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Abstract 

Background South Africa is known for its great biodiversity. The Agulhas Plain represents one such unique environ‑
ment where low‑gradient topography has resulted in extensive wetland formation. It is fed by two major river sys‑
tems, bringing in brackish, alkaline water. It has been exposed to major marine transgression and regression events, 
and harbours great Fynbos diversity as well as a Mediterranean‑type climate, thereby creating unique ecosystems. It 
is therefore surprising that little is known about the bacterial diversity associated with the Agulhas Plain and associ‑
ated marine ecosystems.

Methods In this study, we focused on the actinobacterial diversity (Phylum Actinomycetota) associated 
with an emerging peatland on the Agulhas Plain (SF; Areas 1–3) and a marine site (ANP; Ocean, Rocky, Dry) located 
10 km away from SF. A combined metataxanomics and isolation approach was taken to evaluate the actinobacterial 
diversity of the sampling sites and to determine the effect of environmental physicochemical parameters on these 
populations. Various genome analyses were performed on an Sva0096 marine bin to gain insight into its ecological 
role.

Results Metataxanomics showed that the two sites shared defined major taxa, including Blastococcus, Geoder-
matophilus, Microbacterium, Mycobacterium, Nocardioides, Streptomyces, and the Sva0996 marine group. Analysis 
of the biosynthetic potential of an Sva0996 marine bin134 (obtained from GenBank) provided insights into the poten‑
tial ecological role of this group of bacteria in both the marine and terrestrial environments. Higher actinobacterial 
diversity (Shannon index > 5) was observed for Areas 2 and 3 (SF), as well as the ANP Dry samples. The actinobacterial 
population composition was found to be driven by salinity, pH, Mn, and Ca, with certain areas of SF exhibiting similar 
(and even higher) salinity (SF: 70–100 Ω vs. ANP: 100–160 Ω) and lower pH levels (SF: 6.3‑8.0 vs. ANP: 8.6–8.9) to that of 
the marine environment.

Conclusion This snapshot study has provided some insights into the actinobacterial diversity of the two sites 
studied. Analysis of an Sva0096 marine bin134 provided further insights into the potential ability of the Sva0096 
marine group to survive in a unique terrestrial environment that is periodically exposed to environmental pressures 
that mimic the marine environment.
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Introduction
The Agulhas Plain in South Africa has a unique low-gra-
dient topography that has resulted in extensive wetland 
formation in this area (Gordon 2012), which includes 
permanent lacustrine systems (e.g., Soetendalsvlei) and 
several endorheic pans (Russell and Impson 2006). Two 
major river systems (Nuwejaars River and Heuningsnes 
River) feed into the Agulhas plain, bringing in brack-
ish (< 2 g/kg salts), alkaline (pH 6–8) water (Russell and 
Impson 2006; Gordon et al. 2012). Many of the endorheic 
pans are not connected to these systems and occasionally 
dry out completely, resulting in strongly saline saltpans 
(e.g., Soutpan has a salinity of 16–86 g/kg salt). The salin-
ity of the Agulhas Plain is also linked to the major marine 
transgression and regression events it was exposed to 
over the past 8000 years, with many of the wetland sys-
tems containing deposits of marine-derived organic mat-
ter such as marine bivalve shells (Gordon et  al. 2012; 
Kirsten et  al. 2018). In addition, the area is known for 
its great Fynbos diversity and Mediterranean-type cli-
mate, creating unique ecosystems (Gordon et  al. 2012). 
The preservation of ecosystems and their biodiversity, as 
well as their sustainable development, are guided by soil 
conservation strategies (Dos Santos et  al. 2013). In the 
Agulhas region, the Working for Wetlands group, as well 
as the South African National Parks (SANParks), have 
assigned various areas as key conservation foci (Russell 
and Impson 2006). It is surprising that these environ-
ments have not been thoroughly studied for microbial 
diversity, particularly since changes in microbial diver-
sity patterns could serve as indicators of environmental 
health (Weels et al. 2022). Such studies play a crucial role 
in conservation planning and monitoring the impact of 
climate change.

In both marine and terrestrial ecosystems, bacteria play 
a crucial role in nutrient cycling, including carbon and 
minerals, organic matter decomposition, and bioreme-
diation. This significantly impacts the overall functioning 
of the ecosystems they inhabit (Lew et al. 2018; Heinrichs 
et  al. 2020; Liu et  al. 2020; Miller et  al. 2020). The phy-
lum Actinomycetota Goodfellow 2021 (Oren and Garrity 
2021) represents one of the largest bacterial phyla within 
the domain Bacteria and is one of the most abundant 
groups of bacteria found in soil (22 ± 4%; Araujo et  al. 
2020). These organisms are of great interest to various 
researchers and industries, primarily due to the search 
for novel secondary metabolites such as pigments and 
antibiotics. They are also studied for their industrially rel-
evant enzymes and their role in natural and engineered 
processes, e.g., floc formation in wastewater treatment 
systems (Bérdy 2012; Le Roes-Hill and Prins 2016). Fur-
thermore, actinobacteria are known to be involved in the 
degradation of lignocellulosic materials (and ultimate 

carbon and nitrogen cycling; Rich et  al. 2003; Hill et  al. 
2011), the stabilization of clay particles, the increase of 
soil moisture uptake, plant productivity enhancement, 
and the stabilization of organic matter, thereby playing an 
essential role in maintaining the health of various types 
of soil-based environments (Araujo et al. 2020). Despite 
extensive research on this group, little is known about 
their diversity in unique wetland ecosystems, such as 
those found on the Agulhas plain or the nearby marine 
environment.

Various studies focused on microbial diversity have 
reported the impact of the physicochemical properties of 
these ecosystems on diversity patterns. In the evaluation 
of the ‘actinobiome’ of > 900 soil samples from Australia 
and Northern Antarctica, Araujo et  al. (2020) showed 
that environmental conditions drive the endemicity of 
certain actinobacterial taxa. In studies focused on peat-
lands, the major factors influencing microbial diversity 
range from water table level and vegetation composition 
(Kotiaho et al. 2013), pH (Jenkins et al. 2009; Zhang et al. 
2017; Lew et al. 2018; Too et al. 2018), total carbon and 
total nitrogen (Zhang et al. 2017), Ca, P and Fe availabil-
ity (Sun et al. 2016), ammonia and pH (Lin et al. 2012), 
changes in general nutrient supply (Parvina et al. 2018), 
to vegetation and pH (Sun et  al. 2014). Similarly, stud-
ies focused on marine bacterial communities have found 
that various factors play a role in community composi-
tion. These factors include salinity, total N and P levels 
(Nimnoi and Pongslip 2020), as well as salinity, organic 
carbon, pH, and  CO2 partial pressure (Héry et al. 2014). 
Chen et al. (2016), on the other hand, identified pH, cal-
cium, total organic carbon, total P, and total N as impor-
tant factors (Chen et al. 2016).

The Agulhas region is home to several key conserva-
tion areas that have not been subjected to microbial 
diversity studies. To address this, we selected a wetland 
system (identified as an emerging peatland) on the Agul-
has Plain and a marine site within the Agulhas National 
Park for analysis of actinobacterial diversity (culturable 
and non-culturable), and their occurrence was evalu-
ated in the context of the environmental physicochemical 
properties.

Materials and methods
Chemicals and reagents
Unless otherwise stated, all chemicals and reagents used 
in this study were obtained from Merck-Millipore (South 
Africa).

Sampling
Samples were collected from Springfield Farm (SF; 
34°44’15.3”S, 19°54’38.6”E) located at the base of the 
Soetanys Mountain, Agulhas Plain (August 2019) (Fig. 1a 
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and b). Three sites were selected for sampling (Fig.  1d, 
e, and f ). For each site, three subsites (1 m apart) were 
selected, and soil was collected from each subsite at 
three levels: top (first 5 cm), middle (10–15 cm), and 
deep (20–25 cm) (total of nine samples per site; 27 sam-
ples in total). In addition, samples were collected from 
Suiderstrand, Agulhas National Park (ANP; 34°48’51.3"S 
19°56’25.4"E; Fig.  1a and c), with permission from the 
South African National Parks (SANParks, Permit num-
ber: CRC/2019–2020/013–2019/V1) (September 2019). 
Samples were collected from three sites (Fig. 1g), termed 
‘Ocean’ (sediment below the low tide level and therefore 
always inundated with seawater), ‘Dry’ (sediment above 
the high tide level and therefore nearly always dry), and 

‘Rocky’ (sediment from around the boulders on the beach 
area). Six sediment samples were collected for each site, 
each spaced 3 m apart, giving a final number of 18 sam-
ples. For both sites, samples were collected using a hand 
trowel (cleaned and sterilised between sampling events), 
with depth measurements taken using a Powerlock met-
ric tape measure. Samples collected from SF and ANP 
were stored in sterile bags and transported at 4 °C. Sam-
ples were immediately processed for metagenomic DNA 
(mgDNA) extraction and composite samples were pre-
pared and sent to Pathcare Bemlab (Strand, South Africa) 
for physicochemical analyses. The samples were classi-
fied as clay, loam, or sand according to the Soil Classi-
fication Working Group (1991). The pH of each sample 

Fig. 1 A Satellite image of the Agulhas plain and location of the Springfield Farm (SF) and Agulhas National Park (ANP) sampling sites as obtained 
from Google Maps; B location of the SF sampling site (yellow pin) in relation to key wetland ecosystems, Soetendalsvlei (blue dot) and the Soutpan 
(green dot); C location of the marine sampling site ANP; D photograph of SF sampling area 1; E photograph of SF sampling area 2; F photograph 
of SF sampling area 3; and G photograph of the marine sampling site, ANP



Page 4 of 24Prins et al. Annals of Microbiology           (2024) 74:18 

was determined electrometrically by the KCl method 
(McClean 1982). Total organic carbon content (C%) 
of each sample was determined by the Walkey-Black 
method (Nelson and Sommers 1982). Boron (B) was 
extracted from each sample with the hot water extrac-
tion method (Fertilizer Society of South Africa 1974), 
while calcium (Ca), magnesium (Mg), potassium (K), 
and sodium (Na) were extracted from each sample using 
ammonium acetate extraction (Doll and Lucas 1973). The 
Bray II and Olsen extraction method (Thomas and Pea-
slee 1973) was used to extract phosphorus (P) from each 
sample, while the calcium-phosphate extraction method 
(The Non-affiliated Soil Analysis Working Committee 
1990) was used to extract sulphur (S) from each sam-
ple. Quantification of these elements (B, Ca, Mg, K, Na, 
P, and S) was then performed with an Inductively Cou-
pled Plasma-Optical Emission Spectrometer (ICP-OES; 
Varian Vista MPX, Australia). The copper (Cu), iron (Fe), 
manganese (Mn), and Zinc (Zn) content of each sample 
was determined by the EDTA extraction method (Beyers 
and Coetzer 1971). In addition, the electrical resistance 
of each sample was determined in a saturated paste using 
a standard cup method (The Non-affiliated Soil Analysis 
Working Committee 1990).

Microbial community analyses
mgDNA was isolated from 0.1 g of each sample using the 
DNeasy PowerSoil DNA Isolation Kit (Qiagen), accord-
ing to the manufacturer’s instructions. The amplification 
of the 16S rRNA gene was performed using the method 
described by Schäfer et  al. (2010). The actinobacterial-
specific 16S rRNA gene primer pair, Com2xf: 5’-AAA 
CTC AAA GGA ATT GAC GG-3’; Ac1186r: 5’-CTT CCT 
CCG AGT TGA CCC -3’, was used in the following PCR 
reaction mix: 1x KAPA Taq Readymix (1.5 mM  MgCl2 
and 0.2 mM of each dNTP), 0.2 µM of each primer, 1 µL 
of template (10 ng of mgDNA) and PCR-grade water to 
a final volume of 25 µL. The amplification program was 
started with an initial denaturation step at 95 °C for 3 
min, followed by 25 cycles of the following steps: dena-
turation at 94 °C for 30 s, an annealing gradient with tem-
peratures between 51.6 and 60.2 °C and extension at 72 
°C for 30 s. The amplification program was ended with a 
final extension step of 72 °C for 15 min. Genomic DNA 
from Streptomyces polyantibioticus  SPRT was used as a 
positive control. Amplicons were analysed by electropho-
resis on a 0.8% (w/v) agarose gel (containing 10 µg/mL 
ethidium bromide) and visualised under  UV254nm light. 
Amplicons were excised from the agarose gel, purified 
using the Machery-Nagel gel purification kit (purchased 
from Separations), and submitted to the DNA sequenc-
ing facility at the Central Analytical Facility (CAF), Stel-
lenbosch University. Sequencing was performed using 

an Ion Torrent S5, and raw data was received in FASTQ 
format for further metabarcoding analysis. Metadata is 
available in the NCBI BioSample database (http:// www. 
ncbi. nlm. nih. gov/ biosa mple/) under accession num-
bers SAMN35158336-35158364. The data have been 
deposited with links to BioProject accession number 
PRJNA974022 in the NCBI BioProject database (https:// 
www. ncbi. nlm. nih. gov/ biopr oject/).

The open-source package, mothur (v1.44.0, Schloss 
et  al. 2009), was used to perform the metabarcoding 
analyses. Batch scripts were used to conduct the analy-
ses remotely on the Centre for High Performance Com-
puting (CHPC), hosted by the Council for Scientific and 
Industrial Research (CSIR) situated at their Rosebank 
Campus (Cape Town, South Africa). Scripts were queued 
in batches to the CHPC PBSPro scheduler via the ssh 
protocol, and the outputs were intermittently checked 
to ensure no errors occurred during processing. The raw 
sequencing reads were filtered to remove bases below 
a minimum Phred score of 20, followed by removing 
ambiguous bases and merging the reads into a single file. 
VSEARCH was used to remove chimeric sequences. Tax-
onomic classification was performed using Bayesian clas-
sification, with the SILVA 16S rRNA gene database (v138, 
Quast et al. 2013) as reference. Lineages classified as non-
prokaryotic were removed. The remainder were aligned 
to the reference database, ensuring the region of interest 
overlapped across all samples, after which redundancies 
and overhangs were removed. Subsequently, the data 
was normalised by subsampling to the minimum library 
size, and the sequences clustered into Operational Taxo-
nomic Units (OTUs) at a distance-matrix cut-off of 0.03. 
The resultant OTU table and taxonomy file were used for 
downstream analyses.

Statistical analyses
The alpha and beta diversity were analysed using RStudio 
containing R Core version 4.2.0 (R Core Team 2022). The 
data was filtered to focus on the phylum Actinobacteriota 
(reclassified as Actinomycetota; Oren and Garrity 2021). 
Principal Coordinate Analysis (PCoA) and non-met-
ric multidimensional scaling (NMDS) were performed 
based on the Bray-Curtis dissimilarity matrix. Data visu-
alization was performed using the R packages “phyloseq”, 
“dplyr” and “ggplot2” (McMurdie and Holmes 2013; 
Wickham 2016; Wickham et al. 2022). Additional analy-
ses were performed using Primer 7® software (Quest 
Research Limited, Auckland, New Zealand) according 
to the developers’ instructions (Clarke and Gorley 2015; 
Clarke et al. 2016). Analysis of similarity (ANOSIM) was 
based on Spearman rank similarity.

Furthermore, multivariate analyses on the square 
root transformed microbial community data and the 

http://www.ncbi.nlm.nih.gov/biosample/
http://www.ncbi.nlm.nih.gov/biosample/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
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fourth root transformed physicochemical data were per-
formed. For the physicochemical data, Principal Com-
ponent Analysis (PCA) plots were constructed from 
similarity matrices based on Euclidean distances. To 
determine the effect of physicochemical parameters on 
the microbial communities, the most important drivers 
were determined through constrained cluster analyses 
(LINKTREE), which were performed using Bray-Curtis 
similarity matrices of the microbial community and phys-
icochemical data sets (determined using BEST analyses). 
To determine whether any biomarker genera could be 
identified for the different classes (sampling sites), Lin-
ear Discriminant Analysis Effect Size (LefSe) analysis 
was performed via the MicrobiomeAnalyst 2.0 platform, 
using the default parameters (Lu et al. 2023). Core micro-
biome analysis was also performed, with parameters set 
to a sample prevalence of 20% and a relative abundance 
of 0.01%. The outputs were visualised as heatmaps.

Sva0996 marine group bin134 analyses
The Sva0996 marine group bin134 genome sequence 
(Slaby et  al. 2017) was downloaded from GenBank 
(GenBank assembly accession: GCA_002239105.1). The 
Galaxy Platform (The Galaxy Community 2022) was 
used to perform the following analyses: QUAST (Gal-
axy Version 5.2.0 + galaxy1; Gurevich et al. 2013), Busco 
(Galaxy Version 5.4.6 + galaxy0; Simão et  al. 2015), and 
Prokka (Prokaryotic genome annotation; Galaxy Ver-
sion 1.14.6 + galaxy1; Seemann 2014). The genome was 
visualised using Proksee (Grant et  al. 2023), and spe-
cific features identified in the genome using the Alien 
Hunter tool (version 1.1.0) (Vernikos and Parkhill 2006), 
CRISPR/Cas Finder tool (version 1.1.0) (Couvin et  al. 
2018), and the Comprehensive Antibiotic Resistance 
Database (CARD) Resistance Gene Identifier (RGI) tool 
(version 1.1.1) (Alcock et  al. 2020). The biosynthetic 
potential of the Sva0996 marine group bin134 was evalu-
ated using dbCAN3 (Zheng et  al. 2023), eggNOG-map-
per 2.1.9 (Cantalapiedra et  al. 2021), and antiSMASH 
version 7.0.0 (Blin et al. 2023).

Isolation of actinobacteria from SF samples
Actinobacterial strains were isolated using three differ-
ent selective isolation techniques: (1) Soil samples (1 g 
of each sample) were removed from the sampling bags 
using a sterilised spatula, spread out onto a sterile Petri 
dish (90 × 15 mm), and were incubated at room tempera-
ture (22 ± 3 °C) and with variable (day/night) artificial 
fluorescent lighting exposure for 7 days before perform-
ing isolations; (2) 1 g of soil was added to 9 ml Ringer’s 
solution (g/L: 7.2 NaCl, 0.17  CaCl2, 0.37 KCl, pH 7.3–7.4; 
filter-sterilised and autoclaved) containing 25 µg/mL 
rifampicin and 100 µg/mL cycloheximide and mixed for 

15 min at 37 °C on a rotary platform at 15 rpm; and (3) 1 
g of soil was added to 9 mL Ringer’s solution containing 
thirteen glass beads (4 mm; Merck-Millipore) and mixed 
at room temperature (22±3 °C) on a rotary platform at 15 
rpm for 15 min. Ten-fold serial dilutions of the different 
pre-treated samples were prepared in Ringer’s solution 
(up to  10−3), and 100 µL of the  10−1,  10−2, and  10−3 dilu-
tions were plated in duplicate onto the following media: 
International Streptomyces Project medium 2 (ISP2; 
Shirling and Gottlieb 1966), ISP2 supplemented with 
calcium carbonate (ISP2-C; also called GYM Streptomy-
ces medium or DSMZ medium 65), ISP2-C diluted 1:10 
with a Red Sea Salt (RSS; Coral Pro Salt, Red Sea; 38.2 
g/L) solution (ISP2-C 1:10), and M1 (Hames-Kocabas 
and Uzel 2012) (Table S1). All media were adjusted to pH 
7.0 using 1 M KOH before autoclaving and supplemented 
with either 5, 15, 30, 40, or 50 µg/mL rifampicin and 100 
µg/mL cycloheximide or 50 µg/mL nalidixic acid and 100 
µg/mL cycloheximide after autoclaving.

In addition, an enrichment process was employed: 
1 g of soil was added to 9 mL enrichment media (10%, 
v/v, M1, g/L: 1 soluble starch, 0.4 yeast extract, 0.2 pep-
tone, 19.1 RSS) supplemented with 25 µg/mL rifampicin 
and 100 µg/mL cycloheximide and was incubated at 
room temperature (22 ± 3 °C), mixing at 15 rpm for 3 
months. Samples were removed after 2 weeks, 1 month, 
1½ months, 2 months, and 3 months. Ten-fold serial 
dilutions were prepared (up to  10−9) in an RSS solu-
tion (38.2 g/L), and 100 µL of the  10−1 to  10−5 dilutions 
were plated for the 2 weeks and 1-month samples, while 
the  10−5 to  10−9 dilutions were plated for the 1½, 2- and 
3-months samples. All dilutions were plated in dupli-
cate onto M1 supplemented with RSS (M1-RSS; pH 8.0) 
and 50% M1/50% RSS agar (pH 8.0) (Table S1). Isolation 
media were supplemented with either 5, 15, 30, 40, or 
50 µg/mL rifampicin and 100 µg/mL cycloheximide or 
MAST® Selectavial (STAPH/STREP; prepared and used 
as per the manufacturer’s instructions) and 100 µg/mL 
cycloheximide.

Isolation plates were incubated at 30 °C and duplicate 
sets at room temperature (22 ± 3 °C) with a variable (day/
night) artificial fluorescent light exposure and evalu-
ated for bacterial growth on a weekly basis. Actinobac-
terial colonies were selected based on morphology and 
re-streaked onto agar media lacking antibiotics. Pure 
cultures were maintained as stock cultures in 20% (v/v) 
sterile glycerol at -20 °C and − 80 °C.

Isolation of actinobacteria from ANP samples
Actinobacterial strains were isolated from untreated 
sediment samples, as well as mechanical and physical 
pre-treated samples. For the mechanical pre-treat-
ment, 1 g of sediment was added to 9 mL Ringer’s 
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solution containing eleven glass beads (4 mm) and 
mixed on a rotary platform at 15 rpm for 15 min at 
room temperature (22±3 °C). For the physical pre-
treatment, 5 g of sediment was incubated in sterile 
Petri dishes (90 × 15 mm) at 37 °C for 24 h (variable 
day/night artificial fluorescent light exposure). Ten-
fold serial dilutions (up to  10−3) were prepared of 
untreated and pre-treated sediment samples in Ring-
er’s solution, and 100 µL of the  10−1,  10−2, and  10−3 
dilutions were plated in duplicate onto the following 
media: ISP2-C, ISP2-C 1:10, M1-RSS and International 
Streptomyces Project medium 5 (ISP5; Shirling and 
Gottlieb 1966) (Table  S1). Before autoclaving, the pH 
of ISP2-C, ISP2-C 1:10, and M1-RSS were adjusted to 
7.2 using 1 M KOH, while the pH of ISP5 was adjusted 
to 7.0 with 1 M HCl. Media were supplemented with 
15 µg/mL rifampicin and 100 µg/mL cycloheximide 
(15R/C), 15 µg/mL rifampicin and 50 µg/mL potassium 
dichromate (R15/K), 25 µg/mL rifampicin and 100 µg/
mL cycloheximide (25R/C), 25 µg/mL rifampicin and 
50 µg/mL potassium dichromate (R25/K), 100 µg/mL 
penicillin and 100 µg/mL cycloheximide (P/C) or 100 
µg/mL penicillin and 50 µg/mL potassium dichro-
mate (P/K). In addition to serial dilution and plating, 
the stamping method (Hames-Kocabas and Uzel 2012) 
was used for untreated and physical pre-treated sam-
ples. To do this, the samples were lightly ground with 
a sterilised pestle and mortar, and sterile cotton wool 
was used to stamp the ground sediment onto duplicate 
agar plates following a clockwise spiral pattern.

Furthermore, during a second round of isola-
tions, serial dilutions were prepared of untreated and 
mechanical pre-treated samples, and 100 µL of the 
 10−1 dilutions were plated in duplicate onto the follow-
ing media: ISP2-C, ISP2-C 1:10, chitin, and artificial 
seawater (Hames-Kocabas and Uzel 2012) (Table  S1). 
Artificial seawater and chitin agar were adjusted to 
pH 7.2 with 1 M HCl prior to the addition of the agar 
and autoclaving. The ISP2-C and ISP2-C 1:10 agar was 
supplemented with 15 µg/mL rifampicin and 100 µg/
mL cycloheximide (15R/C) or 25 µg/mL rifampicin 
and 100 µg/mL cycloheximide (25R/C). In contrast, 
the seawater and chitin agar were supplemented with 
25 µg/mL nalidixic acid and 100 µg/mL cycloheximide 
(N/C).

Isolation plates were incubated at 30 °C and dupli-
cate sets at room temperature (22 ± 3 °C; exposure to 
variable day/night artificial fluorescent light) and eval-
uated for bacterial growth every week. Actinobacte-
rial colonies were selected based on morphology and 
re-streaked onto agar media lacking antibiotics. Pure 
cultures were maintained as stock cultures in 20% (v/v) 
sterile glycerol at -20 °C and − 80 °C.

Isolation of genomic DNA and 16S rRNA gene sequence 
analysis
Genomic DNA was isolated from SF actinobacterial iso-
lates using a modified bead-beating method (Miller et al. 
1999) as described by Maibeche et  al. (2022). A colony 
PCR protocol was used for the ANP isolates. An actino-
bacterial colony was transferred to 100 µL sterile distilled 
water and vortexed for 5 s. The samples were heated at 95 
°C for 15 min and then cooled at 4 °C for 10 min. A total 
of 1 µL of the final sample was used to amplify the 16S 
rRNA gene by PCR. If the colony PCR was unsuccessful, 
genomic DNA was extracted from ANP isolates with the 
Quick-DNA™ Fecal/Soil Microbe MiniPrep Kit (Zymo 
Research; supplied by Inqaba Biotech) according to the 
manufacturer’s instructions.

The 16S rRNA gene sequence was amplified by PCR 
to determine the taxonomic position of the isolates. 
The universal bacterial primers F1 and R5 and the PCR 
amplification program described by Cook and Meyers 
(2003) were used. The amplified DNA was purified using 
an MSB® Spin PCRapace kit (Stratec Molecular) and 
sequenced by the DNA sequencing facility at CAF (Stel-
lenbosch University, South Africa). The sequences were 
analysed and edited using SnapGene Viewer (5.0.7). For 
identification at the genus level, partial 16S rRNA gene 
sequences were submitted to the 16S-based ID tool on 
the EzBioCloud platform (http:// www. ezbio cloud. net; 
Yoon et  al. 2017). The 16S rRNA gene sequences were 
also submitted to GenBank and have been assigned the 
following accession numbers: OQ993219 – OQ993328.

Results
Actinobacterial diversity – metataxanomics
The actinobacterial diversity of the sampling sites was 
determined using actinobacterial-specific 16S rRNA gene 
primers. Rarefaction analysis showed good sequencing 
coverage (> 99%; Fig. S1). The observed and the predicted 
species richness (Fig. 2a and b) were higher for SF Areas 
2 and 3, while the ANP Ocean and SF Area 1 Deep (A1D) 
had the lowest species richness. Higher actinobacterial 
diversity (Shannon index > 5) was also observed for SF 
Areas 2 and 3, as well as the ANP Dry samples (Fig. 2c). 
The alpha diversity visualised at Order, Family, and 
Genus level can be seen in Figs. S2a, S2b and S2c.

Both sampling sites (SF and ANP) showed variation in 
actinobacterial population composition even within the 
three sub-sites of the main sampling areas (Fig.  3). The 
major taxa shared by both sites mostly include unclassi-
fied and/or uncultured taxa. Defined major shared taxa 
include Blastococcus, Geodermatophilus, Marmoricola, 
Microbacterium, Mycobacterium, Nocardioides, Strep-
tomyces and the Sva0996 marine group. Taxa unique to 
the ANP site, include unclassified Dermabacteraceae 

http://www.ezbiocloud.net
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and Promicromonosporaceae, uncultured Janibacter, 
Euzebya, Brevibacterium, and candidatus Planktoluna. 
Taxa unique to the SF site is more extensive, and include 
Actinocorallia, Actinomadura, Actinomyces, Amyco-
latopsis, Cryptosporangium, Curtobacterium, Frankia, 
Gryllotalpicola, Homoserinibacter, Jiangella, Kineospora, 
Kitasatospora, Kocuria, Kribbella, Nonomuraea, Tsuka-
murella, unclassified Cellulomonadaceae, unclassified 
Frankiaceae, unclassified Kineosporiaceae, unclassified 
Streptosporangiaceae, and Virgisporangium (Fig. 3).

LefSe analysis showed the presence of 61 features 
(genera) with a log Linear Discriminant Analysis (LDA) 
score of more than 2.0 (Fig.  4). The dominant classified 
biomarker genus was identified as the Sva0996 marine 
group (LDA = 6.2; p < 0.001) for site ANP, as Frankia 
(LDA = 5.13; p < 0.001) for SF Area 1, as Streptomyces 
(LDA = 4.85; p < 0.001) for SF Area 2 and as Mycobac-
terium (LDA = 5.99; p < 0.001) for SF Area 3. Of these 
features, the Sva0996 marine group, Streptomyces and 
Mycobacterium occur in all four sites, while Frankia was 
only detected in the SF sampling sites (Table S2). Unclas-
sified Actinobacteria (now Actinomycetes) had the highest 

log LDA score for SF Area 2 (LDA = 6.08; p < 0.001), while 
unclassified Acidimicrobiia had the highest log LDA 
score for SF Area 1 (LDA = 5.98; p < 0.001) (Fig. 4).

Core microbiome analysis showed that unclassified 
Actinobacteria, unclassified Acidomicrobiia, and Myco-
bacterium dominate the SF Area 1 microbiome (Fig. 5a). 
Unclassified and uncultured Actinobacteria (assigned as 
uncultured_ge), unclassified Actinobacteriota, unclassi-
fied Acidomicrobiia, unclassified Microtrichales, Myco-
bacterium and the Sva0996 marine group dominates 
the SF Area 2 (Fig. 5b) and 3 (Fig. 5c) microbiomes, with 
unclassified Micrococcales, Nocardioides, Geodermat-
ophilus, Micromonospora, and unclassified Nocardioid-
eceae also dominating the SF Area 3 microbiome. The 
ANP microbiome is dominated by the Sva0996 marine 
group, unclassified Microtrichales, unclassified Actino-
bacteriota, unclassified Ilumatobacteraceae, uncultured 
Actinobacteria, unclassified Acidomicrobiia, and Nocar-
dioides (Fig. 5d). The predicted core microbiomes of the 
four sites were also reflected in the visualisation of the 
alpha diversity of the top ten genera with the highest 
actual abundance (Fig. 6).

Fig. 2 A Actinobacteria species richness observed, and B predicted (Chao 1 index) for the Springfield Farm (SF) and Agulhas National Park (ANP) 
samples, as well as C the actinobacterial diversity (Shannon index). A1D: Area 1 Deep; A1M: Area 1 Middle; A1T: Area 1 Top; A2D: Area 2 Deep; A2M: 
Area 2 Middle; A2T: Area 2 Top; A3D: Area 3 Deep; A3M: Area 3 Middle; A3T: Area 3 Top; AD: ANP Dry; AO: ANP Ocean; AR: ANP Rocky
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Sva0996 marine group bin134
In order to gain insight into the potential role of the 
Sva0996 marine group in the environments studied (SF 
and ANP), an Sva0996 marine group bin134 genome 
sequence was analysed. The Sva0996 marine group 
bin134 genome sequence consists of 77 contigs, 3 684 
518 bp and a GC content of 64.29% (Fig. S3). Analysis 
of the Prokka-annotated genome using BUSCO, showed 
the presence of 91.9% complete Benchmarking Univer-
sal Single-Copy Orthologs (BUSCOs), 4.8% fragmented 
BUSCOs, and 3.3% missing BUSCOs (see Supplemen-
tary information: BUSCO). The CARD Resistance gene 
identifier tool in Proksee detected the gene, rpsL, which 
can infer aminoglycoside resistance (specifically, strepto-
mycin). The CRISPRCasFinder tool, identified two Cas-3 
Type I and one Cas-4 Type I-II Cas-type/subtypes, as 
well as nine CRISPR sites. In addition, the Alien Hunter 
tool in Proksee predicted the presence of 123 putative 
horizontal gene transfer events. Further analysis of the 
annotated genome showed that the genes typically asso-
ciated with linear genomes, tpg, tap, and ttr (Kirby 2011), 
were absent. An evaluation of the Sva0996 marine group 
bin134 genome for the presence of carbohydrate-active 
enzymes (CAZymes) through the online dbCAN3 server 
showed the presence of 17 predicted CAZymes (predic-
tion based on three separate tools, HMMER: dbCAN, 
HMMER: dbCAN_sub, and DIAMOND: CAZy), and 

21 probable CAZymes (prediction based on two tools) 
(Table  1). No signal peptide sequence was detected 
for any of the predicted CAZymes, and the predicted 
CAZymes included members of the glycoside hydrolase 
(GH) family, the glycosyl transferase (GT) family, the car-
bohydrate esterase (CE) family, and enzymes with auxil-
iary activities (AA).

Analysis of the annotated Sva0996 marine group 
bin134 genome with eggNOG-mapper showed that 20 of 
the 26 COG categories are represented, with categories 
A (RNA processing and modification), Y (nuclear struc-
ture), Z (cytoskeleton), W (extracellular structures), X 
(mobilome: prophages, transposons), and R (general 
function prediction only) not represented. Of the 2682 
proteins annotated (Table 2), 145 were assigned to COG 
category L (replication, recombination, and repair), 57 
to COG category V (defense mechanisms), and 308 were 
assigned to COG category C (energy production and 
conversion), including 33 proteins annotated as lucif-
erase-like monooxygenases, and six as nitroreductases. 
Proteins potentially involved in carbohydrate transport 
and metabolism (COG category G; 94 predicted) include 
the glycoside hydrolases and glucosyl transferases pre-
dicted by dbCAN3. In an analysis of the 110 proteins 
representing COG category Q (secondary metabo-
lites biosynthesis, transport, and catabolism), nine are 
notably predicted to be involved in taurine catabolism 

Fig. 3 Shade plot of the square root transformed relative abundance of the actinobacterial operational taxonomic units detected 
for the Springfield Farm (SF; Areas 1‑3; A1‑A3) and Agulhas National Park (ANP; AD1‑6; AO1‑6; AR1‑6) samples
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(dioxygenases, TauD, TfdA family). A single biosynthetic 
gene cluster (BGC) of 26 073 bp was predicted by the 
online tool, antiSMASH, showing a 38% sequence simi-
larity to the terpene BGC, hopene, encoded for on the 
genome of Streptomyces coelicolor A3(Alcock et al. 2020), 
and with a MiBiG similarity score of 0.33 to a carotenoid 
from Rhodobacter sphaeroides (Fig. S4).

Taxonomic position of actinobacterial isolates
A total of 86 isolates were obtained from sediment sam-
ples collected from ANP (Table  S3). Most isolates (51 
isolates) were obtained from samples collected at the dry 
sites, while the least number of isolates (12 isolates) were 
obtained from samples collected at the rocky sites. Only 
15 of the ANP isolates could be identified to genus level, 

Fig. 4 Linear Discriminant Analysis Effect Size (LefSe) output for the four classes (sites) analysed, representing the 61 features (genera) identified 
with a log LDA score > 2.0. Individual scores of the different features are provided as supplementary material (Table S2)



Page 10 of 24Prins et al. Annals of Microbiology           (2024) 74:18 

with all strains belonging to the genus Streptomyces. For 
the SF soil samples, 128 isolates were obtained (Table S4). 
Most of the isolates (Paix et al. 2019) were isolated from 
the Area 1 middle sample, followed by Area 1 deep (19 
isolates) and Area 2 deep (9 isolates). Only one isolate 
was obtained from samples collected from Area 3. Six-
teen actinobacterial genera representing twelve different 
families and eight different orders within the class Actin-
omycetes are represented among the isolates obtained.

Environmental factors driving actinobacterial diversity
Physicochemical properties were determined for bulk 
samples collected from SF at three depths for the three 
sampling sites and composite samples collected from 
ANP at three different sites (Table 3). The SF Area 1 top 
(A1T) sample consisted of loam (approximately 40% 
sand, 40% silt, and 20% clay; pH 6.3), while the Area 1 
middle (A1M) and deep (A1D) samples consisted of 
clay (pH 6.8 and 7.0, respectively). All samples collected 
from SF Areas 2 and 3 consisted of sand, with a pH range 
of 6.9–7.4 for Area 2 and a pH of 8.0 for Area 3. Sam-
ples collected from ANP had a pH range of 8.6–8.9 and 
mainly consisted of granular particles (Fig. S5). Samples 
from SF Area 1 had a higher total organic carbon content 

than samples from the other two SF sites and samples 
from ANP (Table 3). Samples from SF Area 1 also had a 
much higher content of macronutrients and micronutri-
ents than Areas 2 and 3, with an almost ten-fold higher 
concentration of Na, Ca, Mg, and soluble S, and a five-
fold higher concentration of K and B. The ANP samples 
had a higher Ca concentration than the SF samples but 
had much lower amounts of Cu, Mn, and Fe. The Na 
levels were lower for the ANP samples than for SF Area 
1 samples but higher than for SF Area 2 and 3 samples. 
Only the SF Area 2 middle (A2M) and Area 3 top (A3T) 
samples had resistance readings above 300Ω. The group-
ing of the samples based on the LINKTREE (Fig. S6) and 
principal component (Fig. S7) analyses showed that Ca, 
Mn, pH, and resistance (R) were the main determinants 
for the clustering of the different sampling sites.

According to the BEST analysis (Fig.  7), Ca, pH, and 
Mn are the key environmental drivers determining the 
actinobacterial communities associated with the two 
sampling sites (SF and ANP). Non-metric multidimen-
sional scaling (nMDS) analysis showed a clear difference 
in the actinobacterial communities of the ANP Dry sam-
ples compared to the ANP Ocean and Rocky samples 
(Fig.  8a; key drivers: P, K, Zn, Mn, Na, and resistance), 

Fig. 5 Predicted core microbiomes of A Springfield Farm Area 1, B Springfield Farm Area 2, C Springfield Farm Area 3, and D Agulhas National Park
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while Area 1 (SF) differed from the other two SF areas 
sampled (Fig. 8b; key drivers: all physicochemical param-
eters, except resistance).

Discussion
The Agulhas Plain and surrounding areas represent a 
unique ecosystem. It comprises a coastal marine region 
and inland wetland systems, and is encircled by the Cape 
Fold Mountain ranges. The Heuningsnes estuary and 
De Hoop Vlei, which form part of the Agulhas Plain are 
identified as Ramsar Wetlands of International Impor-
tance (Grenfell et al. 2019). In addition, the Agulhas Plain 
also forms part of the Cape Floristic Region, a recognised 

biodiversity hotspot. The coastal marine area is greatly 
impacted by the Agulhas current, where the warm waters 
of the Indian Ocean mix with the colder Atlantic Ocean, 
greatly influencing the climatic conditions of the south to 
south-east coast of southern Africa (Tim et al. 2023). This 
study provided a snapshot of the actinobacterial diversity 
of two important sites on the Agulhas Plain, providing 
the basis for future studies.

Although the two environments harboured differ-
ent actinobacterial communities, they shared selected 
defined major taxa: Blastococcus, Geodermatophilus, 
Marmoricola, Microbacterium, Mycobacterium, Nocar-
dioides, Streptomyces, and the Sva0996 marine group. 

Fig. 6 Alpha diversity of the top ten genera with the highest count for Springfield Farm (SF) and Agulhas National Park (ANP). A1D: SF Area 1 Deep; 
A1M: SF Area 1 Middle; A1T: SF Area 1 Top; A2D: SF Area 2 Deep; A2M: SF Area 2 Middle; A2T: SF Area 2 Top; A3D: SF Area 3 Deep; A3M: SF Area 3 
Middle; A3T: SF Area 3 Top; AD: ANP Dry; AO: ANP Ocean; AR: ANP Rocky
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An evaluation of reports on the occurrence of these 
taxa provided some insights into their occurrence in the 
ANP and SF sites. Members of the family Geodermat-
ophilaceae, such as Blastococcus and Geodermatophilus, 
are known to produce a range of extracellular enzymes, 
allowing them to survive in diverse environments 
(Montero-Calasanz et  al. 2022). As an example of their 
metropolitan nature, members of the genus Blastococcus 

have been isolated from various environments: sediment 
from the Baltic Sea (Ahrens and Moll 1970); extreme 
hyper-arid Atacama Desert soil (Castro et  al. 2018); an 
ancient Roman pool in Tunisia (Hezbri et al. 2016); ruins 
of a Roman amphitheatre in Tunisia (Hezbri et al. 2017); 
Gurbantunggut Desert in China (Yang et al. 2019); beach 
sediment in Korea (Lee 2006); sea-tidal flat sediment 
(Lee et  al. 2018); an archaeological site in Greece (Urzì 

Table 1 Results output from the dbCAN3 server for the analysis of the Sva0996 marine group bin134 genome sequence. Only results 
confirmed by > = 2 tools are presented. GH = glycoside hydrolase; GT = glycosyl transferase; CE = carbohydrate esterase; AA = Auxiliary 
activity

Gene ID EC# HMMER dbCAN_sub DIAMOND # of Tools

MPNQ01000001.1_211 3.2.1.21|3.2.1.126|3.2.1.37 GH3(32–240) GH3_e175 GH3 3

MPNQ01000001.1_54 ‑ GH2(9‑592) GH2_e67 GH2 3

MPNQ01000001.1_95 ‑ GH15(489–848) GH15_e19 GH15 3

MPNQ01000001.1_96 2.4.1.15 GT20(43–500) GT20_e1 GT20 3

MPNQ01000002.1_14 ‑ GH3(89–315) GH3_e96 GH3 3

MPNQ01000003.1_113 ‑ GH3(91–317) GH3_e96 GH3 3

MPNQ01000004.1_122 ‑ GT4(234–384) GT4_e2125 GT4 3

MPNQ01000004.1_15 ‑ GH3(63–270) GH3_e99 GH3 3

MPNQ01000005.1_25 3.2.1.20|3.2.1.10 GH13_23(31–375) GH13_e182 GH13 3

MPNQ01000009.1_27 ‑ GT4(215–369) GT4_e3552 GT4 3

MPNQ01000018.1_42 3.2.1.21|3.2.1.126|3.2.1.37 GH3(33–245) GH3_e175 GH3 3

MPNQ01000023.1_13 ‑ GH20(1‑229) GH20_e36 GH20 3

MPNQ01000025.1_3 ‑ GT4(179–324) GT4_e2372 GT4 3

MPNQ01000027.1_4 3.2.1.‑ GH2(3‑579) GH2_e66 GH2 3

MPNQ01000029.1_6 ‑ GT51(76–247) GT51_e163 GT51 3

MPNQ01000038.1_27 ‑ GT4(188–346) GT4_e3061 GT4 3

MPNQ01000041.1_21 ‑ AA3_2(2‑526) AA3_e57 AA3_2 3

MPNQ01000001.1_206 3.2.1.8 GH10(6‑318) GH10_e103 N 2

MPNQ01000001.1_56 ‑ GH1(11–400) GH1_e108 N 2

MPNQ01000002.1_206 ‑ GT28(211–374) GT28_e100 N 2

MPNQ01000003.1_115 ‑ GH26(121–242) GH26_e26 N 2

MPNQ01000005.1_106 ‑ CE14(4‑132) CE14_e6 N 2

MPNQ01000006.1_88 3.5.1.115 CE14(8‑142) CE14_e1 N 2

MPNQ01000007.1_52 2.4.1.266 GT81(6‑290) GT81_e0 N 2

MPNQ01000021.1_16 ‑ AA3_2(3‑504) AA3_e4 N 2

MPNQ01000023.1_30 ‑ AA3(5‑505) AA3_e57 N 2

MPNQ01000030.1_9 ‑ CE4 (2‑114) CE4_e209 N 2

MPNQ01000035.1_12 ‑ GT4(201–349) GT4_e2284 N 2

MPNQ01000035.1_13 ‑ GT4(189–344) GT4_e1595 N 2

MPNQ01000035.1_23 ‑ GT4(158–309) GT4_e2034 N 2

MPNQ01000040.1_22 ‑ GT2(2‑157) GT2 N 2

MPNQ01000047.1_19 ‑ CE9(5‑357) CE9_e30 N 2

MPNQ01000050.1_16 ‑ CE14(13–129) CE14_e46 N 2

MPNQ01000035.1_11 ‑ N GT4_e939 GT4 2

MPNQ01000035.1_27 ‑ N GT2 + GT4_e1547 GT2 + GT4 2

MPNQ01000035.1_3 ‑ N GT2 GT2 2

MPNQ01000001.1_169 ‑ N GT94_e7 GT0 2

MPNQ01000002.1_51 ‑ N AA2_e1 AA0 2
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et al. 2004); and from a marble sample collected from the 
Bulla Regia monument in Tunisia (Louati et al. 2022).

Recently, Wang et al. (2023) proposed the reclassifica-
tion of Marmoricola as Nocardioides. Members of this 
genus have also been isolated from diverse environments, 
including marine sediments, estuaries, forest and agricul-
tural soils, volcanic ash, marble, a hot spring, and marine 
sponges, and it is therefore not surprising that this genus 
was detected in both the SF and ANP sites (Wang et al. 

2023). Members of the genus Microbacterium play an 
important role in the health of soil (e.g., the release of 
essential nutrients, plant growth promotion, and removal 
of toxic metals) (Gómez-Ramírez et  al. 2015; Liu et  al. 
2022). They are also highly adaptive and have been found 
in diverse environments, including the high-altitude 
Atacama Desert (Mandakovic et  al. 2020) and various 
marine environments (Kageyama et  al. 2007; Williams 
et al. 2007). Notably, Microbacterium oxydans, which was 

Table 2 Sva0996 marine group bin134 genome analysed using eggNOG to predict COG categories represented based on the 
proteins annotated

COG Category Number of 
proteins 
annotated

J – translation, ribosomal structure and biogenesis 143

K – transcription 104

L – replication, recombination and repair 145

B – chromatin structure and dynamics 0

D – cell cycle control, cell division, chromosome partitioning 36

V – defense mechanisms 57

T – signal transduction mechanisms 33

M – cell wall/membrane/envelope biogenesis 71

N – cell motility 2

U – intracellular trafficking, secretion, and vesicular transport 29

O – posttranslational modification, protein turnover, chaperones 66

C – energy production and conversion 308

G – carbohydrate transport and metabolism 94

E – amino acid transport and metabolism 185

F – nucleotide transport and metabolism 90

H – coenzyme transport and metabolism 100

I – lipid transport and metabolism 180

P – inorganic ion transport and metabolism 105

Q – secondary metabolites biosynthesis, transport and catabolism 110

S – function unknown 466

Combinations:

 BDLTU, BQ 2

 CH, CJ, CO, CP 17

 DHM, DJ 4

 EGP, EH, EQ, EHP, ET, EFGP, EG, EP 66

 FG, FJ, FP 4

 GK, GM 14

 HP, HQ 4

 IM, IQ 124

 JK, JM 4

 KL, KLT, KT 8

 LU 2

 MU 1

 NOU, NU 5

 OV, OU, OT 3

 Not assigned to a COG category 95
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isolated from a coastal marshland, showed the ability to 
produce alginate lyase and laminarinase, two enzymes 
required for the degradation of seaweed, and is therefore 
directly involved in carbon cycling in the marine environ-
ment (Kim et  al. 2013). Similarly, environmental myco-
bacteria are widespread, occurring mostly in cool, wet, 
acidic soil (Walsh et al. 2019), but may also occur in other 
environments, such as coastal swamps and estuaries, 
depending on their environmental preferences (Falkin-
ham III 2009). Very few environmental mycobacteria are 
pathogenic; while some undescribed mycobacterial line-
ages include pathogenic mycobacteria, they are hardly 
ever detected in soil environments (Walsh et  al. 2019). 
Falkinham III (2009) also highlighted the importance 
of mycobacteria in the formation of biofilms and their 
potential to protect themselves, as well as other microor-
ganisms, against toxic metals that may be present in the 
immediate environment.

The occurrence of the genus Streptomyces in both 
marine and peat environments is well documented. 
The members of this genus, due to their abundance, 
have been readily detected, including within eutrophic 

peatlands (Golovchenko et  al. 2022), boreal Sphag-
num peat bogs where several isolated strains exhibited 
cellulolytic activities (Pankratov and Dedysh 2009), 
low-moor peats with varying levels of water-content 
(Zenova et al. 2007), as well as from wetland-associated 
water samples where the isolated Streptomyces strain 
exhibited several antimicrobial activities (Benhadj et al. 
2020). Moreover, due to their ubiquitous nature, mem-
bers of the genus Streptomyces have been detected in 
numerous marine environments, often with a particu-
lar focus on strains producing natural products. These 
include several sites across the Philippine archipelago 
(Tenebro et  al. 2021), marine sediments in the South 
China Sea where genomic analyses revealed common 
characteristics of marine adaptation (Tian et al. 2016), 
a tunicate-associated Streptomyces strain that produces 
griseorhodin A (Li and Piel 2002), coastal sediments in 
São Paulo, Brazil (Tangerina et al. 2020), and a seasonal 
study on marine sediments collected at the Stellwagen 
Bank Marine Sanctuary near Massachusetts, USA, with 
the relative abundance of Streptomyces ranging from 

Fig. 7 LINKTREE analysis showing the most important environmental parameters identified using BEST analysis selecting the actinobacterial 
community structure in the Springfield Farm (Areas 1–3) and Agulhas National Park (ANP) samples. A: R  = 1,00; B%=100; Ca < 0,0146(> 1,05) 
or pH < 0,152(> 0,837) or Mn>‑0,406(<‑0,92); B: R  = 0,47; B%=52; pH>‑1,22(<‑1,79) or Ca<‑0,433(> 0,0146); C: R  = 0,40; B%=47; pH<‑1,22(>‑1,1); 
D: R  = 0,41; B%=40; Mn < 0,0993(> 0,549); E: R  = 0,75; B%=21; pH<‑0,533(> 0,152) or Mn>‑0,116(<‑0,256) or Ca<‑1,17(>‑1,14); F: R  = 1,00; B%=63; 
Mn > 1,07(< 0,549) or Ca<‑0,878(>‑0,623); G: R  = 0,19; B%=29; pH<‑0,989(> 0,152) or Mn > 1,98(< 1,07) or Ca<‑0,95(>‑0,878); H: R  = 0,81; B%=32; 
pH > 1,18(< 1,07) or Ca < 1,05(> 1,11) or Mn<‑0,946(>‑0,935); I: R  = 0,32; B%=16; pH > 1,07(< 0,837) or Ca < 1,11(> 1,29) or Mn>‑0,92(<‑0,935)
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1.57% prevalence in summer, compared to 0.96% in fall 
samples (Heinrichs et al. 2020), to name a few.

The Sva0996 marine group has been detected in vari-
ous marine microbial community studies. The presence 
of this group has been reported in deep-sea sediments 
collected along the Southwest Indian Ridge (Chen et al. 
2016), detected in the Laptev Sea water column above 
and outside a methane seep field (Samylina et al. 2021), 
in temperate and polar coastal sands (Miksch et al. 2021), 
found as a major component of a microbial community 
thriving on biofilm fouling release coating (Papadatou 

et  al. 2021), in seawater samples from the South Sea of 
Korea (Seo et  al. 2017), shown to be involved in com-
munity succession during kelp degradation (Brunet et al. 
2021), present in the water columns of the South China 
Sea (Li et al. 2021), as a major bacterial clade of the South 
Pacific Gyre (Reintjes et  al. 2019), and as an indicator 
species occurring in deep subsurface fluids of a borehole, 
as well as seawater (Jungbluth et  al. 2016). In addition, 
the SVA0996 marine group has also been detected in the 
mucus, tissue, and skeleton of the reef coral Porites lutea 
(Kuang et  al. 2015), the Mediterranean coral, Astroides 

Fig. 8 Non‑metric multidimensional scaling (nMDS) plots for the A Agulhas National Park (ANP) samples and the B Springfield Farm (Areas 1–3) 
samples, showing the actinobacterial community similarities and the key environmental drivers for these communities
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calycularis (Biagi et  al. 2020), found in association with 
marine sponges (Slaby et al. 2017; Turon et al. 2019; Ver-
hoeven 2019; Indraningrat et al. 2022), found in associa-
tion with the brown alga, Laminaria digitata (Ihua et al. 
2020), the macro-alga, Taonia atomaria (Paix et al. 2019), 
and ascidians (Tunicata) (Steinert et al. 2015).

Although the role of the Sva0996 marine group in 
sponges is unknown, Orsi et al. (2016) showed that this 
group is involved in dissolved protein cycling in the 
ocean, while Indraningrat et  al. (2022) reported that 
this taxon may be present where high nitrate concentra-
tions are found, as well as in high productivity areas. A 
study by Biagi et al. (2020) confirmed the potential of this 
marine group to utilise organic nitrogen, where it has 
been shown that stressed reef-building corals produce 
mucus with a higher protein content. Brunet et al. (2021) 
followed the changes in bacterial community struc-
ture over time during the degradation of kelp. During 
the first phase, epiphytic bacterial communities rapidly 
changed to algal polysaccharide degraders, followed by a 
second phase dominated by the Sva0996 marine group. 
Brunet et al. (2021) suggested that this group may act as 
opportunistic scavengers, utilising substrates exposed by 
the first degraders. At the same time, the authors noted 
a change in the bacterial communities in the underly-
ing sediments, where anaerobic taxa involved in sul-
phur and nitrogen cycles dominated. Similarly, a study 
by Chun et al. (2021) proposed that the Sva0996 marine 
group (along with other clades) is involved in the crea-
tion of species-engineered microenvironments and are 
referred to as ‘skeleton’-forming microorganisms or key-
stone species that are responsible for stabilising micro-
bial modules. The authors concluded that the Sva0996 
marine group is part of an essential core group of bac-
terial clades, providing resilience to microbial communi-
ties under biotic and abiotic changes in the coastal waters 
(Chun et al. 2021).

In a study conducted on water columns of the South 
China Sea, Li et  al. (2021) showed that the Sva0996 
marine group could adapt to either a particle-associated 
or free-living lifestyle at the seawater surface. In addi-
tion, the group was not limited to the upper photic ocean 
but was also found in meso- and bathypelagic seawa-
ters, where they are mostly free-living. Furthermore, 
the occurrence of the Sva0996 marine group as a major 
bacterial clade of the South Pacific Gyre (referred to as a 
marine biological desert) highlights the versatility of this 
group and its important role in biogeochemical cycles 
(Reintjes et  al. 2019). In this study, the Sva0996 marine 
group was detected in both the marine and the SF sam-
pling sites, with the highest abundance in the marine 
environment and SF Area 3. The presence of this marine 
group in the SF terrestrial environment is most probably 

due to the continued pressures from the brackish (< 2 g/
kg salts), alkaline (pH 6–8) water of the two main river 
systems in the area (Russell and Impson 2006; Gordon 
et al. 2012).

In a study by Slaby et al. (2017), which focused on the 
metagenome binning of a marine sponge microbiome, 
an Sva0996 marine group genome bin134 was obtained. 
This metagenome-derived genome was downloaded and 
analysed during this study to gain more insight into the 
biosynthetic potential and lifestyle of this representative 
of the uncultured Sva0996 marine group. The Sva0996 
marine group is classified within the Order Acidimicro-
biales (Class Acidimicrobiia, Phylum Actinomycetota), 
and the proposed unclassified Candidatus Hopanoidi-
voraceae family, which is related to the validly published 
Acidimicrobiaceae, Iamiaceae, and Ilumatobacteriaceae 
families. The Sva0996 marine group bin134 genome size 
(3.68 Mbp) and G + C% content (64.3%) falls within the 
reported size range (2.16 Mbp – 6.22 Mbp) and G + C% 
content (47.7–74.9%) when compared to other members 
of the Order Acidimicrobiales (Table 4). The fact that the 
typical genes associated with linear genomes were not 
detected does not necessarily mean that the genome is 
circular. Annotation of the genome is difficult due to the 
taxonomic lineage, the sequence may be incomplete, the 
genes may be found on a plasmid, or the bacterium may 
house homologues to tpg and tap.

Further analysis of the genome sequence highlighted 
the potential ability of this bacterium to adapt to various 
environments. For example, an adaptive immune system 
(CRISPR-Cas; Xu and Li 2020), an antibiotic-resistance 
gene, various CAZymes, nitroreductases, taurine (and 
other) degrading enzymes, and a biosynthetic gene clus-
ter encoding for the production of a carotenoid pigment, 
are all present. In addition to the CRSIPR-Cas system and 
the antibiotic-resistance gene, the bacterium’s potential 
to produce a carotenoid pigment is of great importance 
in terms of self-protection/defence. Carotenoids can pro-
tect from UV radiation and negate oxidative stress/dam-
age due to their antioxidant properties. Carotenoids have 
also been reported to be involved in membrane fluidity, 
allowing producers to adapt cell membrane fluidity and 
structure under low-temperature conditions (Vila et  al. 
2019), supporting the potential of this Sva0996 marine 
group to survive at different ocean depths. The potential 
role of the Sva0996 marine group as secondary colonis-
ers can be seen in the biosynthetic potential of the strain 
represented by bin134 to produce degradation enzymes. 
The presence of CAZymes (as predicted by dbCAN3 
and eggNOG mapper), shows the potential of the strain 
to utilise polysaccharide polymers as potential carbon 
sources (e.g., GH3, GH2, GH10, GH13), but lacks the 
enzymes required for the release of these polymers from 
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larger structures such as lignocellulose and algal biomass 
(no polysaccharide lyases or lignin-degrading enzymes 
predicted). Nitroreductases are responsible for reduc-
ing nitroaromatics, compounds typically introduced into 
the environment due to human activities, e.g., they are 
used in the production of pesticides, dyes, polymers, and 
explosives. By including nitroreductases in biodegrada-
tion pathways, bacteria have shown the ability to utilise 
these toxic compounds as sources of carbon, nitrogen, 
and energy (Ju and Parales 2010; Pitsawong et al. 2014). 
In addition, the presence of taurine degradation path-
ways further highlights the importance of this group of 
bacteria in the marine environment and supports their 
proposed role as keystone species (Brunet et  al. 2021; 
Chun et  al. 2021). Taurine is an amino acid-like com-
pound released into the marine environment during the 
decomposition of marine organisms, including algae, as 
dissolved organic matter. The degraded taurine could 
potentially serve as a source of carbon, nitrogen, sul-
phur, and energy, as well as other important sulphur and 
nitrogen species (e.g., ammonium, sulphate, etc.) for 
the Sva0996 marine group and microorganisms found 
in their immediate environment (Clifford et  al. 2019). 
The potential of the SVa0996 marine group to adapt to 
diverse environments may also explain its potential abil-
ity to survive in the SF terrestrial environment where, as 
in the marine environment, it can be envisaged playing 
a key role in stabilising/providing resilience to nearby 
microbial communities.

The selective isolation of ‘rare’ actinobacteria from 
various types of environments has mostly been driven 
by bioprospecting studies focused on antibiotic dis-
covery (Hayakawa 2008; Goodfellow and Fiedler 
2010). Actinobacteria, notably members of the genus 

Streptomyces and Micromonospora, are well-known 
producers of antibiotics (Subramani and Aalbersberg 
2013). Standard isolation techniques typically result 
in the re-isolation of known antibiotic-producing 
strains, notably streptomycetes, which drove the need 
for alternative isolation approaches. Since antibiotic-
producing actinobacteria were mostly isolated from 
terrestrial soil, selective isolation techniques were pre-
viously mostly aimed at application to terrestrial sam-
ples (Hayakawa 2008). However, work performed by 
Mincer et al. (2002) and Maldonado et al. (2005, 2009) 
expanded the use of selective isolation techniques to 
the marine environment. The present study used vari-
ous isolation techniques to isolate diverse actinobac-
terial genera, specifically to isolate more ‘rare’ type 
actinobacteria. A combination and/or variation of the 
protocols described by Mincer et al. (2002), Maldonado 
et  al. (2005, 2009), and Jose and Jha (2017) were suc-
cessfully applied. Even though Jose and Jha (2017) iso-
lated a range of well-known actinobacterial genera 
(Actinomadura, Glycomyces, Micromonospora, Nocar-
dia, Nocardiopsis, Saccharomonospora, and Streptomy-
ces), when Huang et al. (2021) applied similar isolation 
techniques, they succeeded in isolating strains repre-
senting 24 genera, including ‘rare’ actinobacteria gen-
era. Micromonospora and Streptomyces strains were 
also isolated in the present study. However, ‘rare’ type 
isolates included members of the genus Actinophyto-
cola, Actinopolymorpha, Blastococcus, Isoptericola, 
Kocuria, Myceligenerans, Ornithinimicrobium, and 
Promicromonospora. There is a continued need for 
isolation studies since it allows for the generation of 
large culture collections that serve as a rich source of 
genomic data that can further provide insights into the 

Table 4 The genome size and G + C% content of representative type species of validly published genera assigned to validly published 
families within the Order Acidimicrobiales 

Family Genus Type species Genome size 
(Mbp)

G + C% content

Acidimicrobiaceae Acidiferrimicrobium Acidiferrimicrobium austral DSM 106,828T 4.07 73.2

Acidimicrobium Acidimicrobium ferrooxidans DSM 10,331T 2.16 68.3

Acidithrix Acidithrix ferrooxidans Py‑F3T 4.02 47.7

Ferrimicrobium Ferrimicrobium acidiphilum  T23T 3.09 55.3%

Ferrithrix Ferrithrix thermotolerans DSM 19,514T 2.49 51.1%

Iamiaceae Actinomarinicola Actinomarinicola tropica SCSIO 58,843T 3.72 72.6

Aquihabitans Aquihabitans daechungensis No genome 
sequence available

N/A

Iamia Iamia majanohamensis DSM 19,957T 4.58 74.9

Rhabdothermincola Rhabdothermincola sediminis KCTC 49,500T 3.29 70.5

Ilumatobacteraceae Desertimonas Desertimonas flava SYSU  D60003T 6.22 70.2

Ilumatobacter Ilumatobacter fluminis DSM 18,936T 4.78 68.6
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physiology and ecological role of the bacteria within 
the targeted environment (Huang et  al. 2021). Under-
standing the target environment (e.g., physicochemical 
properties) can further provide insights into the type of 
selective isolation approaches to take in the search for 
novel ‘rare’ actinobacterial genera (Goodfellow and Fie-
dler 2010).

Analysis of the physicochemical properties showed that 
the majority of the samples were characterised as sand 
(0.37–0.67%), while samples from SF Area 1 were charac-
terised as loam (5.06%) and clay (1.6–2.49%). Soil texture 
determines the organic carbon content (Bemlab, 2020), 
with loam or clay soils typically containing > 1.2% organic 
carbon. Therefore, it is not surprising that samples from 
SF Area 1 had a higher organic carbon content than the 
other samples. The cation exchange capacity (CEC) also 
tends to be higher in soils containing clay and organic 
matter, but will vary depending on the type of clay and 
the soil pH (Botta 2013; Eurofins Apal 2020). The CEC 
refers to the ability of soil to hold/adsorb and release 
exchangeable cations such as  Ca2+,  Mg2+,  Na+, and  K+, 
which in turn influences the soil structure stability, nutri-
ent availability, and soil pH (e.g., the release of  H+ ion will 
result in a decrease in soil pH). The fact that samples col-
lected from SF Area 1 mainly consisted of loam and clay 
supports the occurrence of 10-fold or 5-fold higher levels 

of the cations. The higher concentration of sulphur in the 
samples collected from SF Area 1 is also not surprising, 
since sulphate ions leach out in sandy soils (Botta 2013).

The soil texture will also influence the levels of trace 
elements where sandy soil is found to be inherently low 
on trace elements (Eurofins Apal 2020). Furthermore, 
wetland environments that are typically sandy, saline, 
calcareous or compacted, and rich in organic matter typi-
cally have a Zn deficiency. Therefore, it is not surprising 
that samples collected in this study were greatly deficient 
in Zn, ranging from 0.1 to 9.0 mg/kg. In addition to Zn, 
Cu also typically occurs at low levels (10-40.5 mg/kg) 
(Dos Santos et al. 2013). Samples collected in this study 
were greatly deficient in Cu, ranging from 0.01 to 1 mg/
kg. Furthermore, Cu, Mn, and Zn are less available and 
typically in insoluble form in high pH soils, as observed 
for the marine samples (Fig.  9). Similarly, Fe deficiency 
has been found to occur at  pHKCl > 6.0 (Bemlab 2020). 
This was observed for the marine samples during this 
study.

An analysis of the effect of the physicochemical proper-
ties on the actinobacterial communities of the two main 
sites targeted in this study showed that the overall com-
munity composition is mostly driven by pH, calcium, and 
manganese (Fig.  9). It is clear from the various studies 
on peat and marine samples that soil or sediment pH is 

Fig. 9 Main physicochemical drivers influencing actinobacterial communities for the Agulhas National Park (ANP) and the Springfield Farm 
(SF) samples (A1D: Area 1 Deep; A1M: Area 1 Middle; A1T: Area 1 Top; A2D: Area 2 Deep; A2M: Area 2 Middle; A2T: Area 2 Top; A3D: Area 3 Deep; 
A3M: Area 3 Middle; A3T: Area 3 Top; AD: ANP Dry; AO: ANP Ocean; AR: ANP Rocky). Elemental factors are scaled – larger spheres indicated more 
pronounced effect on community structure
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considered one of the key aspects that influences the soil 
biological, physical and chemical properties. For example, 
it has a considerable influence on the soil microbial pop-
ulation and the availability of soil nutrients (Motsara and 
Roy 2008; Botta 2013; Neina 2019). At low pH, trace ele-
ments become more soluble and available to plants and 
microorganisms. In contrast, mineralizable carbon and 
nitrogen increase with an increase in soil pH. It is there-
fore not surprising that microbial growth typically occurs 
at pH 5.5–8.8, where nutrient and trace element availabil-
ity is at maximum (including calcium and manganese), 
and increased enzyme activities and biodegradation 
occur (Neina 2019). When separating the communities 
according to sampling site, it was found that the act-
inobacterial communities at the marine site (ANP) were 
driven by P, K, Zn, Mn, Na, and resistance. Low resist-
ance is an indication of a high concentration of soluble 
salt, where soil with a resistance of < 300Ω is regarded 
as saline (Botta 2013; Bemlab 2020). Samples collected 
from all three areas showed a different degree of salinity, 
with SF Area 1 and the marine sediment samples (ANP) 
being the most saline (70–160Ω), followed by SF Area 2 
(160–310Ω) and SF Area 3 (140–580Ω) (Fig. 9). A study 
by Lozupone and Knight (2007) showed that salinity is 
most probably the most important driver for the global 
environmental distribution of bacterial diversity, thereby 
influencing the bacterial community composition.

Conclusion
Bacteria and other microorganisms play an essential 
role in the health of an environment and are typically 
used as biomarkers/indicators of ecological health, yet 
we know very little about their diversity in many of our 
natural protected areas. This study served as a reminder 
of the interconnectedness of environments found in 
close proximity. We focused on a marine environment 
that is currently part of a national park, while the sec-
ond site, which is approximately 10 km inland, forms 
part of the vast Agulhas Plain, which, up until 8000 
years ago, was still inundated by the ocean. Remnants 
of marine actinobacteria are still visible in the terres-
trial sampling site, as was evident in the detection of the 
Sva0996 marine group in the SF samples, most notably 
in Area 3. It is clear that we only have a snapshot of the 
bacterial diversity associated with both sampling sites. 
Additional research will be required to determine the 
diversity associated with the larger ecological niches in 
the area, including the saltpan, the mountainous region 
with a natural underground spring, and the extensive 
dune systems located near the SF and ANP sampling 
sites, and whether the Sva0996 marine group could 
potentially play a key role in these environments. The 

additional information on bacterial diversity will then 
provide us with a foundation from which we can build 
a better understanding of how ecological changes, such 
as those brought about by climate change and invasive 
species, may affect the marine environment, related 
ecosystems, and historically inundated marine sites. 
This knowledge can be gained through the continu-
ous monitoring of microbial populations on a seasonal 
and annual basis and will be the focus of our ongoing 
studies.
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