilli are substantially underrepresented in the 
gut microbiota of individuals with iron deficiency ane-
mia, according to studies on patients with the condition. 
Lactobacilli need iron for significant development, thus 
those with low levels of iron may have less of it in their 
stomach (Scholz-Ahrens and Schrezenmeir 2002; Scholz-
Ahrens and Schrezenmeir, 2007). Although the right 
colon and cecum also express enterocyte transporters 
involved in iron transport, the duodenum is still the pre-
dominant source of iron absorption (Levrat et al. 1991). 
A reasonable explanation for the connection between 
lactobacilli depletion and iron deficiency anemia is pro-
vided by the fact that lactobacilli are involved in the con-
version of lactate to propionate in fermentation systems 
(Ramakrishna 2013).

Gut microbiota and glucose metabolism
There has been speculation regarding the significance of 
gut bacteria in the development of type 2 diabetes (T2D). 
Impairment of insulin signaling is caused by changes 
in the phosphorylation of the insulin receptor, insulin 
receptor substrate (IRS), and Akt, as well as alterations 
in the serine phosphorylation of the inhibitory IRS-1. It 
is connected to a notable rise in Firmicutes and a slight 
rise in Bacteroides (Munukka et  al. 2012). Women with 
metabolic syndrome, a population linked to metabolic 
illness, have been found to have an increased frequency 
of E. rectale/C. cocci belonging to the Firmicutes group 
(Caricilli et al. 2011). In an intriguing randomized study, 
male recipients received intestinal injections of micro-
biota from lean donors (or the patient’s microbiota as a 
control). Insulin sensitivity (glucose clearance rate) in 
receivers who received microbiota from lean donors dra-
matically enhanced 6 weeks after microbiota injection in 
patients with metabolic syndrome. This was linked to an 
increase in the number of butyrate-producing bacteria in 
feces (Tremaroli and Bäckhed 2012). However, it is still 
unknown exactly how the gut microbiota contributes to 
the development of diabetes and what mechanisms they 
may use to do so (Vrieze et al. 2012).

By having a nutritional impact and stimulating the 
production of GLP-2, butyrate fuels enterocytes and 
improves intestinal barrier performance (Cani et  al. 
2009). By encouraging preadipocyte and macrophage 
proliferation, upregulating ILC3, and boosting B and T 
lymphocyte infiltration, bacterial components in mouse 
metabolic tissue exacerbate inflammation. Proinflam-
matory cytokines associated with diabetes can aggravate 
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its consequences by reducing insulin signaling (Sanders 
et al. 2021).

Gut microbiota and lipid metabolism
The synthesis of bile salt hydrolases by some intesti-
nal microbiota, particularly lactobacilli, allows them to 
hydrolyze bile salts. This disrupts the hepatic cycle of 
bile salt reabsorption, causing an increase in fecal bile 
salt loss and a subsequent drop in serum cholesterol as a 
result of diverting cholesterol synthesis to bile acid pro-
duction (Favier et  al.  1995; Levrat et  al. 1994). Another 
way that the gut microbiota and dyslipidemia are related 
is through the inhibition of 3-hydroxy-3-methylglutaryl-
coenzyme A synthase by propionic acid, a substance that 
is produced by the gut bacteria. Reduced cholesterol syn-
thesis is caused by liver activity (Y. Lin et al. 1995).

Reabsorbing fat and promoting lipid metabolism 
are benefits of the gut microbiota, which inhibits the 
inhibitory expression of lipoprotein lipase in adipose 
tissue cells. Sterol response element binding protein 1 
(SREBP1), carbohydrate response element binding pro-
tein (ChREBP), and acetyl-CoA carboxylase 1 (ACC1) 
are among the genes that have increased in relation to 
the microbiota through lipid metabolism (Ilhan 2018) 
(Fig. 2).

Bacteroides thetaiotaomicron increases lipid hydroly-
sis by regulating the expression of cholesterol esterase 
(de Punder and Pruimboom 2015). Lipopolysaccharide 

(LPS), the main component of Gram-negative bacteria’s 
cell wall, is elevated in plasma levels, and mucus integrity 
is weakened by high-fat diets. TLR-4 is involved in a pro-
cess that transmits increased levels of LPS via intestinal 
capillaries. Impaired intestinal permeability raises blood 
levels of TNF-α, IL-1, IL-6, and plasminogen-1 activat-
ing inhibitor (PAI-1) and causes systemic inflammation 
with a significant accumulation of adipose in the liver. 
When short-chain fatty acids (SCFAs) produced by the 
microbiota activate AMPK, they reduce the production 
of fasting-induced adipose factor (FIAF), which increases 
the activity of LPS and inhibits the activity of PGC-1α, 
the proximal proliferator-activated receptor co-activator. 
Most often, PPARα is recognized as a metabolic regulator 
involved in energy storage that is expressed in the liver 
and brown adipose tissue. Lipogenesis improves control 
of beta-oxidation and fatty acid metabolism (Duszka 
et al. 2020) (Fig. 3).

The progression of metabolic disorders, such as dia-
betes and obesity, is subsequently accelerated by PPARa 
suppression (Fluitman et al. 2017).

Propionate binds to both GPR41 and GPR43, butyrate 
to GPR41, and acetate to GPR43, among other SCFAs. 
Within the intestinal epithelium, GPR41 and GPR43 
receptors are expressed (Sivaprakasam et  al. 2016). 
PPARs are crucial mediators of adipogenesis, and SCFAs 
boost their expression. SCFAs induce adipose cells to 
produce leptin by attaching to GPR41. It is believed that 

Fig. 2 Effect of the gut microbial community on fat metabolism and fat reabsorption
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binding to GPR43 promotes adipogenesis. As a result, the 
fatty acid profile that results may be linked to the onset of 
obesity (Gomes et al. 2018). However, further research is 
required to validate these results in people.

Gut microbiota and protein metabolism
In a healthy state, nonabsorbable protein generated 
from the host is most likely the protein that travels to 
the large intestine and is subjected to microbial pro-
cessing. Branch-chain amino acids, as well as a number 
of phenolic and other metabolites that may be haz-
ardous to the host, are produced as a result of protein 
fermentation. These are mostly detoxified by the liver 
and intestinal wall. By supplying fermentable carbohy-
drates like lactulose to modify the fermentation profile 
to metabolites that do not influence cognition in the 
context of liver illness, where hepatic encephalopathy is 
mainly related to microbial metabolites of protein, this 
can be decreased. Recent research indicates that the 
makeup of the gut microbiome is related to cognition in 
people with liver disease (Davila et  al. 2013; Nyangale 
et  al. 2012). Compared to those without encephalopa-
thy, cirrhotic patients with hepatic encephalopathy had 
higher levels of Veillonellaceae. A change in pathogenic 
microbiota in the stomach, or an increase in Alcaligen-
aceae and Porphyromonadaceae, was linked to cogni-
tive impairments (Bajaj et  al. 2012). Increased blood 
saturated and unsaturated microbial fatty acids and 
unsaturated microorganisms were the results of giving 

rifaximin to cirrhotics with little hepatic encephalopa-
thy (Bajaj et al. 2013). The gut microbiota undoubtedly 
supports the metabolic diseases linked to liver dysfunc-
tion, but their major involvement in the genesis of these 
instances is less plausible, while it is recognized, and 
will be the subject of research in the near future.

PPARs are crucial mediators of adipogenesis, and 
short-chain fatty acids (SCFAs) boost their expres-
sion. SCFAs induce adipose cells to produce leptin 
by attaching to GPR41. It is believed that binding to 
GPR43 promotes adipogenesis. As a result, the fatty 
acid profile that results may be linked to the onset of 
obesity (Davila et al. 2013). These bacterial metabolites 
impact epithelial physiology by regulating the signal-
ing pathways of epithelial cells and modifying the host 
immune system (Blachier et  al. 2007). Additionally, by 
modifying the expression of bacterial genes, these bac-
teria produce enzymes involved in the metabolism of 
amino acids (Bron et  al. 2004). Numerous metabolites 
produced by the anaerobic breakdown of endogenous 
or undigested proteins in the colon are known to have 
hazardous qualities. It is commonly accepted that the 
presence of these metabolites, particularly from a high-
protein diet, is linked to a range of inflammatory and 
chronic illnesses, including atherosclerosis, inflamma-
tory bowel disease (IBD), and colon cancer, due to their 
detrimental effects on the host’s health (Windey et  al. 
2012). Laboratory experiments using isolated colo-
nocytes or cell types have demonstrated that protein 

Fig. 3 Overview of the development of gut microbiota bacteroides thetaiotaomicron and its role in lipid metabolism and metabolic disorders
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fermentation byproducts such as NH3 and H2S can be 
hazardous to health (Leschelle et al. 2002).

The relationship between gut aging 
and inflammatory/autoimmune diseases
Numerous processes that could impact human function 
and the immune system may explain the link between gut 
microbiota imbalance and autoimmune disorders. For 
example, altering the host immune response and stimu-
lating antigen-presenting cells (APCs), such as dendritic 
cells (DCs), can lead to the presentation of antigens and 
the release of cytokines, which in turn can affect T cell 
development and functionality. Additionally, this can 
diminish the action of T-regulating cells (Tregs) and Th17 
cells, which are crucial for maintaining homeostasis. 
Antigen mimicry may cause exogenous and endogenous 
antigens to resemble each other, heightening autoim-
munity through the activation of autoimmune T and B 
cells produced by pathogens. Moreover, variations in the 
intestinal mucosa’s permeability due to the modulation 
of tight junction protein expression have been observed. 
Research suggests that in individuals with autoimmune 
illnesses, the gut microbiota may play a role in both the 
onset and aggravation of the condition (H. Xu et al. 2019). 
Among the potential mechanisms are antigenic mimicry, 
microbiota-induced host immune response, impact on 
intestinal mucosal permeability, and molecular mimicry 
(Cusick et  al. 2012; English et  al. 2023; Wildner 2023). 
Autoimmune illnesses have been related to changes in 
the populations of microbes in the gut. A possible con-
tributing factor to autoimmune illnesses is the gut micro-
biota’s ability to influence or impede the immune system’s 
ability to distinguish between intrinsic and non-intrinsic 
stimuli. The immune system may become exposed to gut 
commensal bacteria in patients with autoimmune dis-
orders, who often exhibit evidence of compromised gut 
barriers. In addition, immunological responses linked 
to the gut microbiota become aberrant and pathogenic 
when mucous immunity is not tolerated, which exacer-
bates the illness. There is growing scientific and clinical 
evidence that autoimmune illnesses may be more severe 
due to a persistent inflammatory response brought on by 
gut microbiome dysbiosis. Overall, in genetically predis-
posed people, the microbiota may either induce or pre-
vent autoimmunity (H. Xu et al. 2019).

According to research using microbeless mice, TLR-2 
impairment (TLR activation is dependent on the mice’s 
microbiota state) causes a reduction in Treg-suppress-
ing activity and Foxp3 expression, which in turn causes 
arthritis. TLR4 was also discovered to have a role in 
severe arthritis by regulating Th17 cell proliferation and 
IL-17 synthesis (Jiao et  al. 2020). Additionally, Th17 
growth and the synthesis of IL-1ß and IL-6 are aided by 

the presence of segmented filamentous bacteria (SFB) 
in the gut. Thus, preserving homeostasis and averting 
RA and some other autoimmune disorders depends on 
a healthy balance in the TLR-mediated microbial dif-
ferentiation of the gut. In mice lacking IL-1RA, arthritis 
developed on its own. Reduced IL-17 and IL-1ß secre-
tion and increased TLR-2 and TLR-4 activation were 
seen in IL-1RA/GF mice, and these observations were 
linked to a weakening of RA (Abdollahi-Roodsaz et  al. 
2008;  Rogier et al. 2015). After observing an increase in 
Th17 cells in the colon and the onset of severe arthritis, 
Maeda and colleagues transferred the intestinal microbi-
ota from rheumatoid arthritis patients to SKG mice that 
were susceptible to arthritis but did not have germs. The 
researchers also noted an increase in IL-17 release when 
they cultured SKG dendritic cells with Prevotella copri in 
the presence of RA autoantigens. These findings suggest 
that the gut microbiota from RA causes autoreactive cells 
in the gut and increased joint inflammation (Maeda et al. 
2016). Two autoantigens supporting the molecular mim-
icry process in RA include N-acetylglucosamine-6-sul-
fatase and filamine A, which have sequence homology 
with epiphones of gut microorganisms such as Prevotella 
spp (Bradley et al. 2017; Maeda and Takeda 2019) (Fig. 4).

On the other hand, Dysbiosis can be caused by both 
environmental changes and host genetic vulnerabil-
ity (Harmsen and de Goffau 2016; Lee and Mazmanian 
2010). A dysbiotic condition can cause changes in the 
relative abundance of particular microbial species, which 
can affect the integrity of the intestinal barrier and host 
immunological responses. Th1, Th2, and Th17 cells are 
frequently upregulated while Tregs and IgA are downreg-
ulated during dysregulated mucosal immune responses 
(Belkaid and Hand 2014; DeGruttola et al. 2016).

Inflammatory bowel disease (IBD)
IBD is a catch-all name for various intricate, long-
term, inflammatory gastrointestinal illnesses (Mulder 
et  al. 2014). IBD is connected to alterations in the gut 
microbiota and frequently manifests as Crohn’s disease 
(CD) and ulcerative colitis (UC). However, it is uncer-
tain if inflammation brought on by the disease or its 
etiology is to blame for these alterations. In contrast 
to healthy people, IBD patients have smaller micro-
biotas with less functional variety and stability. Desul-
fovibrio desulfuricans, E. coli, and Firmicutes from the 
Clostridium leptum group, especially F. prausnitzii, 
have been reported to be more common in the micro-
biome of IBD patients (Gevers et  al. 2014; Martinez-
Medina et  al. 2009; Pascal et  al. 2017). IBD patients 
often have 25% fewer microbial genes in their bodies 
than healthy individuals (Qin et  al. 2010). Gut micro-
biome changes in inflammatory bowel disease patients 
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are linked to shifts in the populations of bacteria that 
have a role in either dampening or increasing inflam-
mation. Low levels of F. prausnitzii, a SCFA-producing 
bacterium that promotes gut health by increasing Tregs 
and anti-inflammatory cytokines, are found in people 
with CD (Sokol et  al. 2008; Willing et  al. 2009). Hav-
ing less F. prausnitzii bacteria in the body is linked to a 
higher risk of CD relapse after surgery in people (Sokol 
et  al. 2008). Increased generation of hydrogen sulfate 
has also been linked to an increase in the prevalence of 

sulfate-reducing bacteria such desulfuricans in people 
with IBD, which can damage IECs and lead to mucosal 
inflammation (Jia et  al. 2012; Loubinoux et  al. 2002). 
CD patients have been shown in multiple human inves-
tigations to have elevated levels of E. coli that live in 
the mucosa (Darfeuille-Michaud et al. 2004; Martinez-
Medina et  al. 2009), causing the gut lining to become 
more permeable and inflammatory (Palmela et  al. 
2018). Reduced tryptophan levels have been linked to 
IBD in humans and mice (Lamas et  al. 2016; Nikolaus 
et al. 2017). Disease severity and IL-22 production are 

Fig. 4 The role of gut microbiota imbalance in autoimmune disorders: mechanisms and implications
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inversely associated with serum tryptophan levels in 
inflammatory bowel disease patients (Nikolaus et  al. 
2017).

IBD patients frequently have stronger T cell and anti-
body responses to microbial antigens (Britton et al. 2020; 
Moayyedi et  al. 2015) The coexistence of gut microbi-
ota and T-cell differentiation subgroups in the immune 
response may influence the development of inflammatory 
bowel disease (IBD) (Qiu et  al. 2022). Though Th cell-
driven inflammation defends the body against dangerous 
infections, intestinal inflammation is linked to an over-
abundance of Th cell activation. The prevailing consen-
sus is that Th1 cells and Th17 cell activation play a major 
role in Crohn’s disease (CD) occurrence, whereas the 
interaction between Th1 and Th2 cells results in ulcera-
tive colitis (UC) occurrence (Lopetuso et  al.  2018). Fur-
ther research has revealed a stronger correlation between 
Th17 cell activity and the incidence of inflammatory 
bowel disease (IBD). IL-17 and IL-22, the two primary 
cytokines released by Th17 cells, are essential mediators 
of immunological damage and autoimmune disorders. In 
cases of acute colitis, IL-22 is thought to have a protec-
tive effect. However, research has also revealed that IL-22 
and IL17A work together to mediate pathogenicity in 
chronic colitis (Powell et al. 2020).

Th17 cells are generated by necrotic intestinal mucosal 
cells, which stimulate macrophages to produce IL-6 and 
TGF-β via the activity of STAT3 and retinoid-related 
orphan receptor gamma (RORγt) (Owaga et  al. 2015). 
Effective T cells have the ability to cause an exaggerated 
immune response in the gut, which might ultimately 
result in harm to the intestinal mucosa due to the immu-
nosuppressive control of Treg cells (Sun et al. 2017). In a 
typical setting, Th17 and Tregs are in balance. The Th17/
Tregs balance is upset when there is an overabundance of 
Th17 and a reduction in Treg cells. The gut mucosa may 
sustain harm as a result of this imbalance. T cells can be 
stimulated to develop into Th17 cells by IL-6 and mod-
est doses of TGF-β. Excessive TGF-β can promote the 
growth of Treg cells while suppressing the generation of 
Th17 cells. Additionally, Th17 cells can inhibit Treg cell 
multiplication. In peripheral blood, patients with inflam-
matory bowel disease (IBD) exhibited lower Treg counts 
and higher Th17 counts, suggesting a major role for the 
Th17/Treg imbalance in the onset and maintenance of 
IBD. Furthermore, Th17 and Treg phenotypes in T cells 
can be induced by the gut microbiota through changes 
in the intestinal environment. Colonized segmented fila-
mentous bacteria (SFB) in the small intestine of mice can 
cause inflammation in the gut by stimulating Th17 cells 
in the intestinal lamina propria to produce IL-17 and 
IL-22 (L. Lin and Zhang 2017). On the other hand, Treg 
cells, which have anti-inflammatory properties, can also 

be increased by gut bacteria. In inflammatory bowel dis-
ease (IBD), Bacteroides thetaiotaomicron summarizes 
the impact of gut microbiota and compels Tregs to mod-
ify the immune system (Hoffmann et al. 2016).

Human blood and colon mucosa have been shown to 
include circulating T cells CD4 and CD8α (DP8α), as well 
as Faecalibacterium prausnitzii, which have character-
istics similar to Treg cells (Godefroy et  al. 2018). Inad-
equate colonization of Klebsiella pneumoniae in the gut 
shows a distinct method for generating colitis but does 
not enhance the generation of regulatory T cells or anti-
inflammatory T cells. Instead, it preferentially enhances 
Th1 induction (Atarashi et  al. 2017). IBD is primarily 
caused by gut microbiota dysbiosis, cytokine imbal-
ances, and mucosal barrier deterioration, which all work 
together to induce mucosal inflammation.

Rheumatoid arthritis (RA)
Approximately 0.5–1 percent of people worldwide suffer 
from RA, a systemic autoimmune condition that causes 
joint damage (Silman and Pearson 2002). Reduced gut 
microbial diversity is seen in RA patients, and their guts 
have dysbiosis, which is marked by an excess of Prevo-
tella, Lactobacilli, and Collinsella (Chen et  al. 2016; Liu 
et al. 2013; Maeda et al. 2016). Inducing a Th17 response, 
which in turn causes B-cell differentiation, the creation 
of autoantibodies, and an increase in intestinal perme-
ability, is what Prevotella and Collinsella can do in mouse 
models, according to those studies (Chen et al. 2016). The 
inflammation associated with RA is believed to be caused 
by these autoantibodies, which attack the joints.

Multiple sclerosis (MS)
The CNS and microbiota are interdependent in MS 
(Mahajan et  al. 2021). Because the CNS contains pep-
tides that can modify food absorption and physiological 
processes governing nutrient absorption, such as neuro-
peptide Y and the peptide linked with the melanocortin 
antagonist agouti-related peptide, it has an impact on the 
composition of the gut microbiota. The gut microbiota 
secretes LPS, polysaccharide A, and SCFAs that can alter 
brain activity (Wang and Kasper 2014). The animal model 
of autoimmune encephalomyelitis for multiple sclerosis 
has shown that colonization of segmented filamentous 
bacteria (SFB) increases the number of Th17 cells in the 
propria and CNS layers, thereby exacerbating the sever-
ity of the disease (Ochoa-Repáraz and Kasper 2014). The 
production of microbiota-derived butyrate by Firmicutes 
and Butyricimonas decreased, but Methanobrevibac-
ter smithii was more prevalent in untreated MS patients 
(Jhangi et al. 2014). Because they cause Treg cells to pro-
liferate in the gut, Butyricimonas spp., a type of bacte-
rium that produces butyrate, modulates immunity.
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Patients with active MS frequently have decreased 
species richness, greater abundance of Anaerostipae, 
Faecalibacteria, and Pseudomonas, as well as lower con-
centrations of Bacteroides, Prevotella, Parabacteroides, 
and Adlercreutzia. However, a typical MS microbiome 
phenotype has not yet been discovered (Cantarel et  al. 
2015; Chen et  al. 2016). Reduced levels of IL-17 in the 
gut and central nervous system, as well as an increase 
in peripheral Tregs, were seen in a GF mouse model of 
autoimmune encephalomyelitis (EAE), which is also a 
model for MS (Lee et  al. 2011). Additionally, decreased 
submucosa thickness, altered tight junctions expression 
in IEC, and altered intestinal permeability are strongly 
associated with disease severity in EAE models (Nouri 
et al. 2014; Secher et al. 2017).

Factors affecting gut microbiota changes 
with aging
Following a study of the relevant academic research, it 
can be assumed that some of the most important vari-
ables that can influence the composition and general 
health of the human gut microbiota include genetics, 
geographic environment, food, exercise, illness, and con-
current medicines. In the following subsections, these 
aspects are thoroughly evaluated regarding their impact 
and mode of operation.

Genetic background and environmental factors
The crucial role of genetics in modulation was discov-
ered based on prior research on twins and first-degree 
relatives, as well as the observation that family members 
share a microbiota that is more similar than that of unre-
lated people (Turnbaugh et  al. 2009; Yatsunenko et  al. 
2012). However, Rothschild et al. reported that environ-
mental factors like diet, lifestyle, and drug interactions 
have a greater impact on our microbiome composition 
than host genetics, which only have a minor effect (Roth-
schild et al. 2018). The composition of our gut microbiota 
and our quality of life may both be significantly impacted 
by our living environment (Mueller et al. 2006).

Dietary habits, physical activity and the gut microbiota
The diet is one of the primary determinants of the com-
position, diversity, and function of the gut microbiota 
community, as shown by the most recent scientific 
research (Cotillard et  al. 2013; Gibson et  al. 2004; Son-
nenburg and Bäckhed 2016; Zmora et  al. 2018). Thus, 
lifelong dietary practices may contribute to inter-individ-
ual heterogeneity in the relative number of gut microbes 
and enterotype distribution (Cordain et  al. 2005; Wu 
et al. 2011). A study that compared the fecal microbiota 
of Western European and African children from a com-
munity in Burkina Faso 10  years ago amply illustrated 

the impact of intergenerational dietary practices on gut 
microbiota composition (De Filippo et  al. 2010). The 
study’s findings suggest that nutrition, more so than 
other significant factors like ethnicity, health, cleanliness, 
location, and climate, has a significant impact on how gut 
microbiota develops. Our gut microbiota’s diversity and 
function have been significantly altered as a result of sig-
nificant changes in diet and living conditions, particularly 
those brought about by industrial developments (such as 
processed foods, antibiotics, and clean environments), 
with significant implications for current outbreaks (Cor-
dain et  al. 2005; Sonnenburg and Sonnenburg, 2019; 
Sonnenburg and Sonnenburg, 2019). In addition to gas-
trointestinal issues, a number of other conditions may 
make it more difficult for older persons to meet their 
ideal nutritional needs (Nagpal et al. 2018; Saffrey 2014). 
For instance, a diminished desire and capacity to eat solid 
foods is one way that poor dental health might adversely 
influence nutritional status (Razak et al. 2014). For dec-
ades, regular physical activity and exercise have been 
linked to improved health and quality of life (Penedo 
and Dahn 2005). Additionally, it was shown that exercise 
promotes the generation of SCFA, improves intestinal 
mucosal immunity, and modifies the Firmicutes/Bacte-
roidetes ratio in the gut microbiota ( Clarke et al. 2014a, 
b; Mach and Fuster-Botella 2017; Mailing et  al. 2019; 
Monda et al. 2017). There is little information on the pos-
sible effects of exercise on gut microbiota in elderly indi-
viduals; however, several instances have recently been 
reported (Taniguchi et al. 2018; Zhu et al. 2020).

Concomitant disease and medication
Chronic sickness and disability are often more com-
mon as people age (Vos et  al. 2017). Multiple drugs are 
frequently needed to treat various disorders, and long-
term usage of these medications is frequently linked to 
an increased risk of adverse health effects (Maher et  al. 
2014). The interaction of various medications with the 
microbiota in the gut impacts both the therapeutic effect 
of the treatment as well as the composition and metabolic 
operation of the microbial ecology. Numerous prescrip-
tion medications have been proven to be metabolized in 
part by our gut flora, which might help to explain some 
of the interindividual variation in reactions (efficacy and 
safety) (Zimmermann et al. 2019).

Medication exposure causing dysbiosis (antibiotics 
and proton pump inhibitors)
Antibiotics
In both medical settings and agriculture (Chang et  al. 
2015), the widespread (and usually excessive) use of 
broad-spectrum antibiotics raises two fundamental prob-
lems (Organization 2018). In contrast to rural, more 
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traditional cultures (Martínez et  al. 2015; O’Keefe et  al. 
2015; Pasolli et al. 2019), it has led to the emergence of 
antibiotic (Davies and Davies 2010; Laxminarayan et  al. 
2013) resistance and a decrease in the variety of micro-
bial species in our “industrial” microbiome (Blaser and 
Falkow 2009; Sonnenburg and Sonnenburg, 2019). Col-
onization resistance is one characteristic of a healthy 
microbiota (Nagpal et  al. 2018; Sullivan et  al. 2001), 
which protects against opportunistic strains and infec-
tions, and a microbiota that has been impacted by antibi-
otics, which may have fewer numbers and species, which 
can favor the establishment of opportunistic species like 
Enterococcus faecalis (Bartosch et  al. 2004) and even 
increase the risk of C. difficile (Kwok et al. 2012). SCFA 
synthesis is also reduced by antibiotic treatment (Wood-
mansey et al. 2004), which are vital biological regulators 
of immunological responses and modulators of inflam-
mation in older adults, and are produced as key metabo-
lites during bacterial fermentation (Chambers et al. 2018; 
Ríos-Covián et al. 2016; Sanna et al. 2019).

Proton‑pump inhibitors
Peptic ulcers and gastroesophageal reflux disease are 
two gastrointestinal conditions frequently treated with 
proton pump inhibitors (Olbe et al. 2003). Because they 
are considered low-risk, they are among the most often 
used drugs. Yet, new research has connected this to an 
increased risk of intestinal infections, notably C. difficile 
(Kwok et al. 2012; McDonald et al. 2015). Proton pump 
inhibitor usage over an extended period of time has been 
linked in more extensive studies to changes in the gut 
flora (Imhann et al. 2016; Jackson et al. 2016).

Chronic constipation, laxatives and dysbiosis
Chronic constipation is a common gastrointestinal illness 
that affects both the general population and the elderly in 
particular, with prevalence rates of around 20% in people 
over the age of 65 and 30% in persons over the age of 84 
(women are more likely to experience chronic constipa-
tion than males) (Gallegos-Orozco et al. 2012). Laxatives 
are frequently used to relieve constipation symptoms 
(Ford and Suares 2011). However, certain laxatives 
can affect the gut flora long after being used for a short 
period of time (Tropini et al. 2018). A Dutch cohort study 
examining how various medications affected the compo-
sition and metabolic activity of the gut microbiota found 
that laxatives had one of the strongest connections with 
the microbiome (Vich Vila et al. 2020).

Obesity and dysbiosis
Even among older age groups, obesity and the issues it 
brings about are on the rise (Han et  al. 2011; Mathus-
Vliegen et  al. 2012). Obesity alters the metabolism and 

activities of the gut microbiome, as well as the relative 
abundance of the two major bacterial phyla, Bacteroi-
detes and Firmicutes, at the phylum level. It also reduces 
bacterial diversity and gene expression. The transplanta-
tion of microbiota in mice may also pass these features 
on (Ridaura et  al. 2013; Turnbaugh et  al. 2009). Altera-
tions in the gut microbiota can therefore result in an 
increase in gut permeability and have an impact on insu-
lin sensitivity, inflammation, and metabolic endotoxemia 
(Cani et  al. 2007; Cani et  al. 2009). Additionally, diabe-
tes, cardiovascular disease, and several malignancies are 
significantly influenced by this low-grade inflammation 
(Cani and Jordan 2018).

Role and association between aging 
and physiological
Environmental elements, including diet, illness, and 
stress, combine with cellular, organ, and integrated sys-
tem aging processes to create a complex interplay that 
determines how an organism ages. It’s never ideal to fully 
recover from insults that set off a pathological response. 
One of the true indicators of aging is the progressive vari-
ety in “physiology,” which includes the steady reduction 
of potential function (Young and Maguire 2019).

Age-related neurological loss, diminished neuro-
transmitter function, and reduced neurogenesis are 
the main causes of cognitive function decline. Delirium 
risk increases due to these alterations, which also cause 
slower mental processing and more perceptual impair-
ment (Manor and Lipsitz 2013). Aging also throws off 
physiological rhythms, which include sleep cycles and the 
endocrine system. Deterioration of sensory organs, such 
as eyesight or hearing, can also lead to cognitive decline 
(Young and Maguire 2019).

There are lung structural changes that include reduced 
pulmonary rubber retreat, increased chest wall stiffness, 
and reduced respiratory muscle force generation capac-
ity. These changes result in reduced mandatory critical 
capacity, forcible expiration volume in 1 second (FEV1) 
and critical capacity, and increased functional residual 
capacity (FRC). Changes in lung volume in the elderly are 
given in Fig. 1 (Young and Maguire 2019).

The aorta and carotid arteries are two examples of the 
major rubber arteries that constrict with age. The pre-
decomposition and retreat of arterial waves are increased 
by a 50% rise in pulse wave velocity and a prolonged 
ejection, which also increases systolic and pulse pres-
sure, cardiac effort, and oxygen demand (Mitchell 2008). 
Renal impairment and cerebrovascular events are caused 
by left ventricular hypertrophy, which is tissue damage 
resulting from increased pulse flow, particularly in high-
flow organs. Furthermore, as people age, their b-adreno-
ceptor sensitivity declines, and their responsiveness to 
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B-agonists is diminished. This multifactorial decline in 
baroreflex includes diminished responsiveness of termi-
nal organs, inadequate transmission of stretch signals, 
changed central neuronal processing, and altered auton-
omous baseline currents (Young and Maguire 2019).

After the age of 70–60, there is a rapid drop in physi-
ological functional capacity (PFC) due to a decrease in 
maximal oxygen consumption (VO2 max) and a decrease 
in the pace of training on the lactate threshold. Numer-
ous physiological markers, including PFC, VO2 max, 
aerobic capacity, vascular adaptability, and endothelium-
dependent expansion, are all improved by regular aerobic 
exercise. Additionally, the oxyradical collecting capacity 
decreases the thickness of the intima-media wall, restores 
the endothelium (maintains the number of endothe-
lial precursor cells), and boosts the fibrinolytic capacity 
(maintenance of endothelial tpa level) (Young and Magu-
ire 2019).

Twenty percent less energy and physical activity are 
required to maintain the same level of basal metabolic 
rate. Other beneficial effects include lowering ATP-ASE 
NA activity, fat oxidation, gluconeogenesis, and altering 
the permeability of the mitochondrial membrane proton. 
Age-related anorexia is brought on by reduced ghrelin 
levels and increased cholecystokinin, which cause ear-
lier satiety, quicker anthral filling, and impaired taste and 
smell. Several anorexic cytokines, including ciliary nerve 
agent tnf-alpha, IL-1, IL-2, and IL-6, are implicated20% 
less energy and physical activity are required to main-
tain the same level of basal metabolic rate. Other ben-
eficial effects include lowering ATP-ASE NA activity, fat 
oxidation, gluconeogenesis, and altering the permeabil-
ity of the mitochondrial membrane proton. Age-related 
anorexia is brought on by reduced ghrelin levels and 
increased cholecystokinin, which cause earlier satiety, 
quicker anthral filling, and impaired taste and smell. Sev-
eral anorexic cytokines, including ciliary nerve agent tnf-
alpha, IL-1, IL-2, and IL-6, are implicated (Wilson and 
Morley 2003).

Role and association between aging and genetic
It may seem that aging and cancer are opposite pro-
cesses: aging is marked by a loss of fitness, whereas can-
cer arises from an unnatural increase in cellular fitness. 
But perhaps there is a deeper connection between aging 
and cancer. It is generally accepted that the buildup of 
time-dependent cell damage is the primary cause of aging 
(Faggioli et al. 2012; Gems and Partridge 2013; Kirkwood 
2005).

Both internal hazards, such as spontaneous hydro-
lytic processes, reactive oxygen species (ROS), mistakes 
in DNA replication, and external physical, chemical, 
and biological forces continuously threaten the integrity 

and stability of DNA (Hoeijmakers 2009). The range of 
genetic lesions resulting from external or intrinsic insults 
is extensive and includes point mutations, transposons, 
chromosomal gain and loss, telomere shortening, and 
gene impairment due to virus or transposon mergers. 
In order to mitigate this damage, organisms have devel-
oped an intricate system of DNA repair mechanisms 
that, when combined, are capable of repairing the major-
ity of nuclear DNA damage (Lord and Ashworth 2012). 
Moreover, direct DNA lesions in nuclear architectural 
deficiencies such as laminopathy might result in genomic 
instability and premature aging disorders (Worman 
2012).

Older humans’ and model creatures’ cells accumulate 
somatic mutations (Moskalev et  al. 2013). Aging is also 
linked to other types of DNA damage, including chromo-
somal anopleoids and variations in copy number (Fag-
gioli et  al. 2012; Forsberg et  al. 2012). Pigmentosome 
subderma trichotidestrophy, cocaine syndrome, Werner 
syndrome, Bloom syndrome, Sekel syndrome, and other 
human progeroid syndromes are caused by a lack of DNA 
repair pathways, which also accelerates aging in ani-
mals (Gregg et al. 2012; Hoeijmakers 2009; Murga et al. 
2009). Aging may also be influenced by aging-related 
mtDNA mutations and deletions (Park and Larsson 
2011). The idea that mtDNA damage may be important 
for aging and age-related disorders was originally raised 
by the finding of multi-system human illnesses brought 
on by mtDNA mutations that partially phenocopy aging 
(Wallace 2005). Research on mice lacking the enzyme 
mitochondrial DNA polymerase provides more proof. 
The mtDNA mutation accumulation and random point 
deletions in these mutant mice cause them to age more 
quickly and live shorter lives (Kujoth et  al. 2005; Trifu-
novic et al. 2004). Genome instability can also result from 
mtDNA abnormalities in the nuclear layer or genomic 
damage that affects the nucleus (Dechat et  al. 2008). 
Nuclear laminate changes and the production of an 
abnormal preclamine isoform called progerin have also 
been identified during normal human aging (Ragnauth 
et  al. 2010). In addition to these age-related changes in 
Type A laminas, Lamin B1 levels decrease during cellular 
aging, pointing to its application as a biomarker of this 
process (Freund et al. 2012; Shimi et al. 2011).

Role and association between aging and metabolic
Aging is a natural process associated with important 
metabolic changes in the body. At the cellular level, the 
function of the mitochondria responsible for generat-
ing energy in cells decreases. This means reducing cells’ 
ability to produce energy and making more unstable use 
of metabolic fuels, such as glucose and fats. These mito-
chondrial changes may lead to a decrease in physical 
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strength and endurance in older people (López-Otín 
et al. 2013).

In addition, aging can have effects on internal balance 
and hormonal regulation of the body. In aging, the bal-
ance of hormones in the body may break down, which 
can lead to metabolic disorders such as diabetes and obe-
sity. These hormonal changes may cause changes in body 
scale and fat distribution in the body (Kalyani and Egan 
2013).

The inflammatory process also increases with aging. 
This means an increase in the level of inflammation in 
the body, which can lead to the destruction of tissues 
and disruption of the functioning of metabolic systems, 
including the immune system, cardiovascular system, 
and nervous system. Chronic inflammation over time 
can lead to damage and destruction of tissues, causing 
unwanted side effects (Franceschi et al. 2018).

Role and association between aging 
and immunological
Significant immune system alterations occur with aging. 
There are several aspects of aging that affect both the 
innate and adaptive immune systems. These include vari-
ations in the amount of dendritic and monocytic cells in 
the blood, a decrease in neutrophil phagocytic activity, 
restricted variation in B/T cell sets, T cell exhaustion or 
swelling, and the long-term production of inflammatory 
cytokines, or inflammation. Immunizations against infec-
tious illnesses are less effective in older adults because 
their immune systems are not able to mount a strong 
enough resistance (Chan et al. 2019).

Figure  1 lists the cellular and molecular features of 
aging that have previously been reported, including 
immune system failure, sarcopenia, telomere erosion, 
epigenetic modifications, cellular aging, and mitochon-
drial dysfunction. Together with these features, chronic 
inflammation is thought to be the primary cause of aging 
and age-related disorders (López-Otín et al. 2013).

There are notable alterations in the innate and adap-
tive immune systems associated with aging. Aging may 
cause both quantitative and qualitative changes in innate 
immunity, such as a reduction in the quantity of circu-
lating monocytic and dendritic cells (dcs), a downturn 
in the phagocytic activity of migrating macrophages 
or neutrophils, and an interference with the capacity of 
dcs to deliver AG. Because of the thymic complexity of 
maturity and the buildup of old, worn-out T cells that are 
either sleepy or functionally inefficient, aging can cause 
a reduction in the TCR complex in T cells. Age-related 
immune system disruption can result from a number of 
factors, such as persistent viral infection and the produc-
tion of damage-associated molecular patterns (DAMPs) 

(Gibson et al. 2016; Goronzy and Weyand 2013; Goronzy 
et al. 2001).

Multiple viruses cause persistent infections as host 
immune system escape mechanisms evolve. Certain 
viruses can be triggered to produce debilitating symp-
toms due to a lack of appropriate immunity, as well as 
delays at low viral replication levels. Elderly people who 
have infections, particularly respiratory tract infections, 
may experience consequences that increase their risk of 
illness and fatality (Chan et al. 2019).

Interventions to modulate gut microbiota 
in the elderly
Because dysbiosis, or an imbalance in the gut microbiota, 
has been linked to numerous health problems in humans 
(from metabolic to neurological disorders) (Cryan and 
Dinan 2012; Round and Mazmanian 2009; Sarkar et  al. 
2020; Zmora et  al. 2019), Attempts to improve certain 
health outcomes by restoring a healthy microbiome have 
been the subject of extensive studies. Animal studies have 
been modified to include the human microbiome (Arri-
eta et  al. 2016) to demonstrate causal relationships in 
people (Cryan and Dinan 2012; Round and Mazmanian 
2009; Sarkar et al. 2020; Zmora et al. 2019).

Probiotics, prebiotics, and synbiotics
The bulk of health therapies over the past 20 years have 
included adding probiotics, substrates to encourage the 
growth of these beneficial bacteria (prebiotics), or a com-
bination of both (synbiotics) to the human diet (Coman 
and Vodnar 2020).

Prebiotics
Three non-digestible oligosaccharides are effective in this 
field for prebiotic interventions, which are defined as “a 
selectively fermented substance that enables specific 
changes, both in composition and/or activity, in the gas-
trointestinal microflora that confer benefits on the health 
and well-being of the host” (Gibson et al. 2004). These are 
xylo-oligosaccharides (XOS) (Chung et al. 2007), galacto-
oligosaccharides (GOS) (Vulevic et al. 2015), and fructo-
oligosaccharides (FOS) (Scheid et  al. 2014). According 
to Vazquez et  al. (2000), xylose subunits, which make 
up XOS, have great prebiotic potential and crucial food-
related uses (Vazquez et al. 2000). According to studies, 
GOS are significant prebiotic components of functional 
foods and are made up of -linked galactose subunits 
(Sangwan et  al. 2011; Torres et  al. 2010). Due to their 
prebiotic properties, FOS, which are made up of linear 
chains of fructose connected by (2-1) connections, are 
frequently utilized in food (Sabater-Molina et  al. 2009; 
Sangeetha et  al. 2005). The quantity of fecal bifidobac-
teria is dramatically increased by XOS use. According to 
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Pokusaeva et al. bifidobacteria can identify different oli-
gos and saccharides in the human gut (Pokusaeva et  al. 
2011) and have a positive impact on health (O’Callaghan 
and Van Sinderen 2016). During the course of the trial, 
no negative impacts on blood counts, nutritional intake, 
or gastrointestinal (GI) health were seen (Chung et  al. 
2007). The ingestion of GOS has a bifidogenic impact, 
which may also be detected immunologically by an 
increase in IL-10 production and a notable rise in NK 
cell activity (lymphocytes with the main role against viral 
infections and some malignancies) (Shaw et al. 2010). In 
contrast to a placebo (maltodextrin), the intervention of 
FOS supplementation on blood pharmaceuticals (glucose 
and lipids) and intestinal transit was shown to minimize 
the effect of medicines on serum glucose, but no effect 
of FOS on serum lipids or intestinal transmission was 
detected. Nothing unfavorable happened, such as gas or 
discomfort in the abdomen (Scheid et al. 2014).

Probiotics
Live bacteria that provide health advantages when taken 
in appropriate concentrations are known as probiot-
ics (Hill et al. 2014). Probiotics have been demonstrated 
to be helpful in the treatment and management of gas-
trointestinal disorders and immunological responses to 
respiratory viruses generally in adult populations by lon-
gitudinal meta-analyses of RCTs (Ritchie and Romanuk 
2012). Diet and lifestyle, age, comorbidities, exposure to 
biotic risks, and the make-up and function of the basal 
microbiota are examples of host variables that may affect 
the effectiveness of an intervention (Suez et al. 2020).

Probiotics aid the intestines by strengthening the 
immune system and balancing out inflammation brought 

on by an invading foreign body (Ashaolu 2020). Along 
with dendritic and epithelial cells, they also cooper-
ate with monocytes and lymphocytes, which are crucial 
for both innate and adaptive immunity. Probiotics can 
enhance mucosal immune responses by decreasing the 
expression of pro-inflammatory cytokines like TNF and 
IFN-γ, thereby inducing anti-inflammatory cytokines 
like IL-10 and TGF-β (Corr et al. 2007; Di Giacinto et al. 
2005). Furthermore, certain probiotic microbes employ 
cellular surface features, including fimbrias and capsules, 
as mechanical stimulation for immune-boosting pro-
cesses (Sanders et al. 2019).

Cloning resistance is a notion that most likely results 
from the coordinated action of several immune-boosting 
processes brought forth by probiotics. This phenomenon 
is defined as the intestinal intrinsic microbiota occupying 
host tissue with the aim of eliminating potentially harm-
ful pathogens (Chiu et al. 2017).

The production of antimicrobial compounds is one of 
the efficacious processes via which probiotics benefit the 
host by strengthening human immunity and protecting 
against gastrointestinal infections. Competitive eradica-
tion for food sources and binding sites enhanced immune 
system regulation, and gut barrier are some of the mech-
anisms through which probiotics exert their beneficial 
effects (Wan et al. 2019). Probiotics generate a variety of 
compounds, including bacteriocins, hydrogen peroxide, 
and organic acids, as a result of their antimicrobial activ-
ity (Fig. 5).

These compounds have the ability to kill both gram-
positive and gram-negative bacteria. Bacteriocins are 
produced by many Lactobacillus strains. The mechanism 
of action involves blocking the creation of cell walls or 

Fig. 5 The immunomodulatory effects of probiotics: enhancing immunity and protecting against inflammation and infections
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creating pores, which kills the target pathogenic cells. 
Additionally, the release of antimicrobial compounds, 
such as acetic and lactic acids, acidifies the environment 
to prevent the growth of pathogens like Salmonella. This 
acidification inhibits nutrient transport, leading to bacte-
ricidal consequences (De Keersmaecker et al. 2006; Rus-
sell and Diez-Gonzalez 1997). Furthermore, microcin 
is secreted by probiotic bacteria and works by binding 
to iron-siderophore receptors to either enter the cell or 
cause the production of hazardous compounds once 
inside. These mechanisms result in the suppression of 
intracellular enzymes, including RNA polymerase, DNA 
gyrase, and ATP synthase, as well as their activities, such 
as mRNA translation, ultimately leading to the death 
of pathogenic cells. The competitive elimination pro-
cess involves binding locations and nutritional rivalry 
between pathogenic and probiotic organisms. Probiotics 
can halt the development of pathogens by employing sur-
face protein structures like mucins or using antimicrobial 
secretions like organic acids to create an inhospitable 
environment for infections. Certain research indicates 
that the expression of tight junction signaling-related 
genes increases when probiotics are consumed, thereby 
maintaining the integrity of the intestinal barrier intact 
(Wan et al. 2019).

Probiotics like Lactobacillus acidophilus (LAB) and 
Bifidobacteria can boost the expression of polymeric 
immunoglobulin receptors (pIgR), which may help pre-
vent invasion of the mucous barrier. It is important to 
note that LAB can influence intestinal dendritic cells and 
epithelial cells (Kikuchi et al. 2014; Sakai et al. 2014). Cer-
tain components of LAB have the ability to trigger den-
dritic cell production of TGF-β or IL-6 via TLR2 (47). 
Moreover, lactic acid bacteria use polysaccharides to 
promote NK activity, which in turn boosts host defense 
by stimulating the synthesis of IL-12 (Hachimura et  al. 
2018).

Synbiotics
Synbiotics: Using probiotics and prebiotics together is 
another option for managing the microbiota (Caso et al. 
2013). Probiotics, or live microbial additions, can be used 
in combination with certain prebiotic substrates (such as 
lactitol and Lactobacillus organisms or fructoligosaccha-
ride and bifidobacterial strains) to promote development. 
Due to the compound’s easily accessible specialized sub-
strate for fermentation and the advantages that a live 
prebiotic bacterium provides for the host, it can increase 
the probiotic organism’s chances of survival (Palmer and 
Jensen 2022).

In the realm of vaccination, it has been exten-
sively studied how geriatric immune system function 
is affected. It revealed an increase in monocyte and 

granulocyte phagocytic activity (the main mechanism in 
clearing pathogens). Consuming synbiotics also led to 
changes in the microbiota’s composition (a rise in Bifi-
dobacteria, Firmicutes, and Actinobacteria vs a decline 
in Proteobacteria), as well as an increase in butyrate syn-
thesis (Maneerat et al. 2013). Finally, the use of synbiotics 
demonstrated a considerable reduction in various cardio-
vascular risk variables and indications of insulin resist-
ance (Cicero et al. 2021; Costabile et al. 2017).

Fecal microbiota transplantation
For patients who have experienced several recurrences 
of C. difficile infection and have not responded to proper 
antibiotic treatment, current clinical recommendations 
from the United States advise FMT (L. C. McDonald 
et  al. 2018). This advice is supported by multiple RCTs 
that show fecal microbiota transplantation (FMT) to be 
a successful alternative treatment for C. difficile infection 
(Cammarota et al. 2015; Kelly et al. 2016; Lee et al. 2016; 
Van Nood et al. 2013; Youngster et al. 2014). Elderly per-
sons are disproportionately impacted by C. difficile infec-
tion, according to research (Keller and Surawicz 2014; 
Smits et  al. 2016). This is mostly due to worries about 
safety, greater exposure in hospital settings, and regular 
use of antibiotics and proton pump inhibitors (Loo et al. 
2011).

Conclusion
Along with its role in metabolism and immune sys-
tem control, the gut’s microbial diversity declines as we 
become older. This presents a window of opportunity 
for opportunistic microorganisms to enter and inflame 
the gut, resulting in a range of illnesses from low-grade 
chronic sickness to hospitalizations and even death. 
There has been a lot of study on the gut microbiota, but it 
has not yet been possible to pinpoint the best method for 
treating or preventing dysbiosis in the elderly. Over the 
course of a person’s life, diet may influence the gut micro-
biota, and older persons may benefit the most from this. 
It is almost likely that using broad-spectrum antibiotics 
harms the gut flora. The diversity of the gut microbiota 
can be restored, and probiotic supplementation has a 
strong potential to do both.
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