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Abstract 

Purpose The ecological interdependence between macroorganisms and their microbial communities promotes 
stable associations over time, potentially leading to their evolutionary co‑diversification. The detection of intricate 
eco‑evolutionary interactions between animals and their microbiota is challenging, primarily due to complex bacte‑
rial communities related to poorly resolved host population structure. Strikingly, co‑diversification in invertebrates, 
characterized by generally less complex microbiota, remains largely unexplored. Here, we compared the bacterial 
communities associated with two distinct lineages of Nacella limpets, a dominant shallow water patellogastropod 
of the Southern Ocean shores with a well‑described population structure. Our goals were to elucidate the uniqueness 
of Nacella microbiota, resulting from an ecological filter that selectively favors certain bacterial taxa. Additionally, we 
aimed to depict the genetic structure of bacterial symbiont seeking evidence of co‑diversification with Nacella.

Methods We sequence the V4‑V5 regions of the bacterial 16S rRNA gene in three distinct microenvironments 
associated with Nacella: rock substrate, radula, and whole intestine. These samples were collected from two popula‑
tions of Nacella deaurata and Nacella concinna, located in the West Antarctic Peninsula and Falkland/Malvinas Islands, 
respectively.

Results We assessed ecological filtering patterns in the limpet microbiota, uncovering unique bacterial communities 
in both radulas and intestines, with specifically enriched bacterial taxa compared to the surrounding environment. By 
examining microdiversity patterns of core bacterial taxa, we revealed a deep phylogeographic structure of Psychrilyo-
bacter in Nacella intestines.

Conclusion We highlight the Southern Ocean limpets of the Nacella genus as a novel and promising model for stud‑
ying co‑diversification between marine mollusks and their resident microbiota.
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Findings
The intimate interdependence between macroorgan-
isms and their microbial partners promotes stable asso-
ciations over evolutionary timescales, which could 
ultimately result in the simultaneous divergence of both 
host and microbial symbionts (Moran and Sloan 2015; 
Moeller et  al. 2016). This co-divergence, also known as 
co-diversification, does not necessarily imply obliga-
tory host-restricted symbionts. For instance, repeated 
horizontal acquisition of certain microbes, through an 
ecological filtering of the surrounding environment 
community shaped by host diet or physiology, can lead 
to host-restricted microbial lineages (Moran and Sloan 
2015; Moran et  al. 2019). Nevertheless, the high com-
plexity of microbial communities and the poorly resolved 
host population structure generally challenge the detec-
tion of specific host-microbe associations, particularly in 
vertebrate models (Alberdi et al. 2022).

In contrast to vertebrates, invertebrates generally pos-
sess less complex microbiota, making them intriguing 
models to comprehend the importance of host evolution 
in structuring animals-microbes associations (Petersen 
and Osvatic 2018; O’Brien et  al. 2019; Groussin et  al. 
2020). Among invertebrates, mollusks stand out as eco-
logically significant and diverse phyla, being Gastrop-
oda the richest class regarding species diversity (Neu 
et  al. 2019). Although descriptions of marine gastropod 
microbiota are accumulating, they mainly focus on com-
mercial and/or northern hemisphere species, excluding 
most gastropod diversity (Neu et al. 2019; Maltseva et al. 
2021b; Panova et  al. 2022). Moreover, the contribution 
of host diversification in shaping gastropod microbiota 
assembly remains largely unexplored. This knowledge 
gap widens in the Southern Ocean, where the true limpet 
genus Nacella (Nacellidae) thrives as the most conspicu-
ous patellogastropod along intertidal and subtidal shores. 
Ecologically, species within this genus are character-
ized as generalist grazers due to their diverse diet, which 
includes periphyton, macroalgae, and some invertebrates 
(Rosenfeld et  al. 2018). Biogeographically, the genus 
Nacella contains two major and recently diverged clades, 
the South American and the Maritime Antarctic/sub-
Antarctic Islands, associated with the intensification of 
the Antarctic Circumpolar Current, which constitutes an 
oceanographical barrier to species dispersion (González‐
Wevar et al. 2017). On the premise that host speciation 
through geographical isolation may trigger its symbi-
onts’ diversification (Groussin et  al. 2020), we hypothe-
sized that two geographically isolated Nacella species 
shared specific bacterial symbionts whose phylogeo-
graphic structure at fine genetic resolution mirrors the 
host divergence. In this proof-of-concept study leverag-
ing 16S amplicon sequencing, we aimed to assess (i) the 

specificity of Nacella species microbiota, often referred 
to as ecological filtering (Mazel et al. 2018), (ii) the pres-
ence of a core microbiome between the South American 
(Nacella deaurata) and Antarctic (Nacella concinna) spe-
cies, and (iii) the phylogeographic pattern at fine-genetic 
resolution (i.e., microdiversity) within core bacterial taxa 
associated with Nacella.

We sampled two closely related species, N. deaurata 
(n = 5) and N. concinna (n = 4), along with the rocks they 
were associated with, from two biogeographic provinces 
of the Southern Ocean separated by the Antarctic Polar 
Front: the Falkland/Malvinas Islands (FAL/MAL) and 
the West Antarctic Peninsula (WAP) (Additional Infor-
mation S1: Table S1). The radula and the entire intestine 
were aseptically retrieved from limpet individuals, while 
rock surfaces were thoroughly scraped to collect the sub-
strate material (“rock” hereafter). The genomic DNA of 
each microenvironment was extracted with the DNeasy 
PowerSoil Pro Kit (Qiagen, CA, USA). A touchdown PCR 
protocol was carried out to amplify the bacterial 16S 
V4-V5 region using the modified Bakt_341F/Bakt_805R 
primer pair (Klindworth et  al. 2013) (Additional Infor-
mation S2: Method S1). Subsequently, the PCR products 
were sequenced on the Illumina Miseq PE300 platform. 
Sequences were then processed using the Mothur pipe-
line (Schloss et al. 2009), OTUs were assembled based on 
97%- and 99%-identity, and low-abundance OTUs were 
discarded according to Bokulich et al. (2013). Taxonomic 
classification of OTUs was performed with Mothur using 
the SILVA database (v. 138) (Quast et  al. 2013). Finally, 
97%- and 99%-identity OTU tables were rarefied to their 
corresponding number sequences per sample, specifically 
86,714 and 70,390, respectively. All rarefaction curves 
at both OTU resolution reached saturation, indicating 
robust coverage of sample bacterial diversity (Additional 
Information S3: Fig. S1).

By comparing alpha-diversity across microenviron-
ments at 97%-identity OTU resolution, we found a clear 
reduction in both taxa and phylogenetic diversities from 
rocks to radulas and intestines (p-values < 0.05 and p-val-
ues < 0.001, respectively, Fig.  1a and b). A similar pat-
tern was observed in beta-diversity, with a strong effect 
of the microenvironment in shaping bacterial commu-
nity compositions (p-value < 0.001, Fig.  1c, Additional 
Information S1: Table  S2). These findings suggest an 
ecological filtering of the surrounding microbial commu-
nity, potentially mediated by host traits such as internal 
physicochemical properties, and leading to a more con-
strained and evolutionarily convergent set of bacterial 
taxa in the intestine (Moran and Sloan 2015). The lack 
of significant difference in both alpha- and beta-diversity 
between radulas and intestines (Fig.  1 and Additional 
Information S1: Table S2) suggests that the most selective 
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filtering probably takes place right after radula scraping, 
as reported in the freshwater snail Pomacea canaliculate 
(Li et al. 2019). These findings mark the initial characteri-
zation of radula microbiota in marine snails. Moreover, 
detecting a microbial community in radulas, as diverse 
as in intestines (Fig.  1a and b), challenges the initial 

assumption of this microenvironment being inhospita-
ble to bacteria. Additionally, the bacterial communities 
in radulas and intestines were more heterogeneous than 
in rocks (p-values < 0.001, Fig. 1d), highlighting the host 
individual influence in bacterial community composition 
(i.e. microbiota individualization), as observed in other 

Fig.1 Bacterial alpha‑ and beta‑diversity at 97%‑identity OTU resolution across Nacella spp. microenvironments. Colors are assigned 
to the microenvironment. Triangles and circles refer to N. concinna and N. deaurata, respectively. Squares represent interspecies pairwise dissimilarity 
of beta‑diversity. Chao1 (a) and phylogenetic diversity (b) comparisons across microenvironments, independent of Nacella species. c Non‑metric 
multidimensional scaling (NMDS) profiling revealing the bacterial community composition variations among Nacella microenvironments 
and species. d Comparisons of bacterial community dissimilarities among microenvironments. The effect of the microenvironment factor 
on sample grouping in the ordination and tested by PERMANOVA, as well as the p‑values associated with the Wilcoxon test pairwise comparisons 
among microenvironments, are provided
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invertebrate models (Schwob et al. 2020; Gafarova et al. 
2023). Alpha-diversity and beta-diversity patterns across 
microenvironments were globally consistent between 
97%- and 99%-identity OTU resolutions, with sole excep-
tion being bacterial community dissimilarities among 
microenvironments (Fig.  1 and Additional Information 
S3: Fig. S2). Specifically, dissimilarities between radula 
and intestine were significant at 99%-OTU but not at 
97%-OTU (Fig.  1d and Additional Information S3: Fig. 
S2d). For subsequent comparisons between microenvi-
ronments and the phylogeographic analysis of core taxa, 
we focused on the 97%-identity resolution.

We further explored the community differentiation 
drivers within microenvironments using Linear discrimi-
nant analysis (LDA) effect size (LEfSe) (Yang 2020). We 
identified 146, 39, and 29 bacterial OTUs significantly 
enriched in rock, radula, and intestine, respectively 
(Fig.  2a). A larger number of OTUs sit at the intersec-
tion of radula with intestine and rock, suggesting radula 
as an ecotone. Contrarily, very few OTUs were found at 
the rock-intestine intersection, further supporting the 
higher specificity of the intestine microenvironment. The 
taxonomic assignment of enriched OTUs was aggregated 
at the genus level, with each microenvironment charac-
terized by its own set of taxonomic groups. Specifically, 
the rock bacterial community was enriched in Granu-
losicoccus, Ilumatobacter, Leucothrix, Litoreibacter, 
Yoonia-Loktanella, the radula in unclassified Bacilli and 
Mycoplasmataceae genera (Fig. 2b), and the intestine in 
Psychrilyobacter and Psychromonas (Fig.  2b and Addi-
tional Information S1: Table  S3). These two latter gen-
era have been consistently found as key components of 
the gut microbiota of snail taxa like Littorina, Rubyspira, 
and Haliotis (Aronson et  al. 2017; Gobet et  al. 2018; 
Maltseva et  al. 2021b), implying their strong adapta-
tion to gut conditions and their significance in the gas-
tropods’ ecology. To evaluate the conservativeness level 
in Nacella-associated bacterial communities and detect 
bacterial taxa probably important for Nacella ecology, 
we established a 100% threshold core microbiota for each 
microenvironment. Of the 130 identified core OTUs, 64 
were shared across the three microenvironments. Con-
versely, 19, 1, and 10 were exclusively observed within 
rock, radula, and intestine, respectively (Fig. 2c), pointing 
to lower conservatism of radula and intestine bacterial 
communities, likely due to host individual-related fac-
tors (Pisaniello et al. 2023). Notably, five dominant core 
taxa (i.e., OTU1–3, OTU8, and OTU10) accounted for 
36% of the dataset abundance, including Psychrilyobacter 
and Psychromonas (γ-Proteobacteria), Sulfitobacter and 
Ahrensia (α-Proteobacteria), and Bastopirellula (Plancto-
mycetes) (Fig.  2c). Relative abundance patterns of these 
core OTUs substantially varied according to the host 

and the microenvironment (Additional Information S1: 
Table S4), suggesting that setting an arbitrary abundance 
cut-off in core definition may inadvertently excluded eco-
logically relevant bacteria in the context of single tempo-
ral sampling (Neu et al. 2021).

To explore the microdiversity structuration of these 
OTUs across microenvironments and Nacella species, 
we used the Minimum entropy decomposition algorithm 
(Eren et  al. 2015), following the procedure described in 
a previous work (Schwob et  al. 2021). Remarkably, the 
OTU3 assigned to Psychrilyobacter was the sole OTU 
displaying unique oligotypes within each Nacella species 
intestine (Additional Information S1: Table S5). We then 
reconstructed OTU3 oligotype networks in each micro-
environment using the Median Joining method in the 
PopART software (Leigh and Bryant 2015), estimating 
genetic and phylogeographic differentiation indices  (FST 
and ΦST, respectively) in Arlequin software (Schneider 
et  al. 2000). Intriguingly, unlike rock and radula, OTU3 
microdiversity in intestine exhibited strong phylogeo-
graphic structure, forming two distinct clusters specific 
to each Nacella species (Fig.  3). The disparity between 
differentiation indices in the intestine  (FST < ΦST, Fig.  3) 
suggests that the structuration among the oligotypes 
associated with N. deaurata and N. concinna primar-
ily stemmed from an evolutionary divergence between 
the oligotypes within each host-species (Maturana et al. 
2020). The phylogenetic analysis of these oligotypes using 
Bayesian inference further supported the hypothesis that 
these fine-scale genetic clusters represent at least two 
strongly diverged evolutionary units with different host 
specificity (Additional Information S2: Method S2 and 
Additional Information S3: Fig. S2) (Martiny et al. 2023).

Additionally, the observation of identical Nacella 
species-specific oligotypes in both intestines and rocks 
indicates that hosts might acquire Psychrilyobacter hori-
zontally by selectively associating with particular strains 
from their environment. The fine-scale phylogeographic 
patterns in Nacella intestines suggest host-specific regu-
latory mechanisms, either passive (e.g., internal condi-
tion filtering) or active (e.g., immune system), controlling 
the association with Psychrilyobacter strains (Cicala et al. 
2018; Maltseva et al. 2021b). These host-specific regula-
tory mechanisms, understudied in Nacella, are likely 
to vary among species. Previous studies have consist-
ently demonstrated that closely related gastropod spe-
cies exhibited variations in their diets, proteomics, and 
metabolomics, thereby triggering the association with 
divergent microbiomes (Maltseva et al. 2021a, 2021b).

A recent genomic study of an abalone-associated 
strain of Psychrilyobacter provided evidence of functions 
potentially crucial for the host’s physiology, such as syn-
thesizing various vitamins or maintaining an acidic gut 
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Fig. 2 Shared and specific bacterial taxa across the Nacella microenvironments. a Ternary plot showing the significantly enriched OTUs in each 
microenvironment. Size is scaled on the LDA scores from the LEfSE analysis. b Compositional barplot revealing the genus taxonomic assignation 
of the enriched OTUs (unc., unclassified). c Phylogenetic tree of the 130 OTUs shared across either rock, substrate, or intestine samples. The colors 
of the tree tips correspond to the core OTUs assignment at the class level. The adjacent heatmaps indicate the membership of the core OTUs 
to each microenvironment and its relative abundance within the core microbiota dataset
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pH (Liu et al. 2023). The microdiversity structuration we 
reported, if indicative of Nacella’s metabolism reliance 
on Psychrilyobacter, may result from stable associations 
over time and space, potentially culminating in the spe-
cialization of Psychrilyobacter strains to their respective 
hosts and their diversification mirroring the phyloge-
netic divergence of N. concinna and N. deaurata. Thus, 
the diversification of Psychrilyobacter strains is likely to 
be coupled with functional divergence, which remains to 
be fully explored through genome-resolved metagenom-
ics, transcriptomics, or metabolomics approaches to fully 
understand their ecological role within Nacella.

In conclusion, our study marks a promising starting 
point in exploring the intricate evolutionary relation-
ships between Nacella and its microbiome, which raises 
intriguing questions regarding whether the divergence 
of metaorganisms in the Southern Ocean may have trig-
gered their microbiome co-diversification.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13213‑ 024‑ 01751‑0.

Additional file 1: Table S1. Sampling locations of Nacella spp. and over‑
view of metabarcoding sequencing data. N: number of samples, Nseqs. 
(Relat. Abund.): total number of sequences per sample type and host 
species, and relative abundance in the whole dataset after the relative 

abundance filtration step. Table S2. Pairwise PERMANOVA comparisons 
of Bray‑Curtis dissimilarity across Nacella spp. microenvironments. 
Table S3. Mean abundances and standard errors (se) of the enriched 
bacterial taxa across microenvironments. Table S4. Microdiversity 
distribution of the five most abundant core OTUs across Nacella spp. 
microenvironments.

Additional file 2: Method S1. The 50‑µL touchdown PCR reactions 
comprised 25 µL of Q5® High‑Fidelity DNA Polymerase (New England 
BioLabs® Inc.), 2.5 µL forward primer (10 µM), 2.5 µL reverse primer 
(10 µM), 5 µL template DNA (about 150 ng/µL) and 17 µL PCR‑grade 
water. The PCR conditions were an initial denaturation step of 3 min at 
98°C, followed by 15 cycles of 10 s at 98°C, 20 s at 67‑60°C (touchdown 
PCR annealing) and 15 s at 72°C. After the initial touchdown cycles, 
an additional 15 cycles were performed, for 10 s at 98°C, 20 s at 57°C, 
15 s at 72°C and a final extension of 2 min at 72°C. Method S2. The 
phylogenetic analysis of the oligotypes corresponding to the OTU3 
of Psychrilyobacter was conducted using Bayesian inference (BI) with 
MrBayes v.1.3.1 (Huelsenbeck and Ronquist 2001). The nucleotide 
substitution model for the dataset was determined through jModelTest 
2 (Darriba et al. 2012) using the Bayesian information criterion (BIC). 
Nodal support values BI reconstructions were estimated through 
10,000,000 generations with 4 Markov chains, and trees were sampled 
every 1000 generations. The first 25% of trees sampled were discarded 
as burn‑in. Posterior probability densities were plotted as a maximum 
clade credibility tree using TreeAnnotator v.1.6.1 (http://beast. bio.ed.ac.
uk/TreeAnnotator) and visualized using FigTree v.1.4.3 (http://tree.bio.
ed.ac.uk/software/Figtree/).

Additional file 3: Fig. S1. Accumulation curves of Nacella species and 
microenvironment conditions’ richness based on different alpha diver‑
sity metrics at 97%‑ and 99%‑identity OTU resolution. The samples were 
rarefied to 86,700 and 70,390 reads for 97%‑ and 99%‑identity OTU 
datasets, respectively. Colors correspond to Nacella species and micro‑
environment conditions. Fig. S2. Bacterial alpha‑ and beta‑diversity 

Fig. 3 Oligotype networks of 16S microdiversity within the OTU3 assigned to Psychrilyobacter genus. Networks are constructed for each Nacella 
microenvironment. The colors are assigned to the biogeographic provinces (West Antarctic Peninsula, WAP, and Falkland/Malvinas Islands, FAL/
MAL). Oligotype numeration encompasses the three microenvironments. The asterisk indicates significance based on 10,000 permutations
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at 99%‑identity OTU resolution across Nacella spp. microenvironments. 
Colors are assigned to the microenvironment. Triangles and circles refer 
to N. concinna and N. deaurata, respectively. Squares represent interspe‑
cies pairwise dissimilarity of beta‑diversity. (a) Chao1 and (b) phyloge‑
netic diversity comparisons across microenvironments, independent of 
Nacella species. (c) Non‑Metric Multidimensional Scaling (NMDS) profiling 
revealing the bacterial community composition variations among Nacella 
microenvironments and species. (d) Comparisons of bacterial community 
dissimilarities among microenvironments. The effect of the microen‑
vironment factor on sample grouping in the ordination and tested by 
PERMANOVA, as well as the p‑values associated with the Wilcoxon test 
pairwise comparisons among microenvironments, are provided. Fig. 
S3. Bayesian inference of the phylogenetic relationships among the 
oligotypes conforming OTU3 assigned to Psychrilyobacter genus. The size 
of circles in the adjacent bubble plot is scaled on oligotype relative abun‑
dance (%). Colors indicate the Nacella species (orange; N. deaurata, green; 
N. concinna). The support of the tree basal node is provided.
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