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Comparative genomic and transcriptomic 
analyses reveal distinct response strategies 
to hypoxia by Vibrio parahaemolyticus isolates 
of clinical and aquatic animal origins
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Abstract 

Purpose  Vibrio parahaemolyticus is a leading seafood borne pathogen worldwide. The aim of this study was to deci-
pher the response mechanism of V. parahaemolyticus isolates of clinical and aquatic animal origins to the hypoxic 
condition, which challenges the bacterial survival in the host and in the environment.

Methods  Growth profiles of V. parahaemolyticus isolates (n = 5) of clinical and aquatic animal origins were examined 
at different stress conditions (osmolality, acid, temperature, and O2 concentrations). Draft genomes of the V. para-
haemolyticus isolates were determined using the Illumina sequencing technique. Comparative genomic analysis were 
performed to identify and validate the hypoxic tolerance-related genes.

Results  The V. parahaemolyticus isolates had an oxygen concentration-dependent growth mode, and the 10% O2 
condition strongly inhibited the bacterial growth, when incubated in TSB medium (pH 8.5, 3% NaCl) at 37 °C. Unex-
pectedly, in marked contrast to the normal 21% O2 condition, the 10% O2 treatment for 24 h significantly increased 
biofilm formation of V. parahaemolyticus isolates (p < 0.05). Draft genome sequences of four V. parahaemolyticus 
isolates of aquatic animal origins were determined (4.914–5.3530 Mb), which carried mobile genetic elements 
(n = 12–29). Genome-wide gene expression changes triggered by the hypoxic condition were further examined. 
Comparative transcriptomic analyses unveiled multiple molecular strategies employed by the bacterium to mitigate 
the cell damage caused by the hypoxia. Of note, the pathogenic V. parahaemolyticus ATCC17802 down-regulated 
and/or shut down ten metabolic pathways to reduce cell viability and maintain cell structure under the hypoxic stress.

Conclusions  The results of this study fill prior gaps in the response mechanism of V. parahaemolyticus to the hypoxic 
condition. Different tolerance to hypoxia contributes to the persistence of pathogenic V. parahaemolyticus 
in the niches.
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Introduction
Vibrio parahaemolyticus is a Gram-negative bacterium 
that inhabits in marine and estuarine environments 
worldwide (Li et  al. 2019). Consuming raw seafood, 
incomplete food processing, or cross-contamination 
during food processing can lead to V. parahaemolyticus 
infection in humans. The clinical manifestations are gas-
troenteritis, organ infection, septicaemia, and even death 
(Li et  al. 2019). In the United States, more than 50% of 
foodborne gastrointestinal-Vibriosis cases are caused by 
V. parahaemolyticus (Karan et  al. 2021), which leads to 
about 80,000 illnesses each year (https://​www.​cdc.​gov/​
Vibrio/, accessed on November 1, 2022). In China, a 
national surveillance of 152,792 patients of all ages with 
acute diarrhea in 31 provinces was administered in 2009–
2018. V. parahaemolyticus was found to be the third 
common bacterial pathogen and contributed to 10.83% of 
all positive detection (Wang et al. 2021). The pathogenic-
ity of V. parahaemolyticus is strongly associated with the 
expression of thermostable direct hemolysin (TDH) and/
or TDH-related hemolysin (TRH) (Pazhani et al. 2021).

V. parahaemolyticus is frequently detected in seafood 
(Vu et  al. 2022). The elevated seawater temperatures 
caused by rising global temperatures from climate change 
may affect transmission of waterborne pathogenic bacte-
ria (Murray et al. 2020; Tong et al. 2022). For instance, the 
number of days per year suitable for Vibrio in the Baltic 
Sea and along the north east coast of the United States 
reached 107 in 2018, double the early 1980s baseline 
(Murray et al. 2020). As the sea temperature rises, oxygen 
(O2) becomes less soluble via a process known as deoxy-
genation (Gao et al. 2012). Low oxygen condition refers 
to oxygen partial pressure of 0–10% (Chen et  al. 2007). 
Compared to strictly aerobic or strictly anaerobic condi-
tions, the hypoxic zone has unique biological properties 
in the environment (Pohl et al. 2022).

The respiration of oxygen is the main source of energy 
for biological cells (Bueno et  al. 2020). The low oxygen 
condition impacts on cellular enzymatic activity, such as 
dehydrogenase and superoxide dismutase (Obbard et al. 
1994; Reaney et  al. 2005), and also change how quickly 
organisms metabolize and respire (Oschlies et al. 2018). 
Studies have indicated that waterborne pathogen Vibrio 
cholerae can exchange common oxygen respiratory ter-
minal oxidases with high-oxygen-affinity terminal oxi-
dases (H–O-ATOs), using the fermentation pathway, 
with some electron acceptors (EAs) such as fumarate, 
and nitrate (Bueno et al. 2018; Heidelberg et al. 2000). It 
has also been reported that biofilm formation of com-
mon pathogens Pseudomonas aeruginosa, Streptococ-
cus aureus, and Escherichia coli induces the production 
of hypoxia-related enzymes such as H–O-ATOs, nitrate 
reductases, and anaerobic ribonucleotide reductases 

(Crespo et  al. 2016; Jo et  al. 2017; Létoffé et  al. 2017). 
Biofilm, constructed primarily by autogenic extracellu-
lar polymeric substances, can protect bacteria from the 
environmental stress, hinder phagocytosis, and thus con-
fer the capacity for long-term colonization and persis-
tence in the host (Thi et al. 2020). The enteric pathogen 
V. parahaemolyticus can access, colonize, and proliferate 
within the human intestine with low oxygen level, caus-
ing severe diarrhea disease (Bueno et al. 2020; Sun et al. 
2022). Nevertheless, to the best of our knowledge, how V. 
parahaemolyticus responses to the low oxygen condition 
has not yet been unveiled so far.

In our previous studies, a number of V. parahaemolyti-
cus isolates of aquatic animal origins were isolated, iden-
tified and characterized (Su and Chen 2020; Sun et  al. 
2014; Xu et al. 2022a; Xu et al. 2022b; Yang et al. 2020; Yu 
et al. 2022; Zhu et al. 2020). Based on these studies, in the 
present study, we deciphered for the first time the fitness 
mechanism of V. parahaemolyticus of aquatic animal 
and human clinical origins under the hypoxic condition. 
The major objectives of this study were (1) to investigate 
growth features of V. parahaemolyticus isolates (n = 5) 
at different concentrations of oxygen (21–5% O2); (2) 
to monitor dynamic process of biofilm formation, and 
observe morphological cell structure changes of the V. 
parahaemolyticus isolates at the hypoxic condition (e.g., 
10% O2); and (3) to decipher the molecular mechanism 
of V. parahaemolyticus response to the hypoxic condition 
by comparative genomics and transcriptomics analyses. 
The results of this study provide the first experimental 
evidence for multiple molecular strategies developed by 
V. parahaemolyticus to deal with the hypoxia.

Materials and methods
V. parahaemolyticus strains and culture conditions
The V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 
strains (Table  1) were individually inoculated (1%, v/v) 
into 5-mL Tryptone Soya Broth (TSB) (Beijing Land 
Bridge Technology, Beijing, China), and routinely incu-
bated aerobically with shaking at 180 r/min at 37 °C incu-
bator (Shanghai Zhichu Instrument, Shanghai, China). 
V. parahaemolyticus ATCC17802 was used as a positive 
control strain, which was first isolated in 1950, lead-
ing to the outbreak of human acute gastroenteritis in 
Japan (Fujino et  al. 1953). The overnight cultures were 
re-inoculated in fresh TSB, incubated to middle logarith-
mic growth phase (mid-LGP), and used in the following 
assays.

Antibiotic resistance and heavy metal tolerance assays
The V. parahaemolyticus isolates was tested for antibiotic 
susceptibility using the standard disc diffusion method 
of Clinical and Laboratory Standards Institute (CLSI, 

https://www.cdc.gov/Vibrio/
https://www.cdc.gov/Vibrio/
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M100-S28, 2018), USA. The Mueller–Hinton (MH) 
medium and ten antibiotic discs were purchased from 
OXOID, Basingstoke, UK. Escherichia coli ATCC25922 
was used as a quality control strain (Su and Chen 2020).

Tolerance of the V. parahaemolyticus isolates to heavy 
metals was examined using the standard broth dilu-
tion testing (microdilution) (Su and Chen 2020; Xu et al. 
2022a; Yu et  al. 2022). Eight heavy metals (Analytical 
Reagents) were purchased from Sinopharm Chemical 
Reagent Co., Ltd., Shanghai, China. E. coli K12 was used 
as a quality control strain (Su and Chen 2020).

Growth curve assay of the V. parahaemolyticus isolates 
at different NaCl concentrations, pH and temperatures
The TSB medium was individually adjusted to different 
NaCl concentrations (0.5%, 1%, 2%, 3%, 4%, and 5%) and 
pH values (6.0, 6.5, 7.0, 7.5, 8.0, and 8.5) (Sun et al. 2014). 
Growth curves of the V. parahaemolyticus isolates under 
the different NaCl (0.5–5%), and pH (6.0–8.5) conditions 
were individually measured at 37 °C for 40 h using Mul-
timode Microplate Reader (BioTek Instruments, USA). 
The absorbance value at 600  nm (OD600) was used as a 
parameter for bacterial biomass (Yao et al. 2020). Growth 
curves of the V. parahaemolyticus isolates in the TSB 
(pH8.5, 3% NaCl) were also measured at 37 °C, and 25 °C 
for 40 h, respectively.

Growth curve assay of the V. parahaemolyticus isolates 
at different concentrations of O2
Growth curves of the V. parahaemolyticus isolates at dif-
ferent concentrations of O2 were measured as described 
previously (Tian et  al. 2020) with minor modifications. 
Briefly, the V. parahaemolyticus isolates were individu-
ally inoculated in the 5-mL TSB (pH8.5, 3% NaCl), which 
was adjusted and equilibrated to different concentrations 
of O2 (21%, 18%, 15%, 10%, and 5% O2) using the nitro-
gen-blowing instrument (Wen Dong Chemical, Shanghai, 

China). The O2 concentrations were monitored using 
CY-12C Oxygen Meter (Hangzhou Jiachang Electronic 
Technology Co., Ltd, Hangzhou, China). Under the dif-
ferent O2 conditions (21–5% O2), V. parahaemolyticus 
isolate was individually inoculated into thirty glass cul-
ture tubes (15 × 1.6 cm), which were sealed with sealing 
film (Beideng Medical Co., Ltd., Jiangsu, China), and 
incubated with shaking at 180 r/min at 37  °C. Instead 
of a bioreactor, the simple continuous culture condition 
allowed to measure OD600 values every 4 h for 40 h from 
three independent tubes using the Multimode Micro-
plate Reader (BioTek Instruments, USA). Meanwhile, O2 
concentrations in air within the tubes were measured 
correspondingly. Low oxygen condition refers to oxygen 
partial pressure of 0–10%, which corresponds to a range 
of dissolved oxygen in water body at room temperature 
and pressure of 0–4.5 mg/L (Chen et al. 2007).

Biofilm formation assay
Biofilm formation of the V. parahaemolyticus isolates 
was determined using the crystal violet staining method 
as described in our previous report (Yang et  al. 2020). 
Briefly, 1  mL/well of each V. parahaemolyticus culture 
(adjusted OD600 = 0.4) was inoculated into 12-well bacte-
rial culture plates (Shanghai Sangon Biological Enginee-
ing Technology and Service Co., Ltd., Shanghai, China). 
The plates were statically incubated at the 21% O2, and 
10% O2 conditions, respectively. Biofilms formed at 
12 h, 24 h, 36 h, 48 h, and 60 h at 37  °C were individu-
ally stained, washed, fixed, and measured as described 
previously (Yang et al. 2020). The 0.1 M phosphate buffer 
saline (PBS) (pH 7.2–7.4), and 0.25% crystal violet were 
purchased from the Sangon (Shanghai, China).

Scanning electron microscope (SEM) assay
Preparation of samples for SEM assay was performed 
according to the method described previously (Yang et al. 

Table 1  The phenotype features of the V. parahaemolyticus isolates used in this study

-: unavailable

Strain Origin Toxin gene Resistance phenotype

tdh trh Heavy metal Antimicrobial 
agent

Source

B8-26 Shellfish (Solen 
strictus)

- - Cu2+/Hg2+/Cd2+/Zn2+ AMP/KAN/RIF/
STR

This study

B1-21 Shellfish (Cor-
bicula aurea)

- - Hg2+/Zn2+/Ni2+/Pb2+ AMP/KAN/RIF/
STR

This study

N2-5 Shrimp (Oratos-
quilla oratoria)

- - Hg2+/Cd2+ AMP/KAN/RIF/
STR/TET

This study

L7-40 Fish (Ctenophar-
yngodon idellu)

- - Hg2+/Cd2+/Cr2+/Zn2+ AMP/KAN/RIF/
STR

This study

ATCC17802 Shirasu-food -  +  Hg2+/ Zn2+ AMP Fujino et al. 1953
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2020). Briefly, the V. parahaemolyticus isolates were indi-
vidually incubated in the TSB (3% NaCl, pH 8.5) at the 
21% O2, and 10% O2 conditions at 37 °C for 24 h, respec-
tively. Aliquots of 1.5-mL bacterial culture were centri-
fuged at 8000 g for 5 min at 4 °C, and the cell pellet was 
wash with 1 × PBS (pH 7.2–7.4, Sangon, China), fixed 
with glutaraldehyde (Bioengineering Co., Ltd., Shanghai, 
China), and observed using the SU5000 SEM (Hitachi, 
Tokyo, Japan, 5.0 kV, × 30,000).

Genome sequencing, assembly, and annotation
The V. parahaemolyticus isolates were routinely incu-
bated in the TSB (3% NaCl, pH 8.5) at 37 °C to the mid-
LGP. The genomic DNA was prepared using TIANamp 
Bacteria DNA Kit (Tiangen Biochemical Technology 
Co Ltd., Beijing, China). Three separately produced 
DNA samples were used for each of the V. parahaemo-
lyticus isolates. Only high quality genomic DNA samples 
(A260/280 = 1.8–2.0) were subjected to genome sequencing 
(Xu et al. 2022a).

Whole-genome sequencing was conducted by Shang-
hai Majorbio Bio-Pharm Technology Co., Ltd. (Shang-
hai, China) using the Illumina Hiseq × 10 (Illumina, San 
Diego, CA, USA) platform (Xu et  al. 2022a). The insert 
size of PE150 (pair-end) sequencing was 400  bp. Low-
quality sequence filtering; high-quality sequence assem-
bly; annotation of coding sequences (CDSs), rRNA genes, 
and tRNA genes; and prediction of Clusters of Ortholo-
gous Groups (COG) of proteins were performed using 
the same software with default parameters as described 
in our recent report (Xu et al. 2022a).

The virulence factor database (http://​www.​mgc.​ac.​
cn/​VFs) and antibiotic resistance gene database (http://​
arpca​rd.​Mcmas​ter.​ca) were used to detect virulence- and 
antibiotic resistance-related genes in the V. parahaemo-
lyticus genomes, respectively. Genomic isolands (GIs), 
prophages, integrons (INs), insertion sequences (ISs), 
and clustered regularly interspaced palindromic repeats 
(CRISPR)-Cas systems were predicted using the same 
software with default parameters as described in our 
recent report (Xu et al. 2022a) The MGEs were ordered 
according to the numbers of the Scaffolds on which they 
were present (see the corresponding Supplementary 
Tables).

Phylogenetic tree assay
A total of seventy-eight V. parahaemolyticus isolates 
were subjected for a phylogenetic tree, of which complete 
genome sequences of seventy-three V. parahaemolyticus 
isolates were downloaded from the GenBank database, 
together with draft genome sequence of V. parahaemolyt-
icus ATCC17802 (Table S1). Amino acid data sets of sin-
gle-copy orthologs of the V. parahaemolyticus genomes, 

coupled with the four genomes determined in this study, 
were analyzed using OrthoFinder (version 2.2.6) software 
(Emms and Kelly 2019). The phylogenetic tree was con-
structed using the RAxML (version 8) software (Stamata-
kis 2014) with 1,000 bootstrap replications and a cut-off 
threshold of ≥ 50% bootstrap values.

Illumina RNA sequencing and analysis
The V. parahaemolyticus isolates were individually incu-
bated in the TSB (3% NaCl, pH 8.5) under the 10% con-
dition at 37  °C for 24 h. Total RNA was extracted using 
RNeasy Protect Bacteria Mini Kit, QIAGEN RNeasy 
Mini Kit. The DNA was removed from the extracted 
RNA samples using RNase-Free DNase Set (QIAGEN 
Biotech Co. Ltd., Frankfurt, Germany). The Illumina 
RNA-sequencing was conducted by Shanghai Majorbio 
Bio-pharm Technology Co. Ltd. (Shanghai, China) using 
Illumina HiSeq 2500 platform (Illumina, USA). Three 
separately prepared RNA samples were used for each of 
the V. parahaemolyticus isolates. The V. parahaemolyti-
cus isolates grown under the 21% O2 condition were indi-
vidually used as controls.

Gene expression was analyzed using the RNA-Seq 
by Expectation–Maximization (RSEM) software (ver-
sion1.3.3, http://​dewey​lab.​github.​io/​RSEM/). The crite-
ria of fold changes ≥ 2.0 or ≤ 0.5 and p-values < 0.05 were 
used to define differentially expressed genes (DEGs). 
Gene set enrichment analyses (GSEA) were performed 
if the enrichment test p-values were less than 0.05 (Yang 
et al. 2020; Yu et al. 2022).

Reverse transcription real time‑quantitative PCR (RT‑qPCR) 
assay
Reverse transcription was performed using Prime-
ScriptTM RT reagent Kit with gDNA Eraser (Perfect Real 
Time) (QIAGEN Biotech Co. Ltd., Hilden, Germany). 
The TB Green® Premix Ex Taq™ II (TliRNaseH Plus) 
(Takara Biomedical Technology Co., Ltd., Beijing, China) 
was used for relative quantitative PCR with 16 s RNA as 
the internal reference gene. The RT-qPCR reaction was 
performed using the Fast Real-Time analyzer (Applied 
Biosystems, Foster City, California, USA). with the fol-
lowing protocol: 50 °C for 2 min; 95 °C pre-denaturation 
for 10 min; and 95 °C denaturation for 15 s, 60 °C anneal-
ing for 1 min, for 40 cycles. The relative expression levels 
of target gene and internal reference gene were calculated 
by 2−ΔΔCt (Yang et  al. 2020). The primers targeting the 
representative DEGs were designed (Table S2), and syn-
thesized by the Sangon (Shanghai, China).

Statistical analysis
The experimental data were analyzed using the SPSS 
software (version 17.0, SPSS Inc., Chicago, IL, USA). 

http://www.mgc.ac.cn/VFs
http://www.mgc.ac.cn/VFs
http://arpcard.Mcmaster.ca
http://arpcard.Mcmaster.ca
http://deweylab.github.io/RSEM/
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Differences between the means and changes in the sam-
ples were compared by one-way analysis of variance 
using the least-significant difference (LSD) method, with 
the level of significance set at p < 0.05. All tests were con-
ducted in triplicate.

Results
Phenotypes of the V. parahaemolyticus isolates
V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 
strains were used in this study, which were isolated from 
two species of shellfish (Solen strictus and Corbicula 
aurea), one species of crustacean (Oratosquilla orato-
ria), and one species of fish (Ctenopharyngodon idellus), 
respectively, in Shanghai, China in July and August of 
2017 (Su and Chen 2020). The resistance of the strains to 
ten antibiotics were evaluated, and the results indicated 
that they were all resistant to ampicillin (AMP), kana-
mycin (KAN), rifampicin (RIF), and streptomycin (STR), 
while V. parahaemolyticus N2-5 was also resistant to tet-
racycline (TET) (Table 1). Meanwhile, these four isolates 
had different heavy metal-tolerance profiles (Table  1). 
For instance, V. parahaemolyticus B8-26 was tolerant to 
Hg2+/Cd2+/Cu2+/Zn2+, while V. parahaemolyticus B1-21 
to Hg2+/Ni2+/Pb2+/Zn2+. In addition, V. parahaemolyti-
cus ATCC17802 isolate of the human clinical origin was 
resistant to AMP (Jin et al. 2021), as well as Hg2+/Zn2+ 
(Melo-López et al. 2021).

Growth profiles of the V. parahaemolyticus isolates 
at different salinity concentrations, pH, temperatures, 
and oxygen concentrations
V. parahaemolyticus is a halophilic bacterium that inhab-
its in marine and estuarine environments worldwide (Li 
et al. 2019). We wondered growth features of the V. para-
haemolyticus isolates of aquatic animal origins. Thus, 
we determined their growth curves in the TSB (pH 8.5) 
under the 0.5–5% NaCl conditions at 37 °C. As shown in 
Fig.  S1 (A–E), all the V. parahaemolyticus isolates grew 
poorly at 0.5% NaCl. However, the increased NaCl con-
centration (1%) significantly promoted the bacterial 
growth (p < 0.05). Although all the isolates grew exuber-
antly at 2–5% NaCl, the highest biomass was observed 
when grew at 3% NaCl, showing the maximum OD600 
values (0.94–1.12) at stationary growth phase (SGP). 
Exceptionally, the growth of V. parahaemolyticus B1-21 
was significantly decreased at 5% NaCl as compared to 
that at 3% NaCl (p < 0.05) (Fig. S1, B), suggesting that V. 
parahaemolyticus B1-21 was less tolerant to the higher 
NaCl concentration. These results indicated that the V. 
parahaemolyticus isolates grew optimally in the TSB at 
3% NaCl.

The pH of human stomach normally ranges pH 1-3, 
but can rise above 6.0 after food consumption (Sun et al. 

2014). The acidic stomach condition challenges the bac-
terial pass through to the gastrointestinal tract where 
it colonizes and causes the diarrhea disease. Thus, we 
determined growth curves of the V. parahaemolyticus 
isolates in the TSB (3% NaCl) under the pH 6.0–8.5 con-
ditions at 37 °C. As shown in Fig. S2 (A–E), the growth of 
all the isolates was inhibited under the acidic conditions 
(pH 6.0–6.5), whereas the neutral condition (pH 7.0) 
promoted the bacterial growth, and all the isolates grew 
vigorously at pH 7.5–8.5, showing the maximum bio-
mass at pH 8.5 (OD600 = 0.94–1.20) at SGP. These results 
indicated that the V. parahaemolyticus isolates of aquatic 
animal origins grew optimally at pH 8.5, 3% NaCl in the 
TSB.

Growth curves of the V. parahaemolyticus isolates 
in the TSB (3% NaCl, pH 8.5) were also determined at 
25 °C and 37 °C, respectively, wherein V. parahaemolyti-
cus experiences during its life cycle in the environment 
and in the host. As shown in Fig. S3 (A–E), all the iso-
lates could grow more exuberantly at 37 °C than at 25 °C. 
Therefore, the V. parahaemolyticus isolates were incu-
bated in the TSB (pH 8.5, 3% NaCl) at 37 °C in the further 
analyses in this study, to avoid any condition influence 
other than the oxygen concentrations.

Growth of the V. parahaemolyticus isolates at differ-
ent oxygen concentrations (21–5% O2) was examined; 
and the results are presented in Fig.  1  A–E. Under the 
5–10% O2 conditions, the growth of all the isolates in the 
TSB (3% NaCl, pH 8.5) at 37  °C was repressed, and the 
maximum OD600 values ranged 0.40–0.52 at SGP. Under 
the 12% O2 condition, all the isolates grew better than at 
10% O2. Upon the increased O2 concentrations (15–21%), 
the V. parahaemolyticus isolates grew faster correspond-
ingly, but reaching the maximum biomass (OD600 = 0.90–
1.28) under the normal 21% O2 condition. Additionally, 
we observed that the growth of V. parahaemolyticus 
ATCC17802 of the clinical origin was the slowest under 
the lower O2 conditions among the test strains, moreo-
ver, it still showed the lower biomass under the 18% O2 
condition.

Effects of the hypoxic condition on biofilm formation 
of the V. parahaemolyticus isolates.
The ability of Vibrio to form biofilm attributes to their 
survival in the host and withstanding in different aquatic 
environments (Khan et  al. 2020). Therefore, we asked 
whether and how the hypoxic condition (10% O2) would 
affect biofilm formation of the V. parahaemolyticus iso-
lates. The dynamic process of biofilm formation was 
monitored under the 10% O2 condition when the isolates 
were incubated in the TSB (pH 8.5, 3% NaCl) at 37 °C for 
60 h. As shown in Fig. 2A–E, the V. parahaemolyticus iso-
lates formed biofilms at three different stages, including 
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the development, maturation, and diffusion, similar to 
those under the normal 21% O2 condition. However, dif-
ferent biofilm formation patterns were observed among 
the isolates.

Unexpectedly, under the 10% O2 condition, the biofilm 
biomass generated by all the V. parahaemolyticus isolates 
was significantly increased at the development and mat-
uration stages (0–36 h) as compared to those under the 
21% O2 condition (p < 0.05). The highest increase (2.70–
fold) was observed in the V. parahaemolyticus B8-26 
treatment group at 36 h (p < 0.001). Of note, the 10% O2 
condition significantly enhanced the biofilm formation 
of V. parahaemolyticus ATCC17802 for 48  h (p < 0.05) 
(Fig.  2, E). These results demonstrated that the hypoxic 
condition can enhance the biofilm formation of all the 
test V. parahaemolyticus isolates.

Cell morphological structure changes of the V. 
parahaemolyticus isolates under the hypoxic 
condition
Cell surface structure of the V. parahaemolyticus isolates 
under the hypoxic condition was further observed by 
the SEM assay. As shown in Fig. 3A–E, unexpectedly, in 
remarkable contrast to the control groups under the 21% 

O2 condition, whose cell surface structure was broken 
with obvious crumpling, rupture and cellular contents 
leakage after 24-h incubation, the V. parahaemolyticus 
isolates showed rod cells with slightly shrinkage on the 
cell surface after being treated with 10% O2 for 24  h. 
Particularly, V. parahaemolyticus ATCC17802 cells in 
the control group were severely shrunk and deformed, 
whereas those in the hypoxia treatment group were 
rod-shaped and less destroyed in cell structure (Fig.  3, 
E). These results indicated that the 10% O2 condition 
repressed the growth of the V. parahaemolyticus iso-
lates. The cellular metabolisms-requiring O2 were con-
sequently down-regulated, thereby leading to the slower 
growth under the hypoxic condition.

Genome features of the V. parahaemolyticus isolates 
originating in edible aquatic animals
Based on the above results, draft genome sequences of 
V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 iso-
lates of aquatic animal origins were determined, which 
yielded 37,042–51,777 clean sequencing reads. The 
assembled genome sizes were 4,913,675–5,353,490  bp 
with the GC contents of 45.29–45.44%. The yielded DNA 
scaffolds were 41–106. A total of 4,575–5,045 genes were 

Fig. 1  The growth of the V. parahaemolyticus isolates in the TSB (pH 8.5, 3% NaCl) under different oxygen conditions at 37 °C. A–E: V. 
parahaemolyticus B8-26, V. parahaemolyticus B1-21, V. parahaemolyticus N2-5, V. parahaemolyticus L7-40, and V. parahaemolyticus ATCC17802, 
respectively
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Fig. 2  The biofilm formation of the V. parahaemolyticus isolates grown in the TSB (pH 8.5, 3% NaCl) under the 21% O2 and 10% O2 conditions 
at 37 °C. A–E: V. parahaemolyticus B8-26, V. parahaemolyticus B1-21, V. parahaemolyticus N2-5, V. parahaemolyticus L7-40, and V. parahaemolyticus 
ATCC17802, respectively. *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 3  The cell morphological structure of the V. parahaemolyticus isolates grown in the TSB (pH 8.5, 3% NaCl) under the 21% O2 and 10% O2 
conditions at 37 °C for 24 h. A–E: V. parahaemolyticus B1-21, V. parahaemolyticus ATCC17802, V. parahaemolyticus B8-26, V. parahaemolyticus N2-5, 
and V. parahaemolyticus L7-40, respectively
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predicted, of which the unknown function genes were 
19.32–23.13% (Table 2, Fig. S4).

V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 
genomes also carried putative mobile genetic elements 
(MGEs), such as genome islands (GIs, n = 36), prophages 
(n = 4), integrons (INs, n = 26), and insertion sequences 
(ISs, n = 12), suggesting possible horizontal gene transfer 
(HGT) during the V. parahaemolyticus genome evolu-
tion. The draft genomes of V. parahaemolyticus B8-26, 
B1-21, N2-5, and L7-40 isolates were deposited in the 
GenBank database under the accession numbers JAO-
DUR000000000, JAOPTY000000000, JAODVT000000000, 
and JAODVU000000000, respectively.

Additionally, based on the draft genome of V. para-
haemolyticus ATCC17802 in the GenBank database 
(accession numbers NZ_CP014046.2) (Yang et al. 2015), 
we also identified several MGEs, including GIs (n = 2), 
and INs (n = 7) in this isolate.

GIs
GIs can shape bacterial genomes and affect bacterial 
fitness to the environment (Ghazali et  al. 2021). In this 
study, 36 GIs were identified in the four V. parahaemo-
lyticus genomes of aquatic animal origins, which con-
tained 3–14 GIs with 5,572–38,679 bp, and carried 7–45 
predicted genes with diverse biological functions (Fig. 4, 
Table S3).

The V. parahaemolyticus N2-5 genome contained 
the maximum number of GIs (n = 14, GIs 1–14), which 
were 5,572–38,427 bp, with 7–33 predicted genes. Con-
versely, the V. parahaemolyticus B8-26 genome carried 

the fewest GIs (n = 3, GIs 1–3), ranging 13,548–38,679 bp 
with 19–34 predicted genes. Notably, there were some 
GIs carrying virulence-related genes. For example, the 
GI 3 in V. parahaemolyticus B8-26, and the GI 11 in V. 
parahaemolyticus N2-5, encoding type II toxin-antitoxin 
(TA) system prophylactic-host death family antitoxins 
(Vp B8-26_3404, Vp N2-5_3709). The TA systems are 
involved in biofilm formation, persistence, stress endur-
ance, and programmed cell death in favor of bacterial 
population (Hosseini et al. 2019).

Prophages
Phages, being the most abundant biological entities on 
earth, are viruses that infect bacteria, and constantly 
reshape bacterial communities (Wahl et al. 2019). In this 
study, we found four prophages in the V. parahaemolyti-
cus B1-21, N2-5, and L7-40 genomes (Table  S4), rang-
ing 11,738–32,968 bp with 14–47 genes (Fig. 5). Like V. 
parahaemolyticus B8-26, no prophage was reported in V. 
parahaemolyticus ATCC17802 (Yang et al. 2015).

V. parahaemolyticus B1-21 genome contained two 
prophage gene clusters that showed high sequence 
similarity to Vibrio_phage_K139 (33,106  bp, NCBI 
accession number: NC_003313), and Vibrio_phage_
fs2 (8,651  bp, NCBI accession number: NC_001956), 
respectively. The Vibrio_phage_K139 homologue was 
also found in the V. parahaemolyticus L7-40 genome, 
but with a truncated version (18,896  bp) carrying 
23 genes, suggesting the rearrangement of Vibrio_
phage_K139 during the V. parahaemolyticus genome 
evolution. The V. parahaemolyticus N2-5 genome 

Table 2  Genome features of the V. parahaemolyticus isolates used in this study

Genome feature V. parahaemolyticus strain

B8-26 B1-21 N2-5 L7-40 ATCC17802

Genome size (bp) 4,975,325 4,989,057 5,353,490 4,913,675 4,922,919

Clean reads 46,461 37,042 51,777 40,135 36,398

G + C (%) 45.38 45.41 45.29 45.44 45.43

DNA Scaffold 52 41 62 106 69

Total predicted gene 4,575 4,597 5,045 4,600 4,565

Protein-coding gene 4,458 4,496 4,924 4,490 4,449

RNA gene 57 54 56 60 53

Genes assigned to COG 3,723 3,712 3,878 3,683 3,693

GI 3 9 14 10 2

Prophage 0 2 1 1 0

CRISPR-Cas 0 1 1 3 4

IN 5 11 8 2 7

IS 4 1 5 2 0

GenBank accession no JAODUR000000000 JAOPTY000000000 JAODVT000000000 JAODVU000000000 NZ_CP014046.2

Source This study This study This study This study (Yang et al. 2015)
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contained a truncated version (29,468 bp) of Enterobac-
teria_phage_Mu (36,717  bp, NCBI accession number: 
NC_000929), carrying 47 genes encoding 32 unknown 

proteins, which suggested possible transmission of 
the Enterobacteria_phage_Mu between the Vibrio and 
Enterobacteria genera pathogens.

Fig. 4  Gene organizations of the GIs identified in the V. parahaemolyticus genomes. Different colors referred to COG functional classification 
and genes with unknown function were in grey
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INs
INs are also critically involved in bacterial evolution 
and antimicrobial resistance with the carried gene cas-
settes (Ali et  al. 2022). In this study, all the V. para-
haemolyticus genomes contained INs (n = 2–11) ranging 
605 bp–65,657 bp (Fig. S5-Fig. S6, Table S5).

The V. parahaemolyticus B1-21 genome contained the 
maximum number of INs (n = 11, INs 1–11), but all of 
which were incomplete INs with gene cassettes. In con-
trast, the V. parahaemolyticus L7-40 genome carried 
only two INs (INs 1–2), including one complete IN (IN 
1) and one gene cassette (IN 2). Additionally, seven INs 
were identified in the V. parahaemolyticus ATCC17802 
genome, including one complete (IN 1) with an integrase 
IntI 4 (Vp B8-26_1368), suggesting that the IN 1 was a 
super integron (Yang et al. 2015).

ISs
ISs are mobile repeat sequences that can copy themselves 
to new locations in bacterial genomes (Tempel et  al. 
2022). In this study, ISs were identified in the V. para-
haemolyticus B8-26 (n = 4), B1-21 (n = 1), N2-5 (n = 5), 
and L7-40 (n = 2) genomes (Table  S6), but absent in V. 
parahaemolyticus ATCC17802 (Yang et  al. 2015). Nota-
bly, one IS001 (1,307  bp) belonging to the ISAs1 family 
was identified in V. parahaemolyticus L7-40, encoding a 
c-di-GMP metabolism protein (Vp L7-40_4574), which is 
critical to bacterial adaptation to changing environments, 
including biofilm formation, host colonization and viru-
lence (Kumar and Chatterji 2008).

Putative virulence and resistance‑associated genes
Many virulence-related genes (n = 42–45) were identi-
fied in the V. parahaemolyticus B8-26, B1-21, N2-5, and 
L7-40 genomes. For instance, more than thirty genes for 
type III secretion system 1 (T3SS1) were found, encod-
ing the VecA, TyeA, SycN, YscO, VcrDGHRV, VopBDN-
QRS, and VscBCDFGHIJKLNQRSTUXY. The ExsA gene 
was also found in these genomes (Vp B8-26_3495, Vp 
B1-21_3659, Vp N2-5_3801, and Vp L7-40_3386), which 

is the master transcription factor that positively regulates 
T3SS1 expression (Gu et al. 2020). In addition, V. para-
haemolyticus ATCC17802 has both T3SS1 and T3SS2, 
and TRHs (Yang et al. 2015).

Several antibiotic resistance-related genes (n = 3) and 
heavy metal tolerance-ralated genes (n = 8) were iden-
tified in the V. parahaemolyticus B8-26, B1-21, N2-5, 
L7-40, and ATCC17802 genomes (Table  3), which pro-
vided the genome-wide evidence for resistance pheno-
types of the V. parahaemolyticus isolates.

Comparative transcriptome analysis of the V. 
parahaemolyticus isolates in response to the hypoxic 
condition
Based on the V. parahaemolyticus B8-26, B1-21, N2-5, 
L7-40 genomes determined in this study, coupled with 
the V. parahaemolyticus ATCC17802 genome, we further 
examined genome-wide gene expression changes trig-
gered by the hypoxic condition. The isolates were incu-
bated in the TSB under the 10% O2 condition at 37 °C for 
24 h, at which the cell morphological structure changes 
of the V. parahaemolyticus isolates was the most obvi-
ous, therefore, their transcriptomes were determined. 
The complete lists of DEGs in the V. parahaemolyticus 
isolates are available in the NCBI SRA database (https://​

Fig. 5  The structure diagram of the prophages identified in the V. parahaemolyticus genomes

Table 3  The antibiotic and heavy metal resistance-related genes 
identified in the V. parahaemolyticus genomes

Antibiotic / heavy metal Gene V. parahaemolyticus isolate

Fluoroquinolone crp B8-26, B1-21, N2-5, L7-40, 
ATCC17802

Tetracycline Tet (35) B8-26, B1-21, N2-5, L7-40, 
ATCC17802

Beta-lactam blaCARB-18 B8-26, B1-21, N2-5, L7-40, 
ATCC17802

Heavy metal cusARS B8-26

Heavy metal dsbABC B8-26, N2-5

Heavy metal smtA B8-26, B1-21, L7-40, ATCC17802

Heavy metal zntA B8-26, B1-21, L7-40, ATCC17802

https://submit.ncbi.nlm.nih.gov/subs/bioproject/
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submit.​ncbi.​nlm.​nih.​gov/​subs/​biopr​oject/) under the 
accession number PRJNA906699 and PRJNA767551.

The major altered metabolic pathways in V. 
parahaemolyticus B8‑26 triggered by the hypoxic condition
Approximately 65.89% (2,722/4,131) of V. parahaemo-
lyticus B8-26 genes were expressed differently under the 
hypoxic condition as compared to the control group. 
Among these, 413 differently expressed genes (DEGs) 
showed higher transcription levels (fold change, FC ≥ 2.0), 
whereas 2,309 DEGs were down-regulated (FC ≤ 0.5). 
The comparative transcriptomic analysis revealed four-
teen significantly changed metabolic pathways, includ-
ing the aminoacyl-tRNA biosynthesis; protein export; 
peptidoglycan (PG) biosynthesis; citrate cycle; sulfur 
metabolism; ubiquinone and other terpenoid-quinone 
biosynthesis;, RNA degradation; glyoxylate and dicarbo-
xylate metabolism; purine metabolism; thiamine metabo-
lism; ATP-binding cassette (ABC) transporters; pyruvate 
metabolism; tyrosine metabolism; and carbon fixation 
pathways in prokaryotes (Fig. 6, Table S7).

Remarkably, all DEGs in the aminoacyl-tRNA biosyn-
thesis (n = 25), PG biosynthesis (n = 17), citrate cycle 

(n = 8), and ubiquinone and other terpenoid-quinone bio-
synthesis (n = 17) were significantly repressed at the tran-
scription levels in V. parahaemolyticus B8-26 under the 
hypoxic condition (0.015–fold to 0.497–fold) (p < 0.05). 
Aminoacyl-tRNA synthetases are essential for protein 
synthesis (Rubio Gomez and Ibba 2020). The expression 
of many such enzymes and proteins was repressed in V. 
parahaemolyticus B8-26. For instance, the DEG encod-
ing an alanyl-tRNA editing protein (Vp_B8-26_03025) 
was strongly inhibited (0.080–fold), suggesting that the 
stringent response shut down the translation to avoid 
toxic generation of mistranslated/misfolded proteins 
(Aggarwal et al. 2021). As the major component of bacte-
rial cell wall, the biosynthesis of PG is closely related to 
cell wall growth and turnover (Wamp et al. 2020). In this 
study, seventeen DEGs involved in the PG biosynthesis 
were inhibited under the hypoxic condition. For example, 
the DEG encoding a D-alanyl-D-alanine carboxypepti-
dase (Vp_B8-26_24445) was significantly down-regulated 
(0.448–fold), which is involved in the reconstruction 
of newly synthesized PG in Francisella (Spidlova et  al. 
2018). The citrate cycle (Krebs cycle) is a major aerobic 
pathway for the final stages of carbohydrate and fatty acid 

Fig. 6  The Volcano plot of differential gene expression (A), and the major changed metabolic pathways (B) in V. parahaemolyticus strains 
under the hypoxic condition (10% O2). A: The X and Y axes represented changes of the up/down-regulated genes, and the corresponding 
significant differences, respectively. B The X and Y axes represented the major changed metabolic pathways in V. parahaemolyticus strains 
under the hypoxic condition, and the ratios of the number of DEGs in the metabolic pathways to the total number of DEGs in all metabolic 
pathways. A1 and B1, A2 and B2, A3 and B3, A4 and B4: V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 strains, respectively

https://submit.ncbi.nlm.nih.gov/subs/bioproject/
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oxidation, which provides NADH to be used for oxida-
tive phosphorylation and other metabolic reactions. In 
this study, eight DEGs in the citrate cycle were down-reg-
ulated as well. For instance, the DEG encoding a malate 
dehydrogenases (MDH) (Vp_B8-26_01555) was strongly 
down-regulated (0.022–fold). The MDH catalyzes the 
NAD/NADH-dependent interconversion of malate and 
oxaloacetate. The malate/aspartate of this reaction is 
involved in tricarboxylic acid cycle (Minárik et al. 2002). 
Additionally, among the seventeen down-regulated DEGs 
in the ubiquinone and other terpenoid-quinone biosyn-
thesis, the DEG encoding a NAD(P)H quinone oxidore-
ductase (NQO) (Vp_B8-26_12250) was significantly 
repressed (0.172–fold), which is a two-electron reductase 
responsible for detoxification of quinones and bioactiva-
tion of certain quinones (Zhang et al. 2018). These results 
signified that the hypoxic condition likely inhibited pro-
tein translation, bacterial cell wall synthesis, and energy 
supply in V. parahaemolyticus B8-26.

Sulfur is also a requirement for both the host and colo-
nizing bacteria (Kies et al. 2022). In this study, fourteen 
DEGs were significantly down-regulated in the sulfur 
metabolism in V. parahaemolyticus B8-26 under the 
hypoxic condition (0.010–fold to 6.247–fold) (p < 0.05). 
For example, the NrfD-like subunits are found in many 
diverse membrane complexes, which may participate 
in the metabolism of oxygen, nitrogen, sulfur, arsenate 
or hydrogen (Calisto and Pereira 2021). Nevertheless, 
in this study, the expression of NrfD (Vp_B8-26_10960) 
was strongly down-regulated (0.007–fold), suggesting 
the inhibited sulfur metabolism, thereby energy conver-
sion in V. parahaemolyticus B8-26 under the hypoxic 
condition.

Of note, approximately 85 DEGs in the ABC transport 
were also significantly inhibited in V. parahaemolyticus 
B8-26 under the hypoxic condition (0.003–fold to 0.498–
fold) (p < 0.05). The ATP-dependent ABC transporter 
proteins facilitate the import and/or export of various 
substrates, including lipids, sugars, amino acids and pep-
tides, ions, and drugs (Thurm et al. 2021). For example, 
the DEG encoding the ATP-binding cassette domain-
containing protein (Vp_B8-26_06880) was greatly down-
regulated (0.003–fold), which contains two domains 
capable of ATP hydrolysis in order to fuel protein func-
tion (Alqahtani et al. 2019). The down-regulation of the 
ABC transport suggested the inactive cellular transport 
function under the hypoxia, which likely led to harmful 
substance accumulate and retarded bacterial growth.

Conversely, the expression of some DEGs was sig-
nificantly increased in V. parahaemolyticus B8-26 under 
the hypoxic condition (p < 0.05). For instance, four 
DEGs involved in the protein export were significantly 

up-regulated (2.201–fold to 7.248–fold) (p < 0.05), e.g., 
the protein translocase subunit SecD (Vp_B8-26_23120, 
7.248-fold), and protein translocase subunit SecF (Vp_
B8-26_23115, 5.060-fold). The SecDF belong to the 
SecYEG-SecDF-YajC-YidC holo-translocon (HTL) pro-
tein secretase/insertase, a supercomplex necessary for 
protein secretion, insertion membrane and complex 
assembly (Komar et al. 2016).

Taken, the comparative transcriptome data revealed 
fourteen significantly changed metabolic pathways in V. 
parahaemolyticus B8-26 under the hypoxic condition. 
Notably, the down-regulated protein translation and 
transport, ABC transporters, bacterial cell wall synthesis 
and energy conversion likely contributed to the retarded 
cell growth of V. parahaemolyticus B8-26 under the 
hypoxic condition.

The major changed metabolic pathways in V. 
parahaemolyticus B1‑21 triggered by the hypoxic condition
Approximately 46.77% (2,058/4,400) of V. parahaemo-
lyticus B1-21 genes were expressed differently under the 
hypoxic condition as compared to the control group. Of 
these, 1,533 DEGs were up-regulated (FC ≥ 2.0), whereas 
525 DEGs were down-regulated (FC ≤ 0.5). Eleven sig-
nificantly changed metabolic pathways were identified, 
including the ribosome; phosphotransferase system 
(PTS); two-component system (TCS); bacterial chemot-
axis; ABC transporters; alanine, aspartate and glutamate 
metabolism; flagellar assembly; plant-pathogen interac-
tion; sulfur relay system; sulfur metabolism; and pyruvate 
metabolism (Fig. 6, Table S8).

Bacterial chemotaxis is a critical ability to search for 
the optimal environment to ensure the survival of bac-
terial species (Jeong 2021). Three DEGs in the bacterial 
chemotaxis were significantly repressed in V. parahaemo-
lyticus B1-21 under the hypoxic condition (0.188–fold to 
0.465–fold) (p < 0.05), including a chemotactic protein 
Chew (Vp_B1-21_11985), a flagellar motor switch pro-
tein (Vp_B1-21_12100), and a chemotactic response reg-
ulator protein-glutamate methylase (Vp_B1-21_12000). 
For example, the DEG encoding the CheW (Vp_
B1-21_11985), which is involved in the transmission of 
sensory signals from the chemoreceptors to the flagellar 
motors (Rosario et  al. 1994), was significantly repressed 
(0.465–fold). Meanwhile, the DEG encoding the flagel-
lar motor switch protein (Vp_B1-21_12100) was also 
highly repressed (0.188–fold). These results indicated the 
down-regulated bacterial chemotaxis under the hypoxic 
condition, thereby inhibiting bacterial migration to the 
environment conducive to survival.

Approximately 28 DEGs in the TCS were significantly 
inhibited (0.053–fold to 0.494–fold), whereas 56 DEGs 
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were significantly enhanced (2.017–fold to 0.494–fold) 
at the transcriptional levels in V. parahaemolyticus B1-21 
under the hypoxic condition (p < 0.05). Bacteria sense 
and respond to environmental changes via TCS, e.g., cell 
surface modifications, and increased biofilm formation 
(Tierney and Rather 2019). For example, the DEG encod-
ing an acetyl coenzyme A acetyltransferase (ACAT) (Vp_
B1-21_23095, 0.121–fold) was significantly inhibited in 
V. parahaemolyticus B1-21 (p < 0.05), which catalyzes the 
reversible formation of acetylacyl coenzyme A from two 
acetyl coenzyme A molecules during the ketogenesis and 
ketolysis (Goudarzi 2019).

Remarkably, all DEGs (n = 42) in the ribosome were sig-
nificantly down-regulated (0.214–fold to 0.495–fold) in 
V. parahaemolyticus B1-21 under the hypoxic condition 
(p < 0.05), e.g., 50S ribosomal proteins (Vp_B1-21_01230, 
Vp_B1-21_06585, Vp_B1-21_13890), and 30S riboso-
mal proteins (Vp_B1-21_01360, Vp_B1-21_11045, Vp_
B1-21_15475, Vp_B1-21_15315). Ribosomes are essential 
for protein production, and thus for bacterial growth, and 
proliferation (Turi et  al. 2019). These results indicated 
that V. parahaemolyticus B1-21 reduced protein transla-
tion in response to the hypoxic condition.

Conversely, all DEGs (n = 21) in the PTS were sig-
nificantly up-regulated (2.616–fold to 28.083–fold) in 
V. parahaemolyticus B1-21 under the hypoxic condi-
tion (p < 0.05). For instance, the gene encoding a fused 
PTS fructose transporter subunit IIA/HPr protein (Vp_
B1-21_21185) was highly up-regulated (28.083–fold), 
suggesting the up-regulated transport and utilization of 
carbohydrates in V. parahaemolyticus B1-21 under the 
hypoxic condition.

Similar to V. parahaemolyticus B8-26, the ABC trans-
porters, sulfur metabolism, and pyruvate metabolism 
were also significantly changed in V. parahaemolyticus 
B1-21 under the hypoxic condition.

Taken together, the comparative transcriptome data 
revealed eleven significantly changed metabolic pathways 
in V. parahaemolyticus B1-21 under the hypoxic condi-
tion. Specially, V. parahaemolyticus B1-21 reduced pro-
tein translation, but enhanced transport and utilization 
of carbohydrates in response to the hypoxic condition.

The major changed metabolic pathways in V. 
parahaemolyticus N2‑5 triggered by the hypoxic condition
Approximately 47.55% (783/4,400) of V. parahaemolyticus 
N2-5 genes were expressed differently under the hypoxic 
condition as compared to the control group. Of these, 
1,102 DEGs were up-regulated (FC ≥ 2.0), whereas 965 
DEGs were down-regulated (FC ≤ 0.5). Eleven significantly 
changed metabolic pathways were identified, including 
ABC transporters; the ribosome; butanoate metabolism; 
tryptophan metabolism; alanine, aspartate and glutamate 

metabolism; propanoate metabolism; pyruvate metabo-
lism; oxidative phosphorylation; valine, leucine and iso-
leucine degradation; citrate cycle; and carbon fixation 
pathways in prokaryotes (Fig. 6, Table S9).

The same case as V. parahaemolyticus B1-21, all DEGs 
(n = 45) in the ribosomes were significantly down-reg-
ulated (0.137–fold to 0.468–fold) at the transcription 
levels in V. parahaemolyticus N2-5 under the hypoxic 
condition (p < 0.05). Like V. parahaemolyticus B8-26, all 
DEGs (n = 5) in the citrate cycle were also significantly 
repressed (0.040–fold to 0.188–fold) in V. parahaemolyti-
cus N2-5.

Of note, almost all DEGs (n = 24) in the oxidative 
phosphorylation were significantly repressed (0.062–
fold to 0.497–fold) in V. parahaemolyticus N2-5 under 
the hypoxic condition (p < 0.05), e.g., the F0F1 ATP 
synthase subunits A, B, α, β, and γ (Vp_N2-5_16940, 
Vp_N2-5_16930, Vp_N2-5_16920, Vp_N2-5_16910, and 
Vp_N2-5_16915), a cytochrome o ubiquinol oxidase 
subunit I (Vp_N2-5_20305), a cytochrome d ubiqui-
nol oxidase subunit II (Vp_N2-5_05315), a cytochrome 
o ubiquinol oxidase subunit III (Vp_N2-5_20310), a 
cytochrome ubiquinone oxidase (Vp_N2-5_05315), a 
cytochrome c1, a cytochrome bc complex cytochrome b 
subunit (Vp_N2-5_02185), and a protoheme IX farnesyl-
transferase (Vp_N2-5_20320). The oxidative phospho-
rylation provides most of the ATP that is required for 
setting and maintaining cellular metabolic homeosta-
sis (Wilson 2017). The significant repressed oxidative 
phosphorylationof indicated insufficient cellular energy 
production in V. parahaemolyticus N2-5, consequently 
affecting energy expenditure and cell growth under the 
hypoxic condition.

In the butanoate metabolism, thirteen DEGs were sig-
nificantly down-regulated (0.028–fold to 0.475–fold) in 
V. parahaemolyticus N2-5 (p < 0.05), whereas five DEGs 
were significantly up-regulated (3.077–fold to 14.428–
fold) (p < 0.05). For example, the DEG encoding a class 
I poly(R)-hydroxyalkanoic acid (PHA) synthase (Vp_
N2-5_23085) was highly down-regulated (0.028–fold). 
PHAs are aliphatic polyesters produced by many bacteria 
and archaea in response to various environmental condi-
tions (McCool and Cannon 2001).

In the tryptophan metabolism, three DEGs were sig-
nificantly down-regulated (0.033–fold to 0.347–fold) in V. 
parahaemolyticus N2-5 (p < 0.05), whereas two DEGs were 
significantly up-regulated (8.781–to 10.778–fold) (p < 0.05). 
Of these, the expression of a catalase (Vp_N2-5_23615) was 
highly up-regulated (8.781–fold). The catalase decomposes 
hydrogen peroxide, protecting cells from potentially harm-
ful reactive oxygen species (Kim et al. 2018).

Similar to V. parahaemolyticus B1-21, the ABC trans-
port, and alanine, aspartate and glutamate metabolism 
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were significantly changed in V. parahaemolyticus N2-5 
as well.

Taken, the comparative transcriptome analysis revealed 
eleven significantly changed metabolic pathways in V. 
parahaemolyticus N2-5 under the hypoxic condition, 
some of which were also altered in V. parahaemolyticus 
B1-21 and V. parahaemolyticus B8-26. Specially, the pro-
tein translation, citrate cycle, propionate metabolism, 
oxidative phosphorylation, carbon fixation pathways in 
prokaryotes, and valine, leucine and isoleucine degrada-
tion were all repressed in V. parahaemolyticus N2-5 for 
growth under the hypoxic condition.

The major changed metabolic pathways in V. 
parahaemolyticus L7‑40 triggered by the hypoxic condition
Approximately 37.43% (783/4,400) of V. parahaemo-
lyticus L7-40 genes were expressed differently under the 
hypoxic condition as compared to the control group. Of 
these, 1,032 DEGs were up-regulated (FC ≥ 2.0), whereas 
615 DEGs were repressed (FC ≤ 0.5). Fifteen significantly 
changed metabolic pathways were identified, includ-
ing the arginine biosynthesis; glyoxylate and dicarbo-
xylate metabolism; glycolysis/gluconeogenesis; methane 
metabolism; alanine, aspartate and glutamate metabo-
lism; pyruvate metabolism; oxidative phosphorylation; 
propanoate metabolism; citrate cycle; beta-lactam resist-
ance; TCS; taurine and hypotaurine metabolism; PTS; 
nitrogen metabolism; and carbon fixation pathways in 
prokaryotes (Fig. 6, Table S10).

Like V. parahaemolyticus B8-26, and N2-5 strains, all 
DEGs (n = 5) in the citrate cycle were significantly down-
regulated (0.106–fold to 0.471–fold) in V. parahaemolyticus 
L7-40 under the hypoxic condition (p < 0.05). For example, 
the DEG encoding a fumarate reductase (Vp_L7-40_15840) 
was significantly inhibited (0.471–fold) (p < 0.05), which 
is a flavin protease containing the cofactor flavin adenine 
dinucleotide and reduces fumarate to succinate (Alqahtani 
et  al. 2019). Fumarate reductases are essential for main-
taining redox homeostasis in cells because they reoxidize 
intracellular flavin adenine dinucleotides (FADH2) under 
the hypoxic conditions (Kim et al. 2018). The DEG encod-
ing a succinate dehydrogenase (SDH) (Vp_L7-40_15845) 
was also inhibited (0.111–fold) (p < 0.05), which is a critical 
enzyme involved in the tricarboxylic acid cycle and oxida-
tive phosphorylation for energy production (Moosavi et al. 
2019). These results suggested that the hypoxia likely dis-
rupted the cellular redox balance and the energy supply in 
V. parahaemolyticus L7-40.

Like V. parahaemolyticus N2-5, all DEGs (n = 14) in the 
propanoate metabolism were significantly down-regulated 
(0.121–fold to 0.437–fold) in V. parahaemolyticus L7-40 
(p < 0.05). The same case as V. parahaemolyticus N2-5, 

the 16 of 21 DEGs in the oxidative phosphorylation were 
significantly down-regulated (0.116–fold to 0.454–fold) 
as well (p < 0.05). Interestingly, in marked contrast to the 
most inhibited DEGs in the oxidative phosphorylation, the 
expression of one DEG encoding a manganese-dependent 
inorganic pyrophosphatase (PPase, Vp_L7-40_09185), 
which plays an essential role in the conservation of energy 
and supplies energy for numerous biosynthetic pathways 
(Hu et  al. 2020), was strongly up-regulated (33.120–fold) 
in V. parahaemolyticus L7-40 (p < 0.05).

In the glyoxylate and dicarboxylate metabolism, the 20 
of 24 DEGs were significantly down-regulated (0.019–fold 
to 0.491–fold) in V. parahaemolyticus L7-40 under the 
hypoxic condition (p < 0.05). Of these, the DEG encod-
ing an acetate-CoA ligase (Vp_L7-40_16020) was highly 
down-regulated (0.019–fold). Acetyl-CoA is a vitally 
important and versatile metabolite used for many cellular 
processes, and can also deal with stress such as low nutri-
tional availability and hypoxia (Miller et al. 2021).

Similar to V. parahaemolyticus B1-21, all DEGs (n = 13) 
in the PTS were significantly up-regulated (2.338–fold 
to 64.585–fold) in V. parahaemolyticus L7-40 under the 
hypoxic condition (p < 0.05). In the glycolysis/gluconeo-
genesis, the 17 of 21 DEGs were significantly up-regu-
lated (2.199–fold to 10.689–fold) in V. parahaemolyticus 
L7-40 (p < 0.05). Of these, the DEG encoding a 6-phos-
phofructokinase (PFK, Vp_L7-40_15910) was highly 
up-regulated (10.689–fold). The PFK is one of the most 
prominent rate-limiting enzymes in the glycolytic path-
way. The increase in glycolytic flux is beneficial for main-
taining bioenergetic homeostasis during the hypoxia 
(Kierans and Taylor 2021).

In addition, similar to V. parahaemolyticus B8-26, 
and V. parahaemolyticus N2-5, the TCS, pyruvate 
metabolism, as well as alanine, aspartate and glutamate 
metabolism were also significantly changed in V. para-
haemolyticus L7-40 under the hypoxic condition.

Taken, the comparative transcriptome analysis revealed 
fifteen significantly changed metabolic pathways in V. par-
ahaemolyticus L7-40, some of which were also identified 
in V. parahaemolyticus B8-26, N2-5, and B1-21 isolates 
under the hypoxic condition. Specifically, V. parahaemo-
lyticus L7-40 inhibited the glyoxylate and dicarboxylate 
metabolism, but up-regulated the glycolysis/gluconeogen-
esis, and changed the nitrogen metabolism, and the argi-
nine biosynthesis in response to the hypoxic condition.

The major changed metabolic pathways in V. 
parahaemolyticus ATCC17802 triggered by the hypoxic 
condition
Approximately 57.12% (783/4,674) of V. parahaemolyti-
cus ATCC17802 genes were expressed differently under 
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the hypoxic condition as compared to the control group. 
Among these, 361 DEGs were up-regulated (FC ≥ 2.0), 
whereas 2,309 DEGs were down-regulated (FC ≤ 0.5). 
Ten significantly changed metabolic pathways were iden-
tified, including the ribosome; ABC transporters; ami-
noacyl-tRNA biosynthesis; oxidative phosphorylation; 
pyrimidine metabolism; fatty acid biosynthesis; arginine 
and proline metabolism; lipopolysaccharide (LPS) bio-
synthesis; purine metabolism, and carbon fixation path-
ways in prokaryotes (Fig. 7, Table S11).

Similar to V. parahaemolyticus B1-21, and N2-5 iso-
lates, all DEGs (n = 49) in the ribosome were signifi-
cantly down-regulated (0.033–fold to 0.243–fold) at the 
transcriptional level in V. parahaemolyticus ATCC17802 
under the hypoxic condition (p < 0.05). The same case as 
V. parahaemolyticus N2-5, and L7-40 isolates, all DEGs 
(n = 35) in the oxidative phosphorylation were signifi-
cantly down-regulated (0.029–fold to 0.440–fold) in V. 
parahaemolyticus ATCC17802, except the polyphos-
phate kinase (Vp_17802_02840, 2.187–fold).

In the fatty acid biosynthesis, all DEGs (n = 17) were 
significantly down-regulated (0.047–fold to 0.427–fold) 
in V. parahaemolyticus ATCC17802 (p < 0.05). Fatty acid 
biosynthesis plays a central role in building cell mem-
brane, reserving cell energy, and production of precur-
sors to second messenger molecules (Günenc et al. 2022). 
For instance, the DEG encoding a trans-2-enoyl-CoA 

reductase family protein (Vp_17802_21460) was strongly 
down-regulated (0.047–fold) in V. parahaemolyticus 
ATCC17802, which is involved in chain lengthening of 
fatty acids (Uchida et al. 2021).

In the LPS biosynthesis, most DEGs (16/18) were sig-
nificantly down-regulated (0.068–fold to 0.476–fold) 
in V. parahaemolyticus ATCC17802 (p < 0.05). The LPS, 
the major component of the outer membrane of Gram-
negative bacteria, is essential for bacterial viability and 
host–pathogen interactions (Kutschera et  al. 2021). For 
instance, the DEG encoding the tetraacyldisaccharide 
4′-kinase (Vp_17802_04990) was strongly down-regu-
lated (0.068–fold) in V. parahaemolyticus ATCC17802, 
which is the prime enzyme for lipid biosynthesis vital for 
bacterial survival (Damale et al. 2022).

In the pyrimidine metabolism, most DEGs (26/30) 
were significantly down-regulated (0.026–fold to 0.450–
fold) in V. parahaemolyticus ATCC17802 (p < 0.05). 
Pyrimidines are structural elements of a wide range of 
essential compounds in the synthesis of DNA, RNA, 
lipids, and carbohydrates (Garavito et  al. 2015). For 
instance, the DEG encoding a thymidine kinase (TK, 
Vp_17802_05700) was strongly down-regulated (0.051–
fold) in V. parahaemolyticus ATCC17802. The TK is 
involved in the pyrimidine nucleotide recovery path-
way, a cell-proliferation marker (Fanelli et  al. 2021). 
Interestingly, among the four up-regulated DEGs in 

Fig. 7  The Volcano plot of differential gene expression (A), and the major changed metabolic pathways (B) in V. parahaemolyticus ATCC17802 
under the hypoxic condition
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the pyrimidine metabolism, the DEG encoding a 5’ 
deoxynucleotidase (Vp_17802_04570, 4.317–fold) was 
highly up-regulated in V. parahaemolyticus ATCC17802 
(p < 0.05). This enzyme is involved in the metabolism of 
cladribine (2CdA), by mediating phosphorolysis (deacti-
vation) of 2CdA to prevent its accumulation in the cell, 
which leads to cell death (Carlini et al. 2022).

The same cases as V. parahaemolyticus B1-21, and 
N2-5 isolates, all the DEGs (n = 49) in the ribosome 
were highly down-regulated (0.033–fold to 0.243–
fold) in V. parahaemolyticus ATCC17802 under the 
hypoxic condition (p < 0.05). Similar to V. parahaemo-
lyticus B8-26, B1-21, and N2-5 isolates, almost all 
DEGs (105/108) in the ABC transporters were also 
significantly repressed (0.001–fold to 0.479–fold) in 
V. parahaemolyticus ATCC17802 (p < 0.05). Like V. 
parahaemolyticus B8-26, N2-5, and L7-40 isolates, 
most DEGs (19/21) in the carbon fixation pathways in 
prokaryotes were significantly inhibited (0.049–fold 
to 0.359–fold) in V. parahaemolyticus ATCC17802 
(p < 0.05). In addition, like V. parahaemolyticus B8-26, 
all DEGs (n = 25) in the aminoacyl-tRNA biosynthesis 
were significantly repressed (0.100–fold to 0.477–fold) 
in V. parahaemolyticus ATCC17802 as well (p < 0.05).

Taken, the comparative transcriptome analysis 
revealed ten significantly changed metabolic path-
ways in V. parahaemolyticus ATCC17802 under the 
hypoxic condition. Although some of the altered path-
ways were also observed in V. parahaemolyticus B8-26, 
B1-21, N2-5, and L7-40 isolates, however, wherein 
more repressed DEGs were elicited in V. parahaemo-
lyticus ATCC1780 by the condition, consistent with 
the phenotypes of this isolate in the above results. In 
particular, compared to the other four V. parahaemo-
lyticus isolates, V. parahaemolyticus ATCC17802 also 
down-regulated some metabolic pathways, including 
the pyrimidine metabolism, fatty acid biosynthesis, 
lipopolysaccharide biosynthesis, purine metabolism, 
as well as arginine and proline metabolism to survival 
under the hypoxic condition.

Additionally, to confirm the transcriptome data, thirty 
representative DEGs were analyzed by the RT-qPCR 
assay, and the resulting data were generally correlated 
with those by the transcriptome analysis (Table S12).

Possible molecular mechanisms of V. parahaemolyticus 
in response to the hypoxic condition
The transcriptome-wide analyses revealed a number of 
DEGs involved in multiple pathways of biosynthesis, deg-
radation, salvage, interconversion, and transport of the 
compounds in V. parahaemolyticus B8-26, B1-21, N2-5, 
L7-40 and ATCC17802 isolates of aquatic animal and 
human clinical origins, suggesting a complex molecular 

regulation network in the bacterium in response to the 
hypoxic condition (Fig. S7, Table S13).

Given that the V. parahaemolyticus isolates, being from 
different origins, harbored different genome features, 
it was reasonable that the hypoxic condition triggered 
different transcriptomic profiles among the isolates. 
The transcriptome data, coupled with the phenotype 
results in this study, demonstrated that compared to the 
other isolates, V. parahaemolyticus ATCC17802 down-
regulated and/or shut down all the ten changed meta-
bolic pathways to reduce cell viability and maintain cell 
structure integrated under the hypoxic condition. These 
results provided a novel mechanism for the persistence of 
the toxic strain in the environment and in the host.

On the other hand, same identical metabolic path-
ways were elicited in the V. parahaemolyticus isolates by 
the hypoxic condition, e.g., the inhibited ribosome in V. 
parahaemolyticus B1-21, N2-5, and ATCC17802 isolates; 
the repressed aminoacyl-tRNA biosynthesis in V. para-
haemolyticus B8-26, and ATCC17802 isolates; and the 
repressed oxidative phosphorylation in V. parahaemolyti-
cus N2-5, L7-40, and ATCC17802 isolates.

Overall, V. parahaemolyticus developed multiple 
molecular strategies to efficiently mitigate the cell dam-
age and/or cytotoxicity caused by the hypoxia: (1) down-
regulated the oxidative phosphorylation, carbon fixation 
pathways, citrate cycle, pyruvate metabolism, and pro-
pionate metabolism to balance the redox state of the cell 
and the energy conversion; (2) down-regulated the fatty 
acid biosynthesis, and lipopolysaccharide biosynthesis 
to inhibit the cell wall synthesis, thereby the cell prolif-
eration; (3) decreased amino acid transport, aminoacyl-
tRNA biosynthesis, and protein production to retard the 
cell growth, thus prolonging the growth cycle and main-
taining the cell structure integrated; and (4) conversely, 
enhanced the expression of condition-related proteins 
(such as GapA), structurally stabilizing factors (such 
as arginine), and efflux RND transporters to reduce the 
cell damage for growth under the unfavorable hypoxic 
condition.

Serotypes of the V. parahaemolyticus isolates
The BLAST analysis of the antigen gene loci reveled 
that the V. parahaemolyticus B8-26 and B1-21 genomes 
contained the O antigen loci wvaG/wvcA, and specific 
loci VP6 and VP202 for K34 and K23 polymorphic sites, 
respectively, indicating that the serotypes of V. para-
haemolyticus B8-26, and B1-21 isolates were O1:K34, 
and O5:K23, respectively. Similarly, V. parahaemolyti-
cus N2-5, and L7-40 genomes carried O antigen loci 
orf16/wzy and wvaH, indicating that the serotypes of V. 
parahaemolyticus N2-5, and L7-40 isolates were O4/
O11:K4, and O9:KUT, respectively. Additionally, V. 
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parahaemolyticus ATCC17802 carried O antigen loci 
gmd, and specific loci VP199 for K1 polymorphic sites, 
and its serotype was O1:K1 (Bian et al. 2020).

Phylogenetic relatedness of the V. parahaemolyticus 
isolates
To address the phylogenetic relatedness of the V. para-
haemolyticus isolates, we constructed a phylogenetic 
tree based on a total of 1,921 homologous amino acid 
sequences identified from the seventy-eight V. para-
haemolyticus genomes, seventy-four of which were 
derived from the GenBank database (Table  S1). This 
analysis revealed ten different phylogenetic groups, des-
ignated as Groups 1–10 (Fig. 8).

V. parahaemolyticus B8-26 (serotype: O1:K34; Gen-
Bank accession number: JAODUR000000000) was clas-
sified into Group 8, showing the closest evolutionary 
distance with V. parahaemolyticus XMM117 (serotype: 
O3:K6; GenBank accession number: NZ_CP064037.1), 
which was isolated from the environment in 2019 in 
China.

V. parahaemolyticus L7-40 (serotype: O9:KUT; Gen-
Bank accession number JAODVU000000000) fell into 
Group 4, together with V. parahaemolyticus FDAAR-
GOS-667 (serotype: O5:K33/K55; GenBank accession 
number: NZ_CP044062.1), which was isolated from 
Homo sapiens in USA (collection time unknown).

V. parahaemolyticus B1-21 (serotype: O5:K23; Gen-
Bank accession number: JAOPTY000000000), and V. 
parahaemolyticus N2-5 (serotype: O4/O11:K4; Gen-
Bank accession number: JAODVT000000000) were 
classified into single evolutionary branches Groups 3, 
and 9, respectively, indicating that these two isolates 
have unique genome features.

In addition, the V. parahaemolyticus strains that 
can cause gastroenteritis in humans were classified 
into Groups 1, 2, 5, 6, 7, and 8, e.g., V. parahaemolyti-
cus ATCC17802 (serotype: O1:K1; GenBank accession 
number: NZ_CP014046.1) in Group 2; V. parahaemo-
lyticus 64 (serotype: O1:KUT; GenBank accession num-
ber: NZ_CP074415.1) isolated from Penaeus in Group 
1; and V. parahaemolyticus XMM117 (serotype: O3:K6; 
GenBank accession number: NZ_CP064037.1) isolated 
from the environment in Group 8.

Taken, these results demonstrated the diversity of V. 
parahaemolyticus genomes of the environmental and 
clinical origins.

Discussion
Infectious diseases caused by pathogenic bacteria con-
tinue to be a global concern for public health, which 
results in millions of deaths worldwide each year (Bueno 
et al. 2020). The sea foodborne illness caused by V. para-
haemolyticus has shown a significant upward trend in 

Fig. 8  The phylogenetic tree showing the relationship of the seventy-eight V. parahaemolyticus genomes. Draft genome sequences of the V. 
parahaemolyticus isolates determined in this study were marked with red dots in the tree
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recent years (Zhai et al. 2021). Climate change is driving 
ocean oxygen declines (Jaccard and Galbraith 2012). On 
the other hand, the low oxygen level in the human gas-
trointestinal tract also challenges the survival and infec-
tion of V. parahaemolyticus. Thus, in the present study, 
we for the first time investigated how V. parahaemolyti-
cus isolates of aquatic animal and human clinical origins 
response to the hypoxic condition.

V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 
strains were isolated from aquatic animals S. strictus, C. 
aurea, O. oratoria, and C. idellus, respectively (Su and 
Chen 2020). Multiple antibiotic and heavy metal resist-
ance profiles were derived from the four V. parahaemo-
lyticus isolates, suggested possible antibiotic and heavy 
metal exposure or pollution sources in the aquaculture 
environments (Su and Chen 2020; Xu et al. 2022a). More-
over, we observed that these isolates grew optimally in 
the TSB medium with 3% NaCl and pH 8.5 at 37 °C, con-
sistent with the previous report (Xu et al. 2022a).

V. cholerae is a member of the Vibrio genus and can 
cause pandemic cholerae in humans (Ramamurthy et al. 
2020). V. cholerae was able to generate energy and main-
tain its physiological functions in the absence of oxy-
gen using alternative electron acceptors (AEAs) (Bueno 
et al. 2020). In this study, we determined growth curves 
of the V. parahaemolyticus isolates in the TSB equali-
brated with different oxygen concentrations (21–5% O2) 
at 37  °C. Unlike V. cholerae, our data showed that the 
lower oxygen concentrations (5–10%) greatly inhibited 
the growth of the tested isolates. However, no significant 
difference in the growth was observed between 5% O2 
and 10% O2, suggesting that 10% O2 was the cut-off point 
for the growth of V. parahaemolyticus at the low oxygen 
concentrations. Additionally, we observed that oxygen 
concentrations in air within the culture tubes fluctuated 
down by 0–1% within 24 h, and by 0–2% from 24 to 48 h, 
indicating the stable hypoxic condition maintained in our 
culture system.

Biofilm is critical for V. parahaemolyticus persistence 
in aquatic environments and pathogenicity in the host 
(Yildiz and Visick 2009). In this study, the results showed 
that the biofilm biomass generated by all the tested V. 
parahaemolyticus isolates under the 10% O2 condition 
was significantly increased at the development and mat-
uration stages (0–36  h) (p < 0.05), as compared to those 
under the normal 21% O2 condition. It has been reported 
that biofilm formation of P. aeruginosa, S. aureus, and E. 
coli induced the production of hypoxia-related enzymes 
(Crespo et al.2016; Jo et al. 2017; Létoffé et al. 2017). Our 
results, coupled with these previous studies, suggested 
that biofilm formation was likely beneficial to the patho-
genic bacteria to survival under lower oxygen niches.

Unexpectedly, we found that the pathogenic V. para-
haemolyticus ATCC17802 was capable of maintaining 
more rod-shaped cells with no surface shrinkage than the 
other tested isolates, demonstrating that V. parahaemo-
lyticus ATCC17802 was the most tolerant to the hypoxia. 
This may attribute to its survial in the host gastrointesti-
nal tract with low oxygen level.

Draft genomes of the four V. parahaemolyticus isolates 
from aquatic animals were determined (4.91–5.35  Mb), 
with no plasmid sequenced. Clean single peaks with a typi-
cal Poisson distribution in the frequency of observed unique 
17-mers within the sequencing data indicated less repetitive 
DNA in the genomes, consistent with the fewer ISs identi-
fied in the V. parahaemolyticus genomes. Among the 4,458–
4,924 predicted genes, 735 to 1,046 encoded unknown 
proteins. A large number of unknown genes have also been 
reported in seven V. parahaemolyticus genomes of aquatic 
animal origins in the previous report (Xu et al. 2022a).

V. parahaemolyticus B8-26, B1-21, N2-5, and L7-40 
genomes also carried MGEs. Only one identified IS (V. par-
ahaemolyticus L7-40 genome in IS001) was present at the 
end of the scaffold 84 and scaffold 86 (Table S14), suggest-
ing that the assembled genomes did not result in the loss of 
identified MGEs (except for this IS001). Of note, the V. par-
ahaemolyticus B1-21 genome had the maximum numbers 
of INs (n = 11) and prophage gene clusters (n = 2), while the 
V. parahaemolyticus N2-5, and B8-26 genomes carried the 
maximum numbers of GIs (n = 14), and ISs (n = 4), respec-
tively. The MGEs, such as GIs (n = 5–9), prophage gene 
clusters (n = 0–2), INs (n = 1–11), and ISs (n = 0–3) have 
also been reported in V. parahaemolyticus isolates from six 
species of aquatic animals (Xu et al. 2022a). Several MGEs 
were found in V. parahaemolyticus ATCC17802 (Yang et al. 
2015) as well, including GIs (n = 2), and INs (n = 7). These 
results in this study, coupled with the previous reports (Xu 
et al. 2022a; Yu et al. 2022; Yang et al. 2015), indicated pos-
sible HGT via the MGEs during the V. parahaemolyticus 
evolution. The MGEs, with diverse gene functions identi-
fied in this study, can promote ecological niche adaptation, 
alter gene availability within microbial communities, and 
drive the bacterial evolution (Tuttle et al. 2022). CRISPR-
Cas systems provide adaptive immunity for bacteria to 
resist foreign DNA invasion (Zaayman et al. 2022). In this 
study, CRISPR-Cas gene clusters (75–189 bp) were found 
in the V. parahaemolyticus B1-21 (n = 1), N2-5 (n = 1), 
L7-40 (n = 3), and ATCC17802 (n = 4) genomes, but none 
of which carried Cas protein-coding gene, suggesting par-
tial or inactive CRISPR-Cas systems in these V. parahaemo-
lyticus isolates (Fig. S8).

Most types of Vibrio species have an extensive reservoir 
of virulence genes (Abdelaziz Gobarah et  al. 2022). In 
this study, although no toxic tdh and trh genes (Ceccarelli 
et al. 2013) were found, virulence-related genes (42–45) 
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were identified in the four V. parahaemolyticus genomes 
of aquatic animal origins, e.g., ilpA, MAM7, exsA, flagella, 
Al-2, VpadF, and T3SS1-related genes. T3SSs are impor-
tant determinants in V. parahaemolyticus pathogenicity 
(Raval et al. 2021). In our previous study, we also found a 
number of virulence-related genes (e.g., impI, vgrG, fliC-
DEFG, flrBC, yscOPQRST, and T6SS-related genes) in V. 
parahaemolyticus strains recovered from six species of 
aquatic animals (Xu et al. 2022a). These results suggested 
possible health risks in consuming these aquatic animals.

In this study, a few antibiotic resistance-related genes, 
which are responsible for the fluoroquinolone (crp), TET 
(Tet (35)), and beta-lactam (blaCARB-18) resistance, were 
identified in the V. parahaemolyticus genomes, consistent 
with the observed phenotypes. Moreover, several heavy 
metal tolerance-related genes (e.g., cusARS, dsbABC, 
smtA, zntA) were found in these V. parahaemolyticus 
isolates as well. For example, the smtA and zntA genes, 
which are involved in bacterial tolerance to Zn, as well as 
Hg and Zn, respectively (Chen et al. 2021; Lee et al. 2001; 
Pal et al. 2014), were present in the V. parahaemolyticus 
B8-26, B1-21, L7-40, and ATCC17802 genomes. V. para-
haemolyticus B8-26 also carried the cusARS and dsbABC 
gene clusters, which are involved in bacterial tolerance to 
Cu, as well as Cd, Zn, Hg and Cu, respectively. The anti-
biotic resistance-related genes (such as acrB, catB, hns, 
qnr, soxR), and heavy metal tolerance-related genes (e.g., 
copA, cusA, cusR, cusS, zntA) have also been reported in 
the V. parahaemolyticus genomes derived from six spe-
cies of aquatic animals (Xu et al. 2022a).

The transcriptomic analyses revealed distinct response 
strategies to hypoxia by Vibrio parahaemolyticus isolates 
of clinical and aquatic animal origins. Different degrees 
of impact on the growth of V. parahaemolyticus isolates 
were observed, which were triggered by the hypoxic con-
dition. For instance, all DEGs were significantly down-
regulated in the PG biosynthesis, as well as ubiquinone 
and other terpenoid-quinone biosynthesis in V. para-
haemolyticus B8-26 (p < 0.05). In response to the hypoxic 
condition, V. parahaemolyticus L7-40 inhibited the gly-
oxylate and dicarboxylate metabolism, but up-regulated 
the glycolysis/gluconeogenesis, and changed the nitro-
gen metabolism, and the arginine biosynthesis (p < 0.05). 
The transcriptome data, coupled with the phenotype 
results in this study, demonstrated that V. parahaemo-
lyticus ATCC17802 was the most tolerant to the hypoxia 
among the isolates. This isolate down-regulated and/or 
shut down all the ten changed metabolic pathways to 
reduce cell viability and maintain cell structure under the 
hypoxic condition. In particular, the pyrimidine metabo-
lism, fatty acid biosynthesis, LPS biosynthesis, purine 
metabolism, as well as arginine and proline metabolism 
were all repressed in V. parahaemolyticus ATCC17802. 

Fatty acids are essential for biosynthesis of phospho-
lipids and also provide ATP, signaling molecules, and 
NADPH through β-oxidation (Chen et  al. 2022). For 
example, the DEG encoding a β-ketoacyl-ACP synthase 
(Vp_17802_11840) in the fatty acid biosynthesis was sig-
nificantly down-regulated (0.200–fold) in V. parahaemo-
lyticus ATCC17802 (p < 0.05), which play a vital role in 
cell wall synthesis, biofilm formation and also patho-
genesis (Hu et al. 2020). These results provided a novel 
mechanism for the persistence of the toxic strain in the 
environment and in the host.

Additionally, some metabolic pathways were altered 
in the all V. parahaemolyticus isolates under the hypoxic 
condition, e.g., the inhibited ribosome in V. parahaemo-
lyticus B1-21, N2-5, and ATCC17802 isolates; the repressed 
aminoacyl-tRNA biosynthesis in V. parahaemolyticus 
B8-26, and ATCC17802 isolates; the inhibited oxidative 
phosphorylation in V. parahaemolyticus N2-5, L7-40, and 
ATCC17802 isolates; and the suppressed citrate cycle in V. 
parahaemolyticus B8-26, N2-5, and L7-40 isolates (p < 0.05). 
For instance, the DEGs encoding the fumarate reductase 
subunits FrdCD, which is involved in maintaining redox bal-
ance through regeneration of reduced cofactors during oxy-
gen deficiency conditions (Sędzielewska et  al. 2012), were 
significantly repressed in V. parahaemolyticus B8-26 (Vp_
B8-26_15850, 0.107–fold; Vp_B8-26_15855, 0.087–fold), 
V. parahaemolyticus B1-21 (Vp_B1-21_15850, 0.406–fold; 
Vp_B1-21_15855, 0.341–fold), V. parahaemolyticus N2-5 
(Vp_N2-5_15850, 0.149–fold; Vp_N2-5_15855, 0.230–fold), 
V. parahaemolyticus ATCC17802 (Vp_17802_15850, 0.248–
fold; Vp_17802_15855, 0.113–fold), and V. parahaemolyti-
cus L7-40 (FrdD, Vp_L7-40_15855, 0.417–fold). Most of the 
DEGs in the oxidative phosphorylation were also signifi-
cantly repressed in V. parahaemolyticus N2-5, L7-40, and 
ATCC17802 isolates, which possibly provided indirect evi-
dence for the hypoxic condition maintained in our culture 
system. The oxidative phosphorylation is the last metabolic 
pathway of cellular respiration, for the production of ATP, 
the "energy currency" to sustain life (Wilson 2017).

Taken, V. parahaemolyticus developed multiple molec-
ular strategies to balance the redox state of the cell and 
the energy conversion, to inhibit the cell wall synthesis, 
thereby the cell proliferation, to retard the cell growth, 
thus prolonging the growth cycle and maintaining the cell 
structure integrated, to enhance the expression of stress-
related proteins, structurally stabilizing factors, and efflux 
RND transporters, in order to efficiently mitigate the cell 
damage and/or cytotoxicity caused by the hypoxia.

Conclusions
In this study, we investigated, for the first time, the 
growth of V. parahaemolyticus B8-26, B1-21, N2-5, 
L7-40, and ATCC17802 isolates under the hypoxic 
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condition. The former four were isolated from S. stritus, 
C. aurea, O. oratoria, and C. idellus, respectively, while V. 
parahaemolyticus ATCC17802 was of human clinical ori-
gin. These isolates harbored multiple antibiotic and heavy 
metal resistance phenotypes, and grew optimally in the 
TSB (3% NaCl, pH 8.5) at 37 °C.

V. parahaemolyticus B8-26, B1-21, N2-5, L7-40, and 
ATCC17802 isolates had an oxygen concentration-
dependent growth mode, and the 10% O2 condition 
strongly inhibited the growth of the isolates, when incu-
bated in TSB medium at 37 °C. Unexpectedly, in marked 
contrast to the normal 21% O2 condition, the V. para-
haemolyticus isolates enhanced biofilm formation under 
the hypoxic condition for 24 h.

Draft genome sequences of V. parahaemolyticus B8-26 
(serotype: O1:K34), B1-21 (serotype: O5:K23), N2-5 
(serotype: O4/O11:K4), and L7-40 (serotype: O9: KUT) 
were determined (4,913,675–5,353,490  bp). Compara-
tive genomic analysis revealed unknown function genes 
(19.32–23.13%), and MGEs (n = 12–29) in the V. para-
haemolyticus genomes. Moreover, V. parahaemolyticus 
B1-21, and N2-5 had unique genome features, classified 
into single branches in the phylogenetic tree.

Genome-wide gene expression changes triggered by 
the hypoxic condition were further examined. Com-
parative transcriptomic analysis unveiled multiple sig-
nificantly changed metabolic pathways in the isolates 
under the 10% O2 condition for 24 h. V. parahaemolyti-
cus developed multiple molecular strategies to efficiently 
mitigate the cell damage and/or cytotoxicity caused by 
the hypoxia.

In addition, V. parahaemolyticus ATCC17802 (sero-
type: O1:K1) of the clinical origin was the most tolerant 
to the hypoxia among the test isolates, and down-regu-
lated and/or shut down ten metabolic pathways to reduce 
cell viability and prolong growth under the stress.

Overall, the results of this study fill prior gaps in V. 
parahaemolyticus response to the hypoxic condition, and 
provide a novel mechanism for the toxic V. parahaemolyt-
icus strain to persist in the environment and in the host.
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