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Abstract

safety assessment of transgenic crops

Purpose: In agricultural practices, continuous cultivation of genetically modified crops with high commercial value
has a definite impact on soil microbial diversity. Soil microorganisms directly define the operational degree and
function realization of the soil ecosystem. To understand the safety of environmental release, we studied the effects
of continuous cropping of transgenic cotton on the diversity of bacterial communities in the rhizosphere soil.

Methods: We have applied a high-throughput sequencing method and compared the bacterial community structure
as well as diversity of rhizosphere soil of the transgenic cotton line (25C-1) and its parent cotton line (TH2).

Result: Structural analysis of the bacterial community showed that Arthrobacter and Sphingomonas are significantly
enriched after continuous cropping of transgenic cotton lines and had a positive impact on the soil's ecological
environment. Interestingly, parameters of the physical and chemical properties of soil used for the continuous
cropping of the two cotton lines for 3 consecutive years show no detectable change, other than total nitrogen.
Notably, Spearman'’s correlation analysis suggests that total nitrogen is the key environmental factor that affects the
bacterial community of the soil used to cultivate the transgenic cotton.

Conclusion: We did not find a notable difference in species diversity between the two samples. However, the
proportions of beneficial bacteria (Arthrobacter and Sphingomonas) increased and the total nitrogen content has
changed in 3 years. These results provide necessary insights into the function and role of bacteria in transgenic cotton.
This study will help future investigators assess the potential ecological risks of genetically modified plants.
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Introduction

The global production of genetically modified crops has
grown profoundly from 1.7 million hectares in 1996 to
191.7 million hectares in 2018 (Babar et al. 2019). The
agriculture practices with commercial transgenic crops,
such as cotton (a leading cash crop) and maize (Trivedi
et al. 2012), have brought enormous economic benefits
worldwide (Guo et al. 2018). However, world average
cotton yield in 2005 was estimated at 650 kg lint ha™?, a
73% loss to various stresses (comparable to those values
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published for other crops). Among all stresses, the main
factors affecting cotton yield are drought and salt stress,
and improving the tolerance of cotton to these two abi-
otic stresses is currently the most urgent task (Saranga
et al. 2009). A recent report demonstrates that under
stress conditions, the Arabidopsis transcription factors
CBE/DREBI bind to CRT/DRE to activate the transcrip-
tion of its downstream genes, COR (Randall and Yama-
saki 2016). This enhances the ability of the plants to
resist various abiotic stress such as low temperature,
drought, and high salt (Verslues et al. 2006).

Like the advancement of any other technology, the
question of environmental risks associated with transgenic
plants remains to be answered. The increased worldwide
commercial cultivation of genetically modified crops in
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the past 20 years is likely to have a profound impact on
soil microbial communities (Lilley et al. 2006; Hutchison
et al. 2010; Lu et al. 2012). Multiple lines of evidence have
shown that transgenic plants affect the soil microbial com-
munities, especially rhizosphere bacteria (Koskella and
Stotzky 1997; Knox et al. 2007; Jepson et al. 2010; Trivedi
et al. 2012). The foreign genes in transgenic crops may re-
main in the soil through root exudates or defoliation. This
may lead to the change of soil microbial communities, and
the physical and chemical properties of soil will change ac-
cordingly. Moreover, inflicted changes may also affect the
availability and release of soil nutrients (DeAngelis et al.
2009; Uroz et al. 2010). Therefore, the effect of transgenic
plants on soil microbial communities is of great signifi-
cance for scientific assessment to evaluate its potential
ecological risks in the future.

Soil microorganisms play a central role in the biogeo-
chemical cycle of nutrient and organic matters. This is
mainly caused by decomposition of the organic materials
in the soil that essentially maintains a stable agricultural
ecosystem (Van der Heijen et al. 2008). Most plants have
symbiotic relationships with soil microbes (bacteria and
fungi) during their growth and development. Soil bac-
teria are the most abundant and widely distributed
among soil microorganisms. The plant grows in close as-
sociation with a bacterial community that lives and
thrives in soil around the surface (rhizosphere) or inside
their roots (endosphere) (Berg et al. 2014). In particular,
plants are known to define the composition of their rhi-
zospheric bacterial microbiome (Berendsen et al. 2012).
Thus, alteration in the composition and structure of the
soil microbial communities or composition is reflected
as deteriorating soil quality, and thus also plant health
(Raza et al. 2016).

The rhizosphere was defined over 100 years ago as the
zone around the root where microorganisms and pro-
cesses important for plant growth and health are located
(Bakker et al. 2013). Any changes in the physical and
chemical properties of rhizosphere soil can reflect the
influence of plants on it (Yang et al. 2017). Root morph-
ology and distribution of crops affect the structure of
the soil microbial community, while root exudates dir-
ectly affect the soil microbial community abundance
(Nie et al. 1997). The quality and growth pattern of the
plants indirectly reflect the quality of the soil (Qiao et al.
2017). Therefore, it is more important to investigate the
effect of transgenic crops on the structure and diversity
of soil microbial communities.

High-throughput sequencing technology can be used
to obtain comprehensive information about soil micro-
bial structure, diversity, and function. This can also be
used for the in-depth assessment of the changes in soil
microbial communities over time. In the present work,
the soil physical and chemical properties and soil
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microbial diversity of transgenic (25C-1, possessing the
CBF1I gene) as well as non-transgenic cotton (TH2) have
been studied. The study was aimed to (1) explore the
correlation between the changes in physical and chem-
ical properties of soil and the relative abundance of soil
microbial communities in soil used to cultivate trans-
genic cotton, (2) study the effects of continuous crop-
ping of transgenic cotton on the microbial community
of plant rhizosphere soil, and (3) identify the dominant
bacterial population in the continuous cropping of gen-
etically modified cotton. The study provides considerable
insights into the impact of genetically modified cotton
on soil microbial communities that may also help policy-
makers in evaluating environmental safety threats of
commercialized genetically modified crops.

Materials and methods

Site description, field experiment, and soil sampling

The experiments in the present article were performed
at the Shihezi University Experimental Base (44° 20" N,
85° 50" E), in the Xinjiang Uygur Autonomous Region,
China. The field site is located in the early maturing or
extremely early mature cotton planting ecological zone
of the northern foothills of the Tianshan Mountains in
Xinjiang. It is located in the North Temperate Zone that
has a temperate continental plateau climate. The warm-
est month of the year is July, with a mean temperature
of 25.2 to 26.2°C, and the maximum goes up to 42.2°C.
The coldest month of the year is January, with a mean
temperature of — 18.6 to — 15.5°C, and a minimum
temperature drops down to — 37.8 °C. A total of around
168~171 days in a year are reported frostless in the re-
gion. Moreover, average annual rainfall and annual evap-
oration in the region are recorded around 213 mm and
1537 mm, respectively.

TH2 was used as the recipient cotton cultivar. The
transgenic cotton line 25C-1 was developed in the Key
Laboratory of Agricultural Biotechnology of Shihezi Uni-
versity using a pollen tube pathway method on TH2.
The cotton field adopts a random block design which
has 3 rows per plot, and each plot covers an area of
11.25 m?, with about 300 plants and a spacing of 10 cm.
The 3 plots were planted as 3 replicates (Liu et al. 2019).

The rhizosphere soil samples were collected for 3 con-
secutive years precisely on July 15. The soil samples
were collected following Riley and Barber’s shake
method (Riley and Barber 1970). In 3 repeated random
plots planted with different cotton materials, five sample
points were selected from each plot using an S-shaped
distribution for sampling. A boring auger with an inner
diameter of 6.0 cm was vertically inserted into the soil,
which collected rhizosphere soil from the bottom of the
interplanting lines (5-20 cm). The acquired mixed sam-
ples were sieved (4mm, 5 mesh). The sieved samples
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were stored at 4 °C before being used in the laboratory
for further experiments.

Soil physical and chemical properties

The properties of the soil samples collected over time
were analyzed following the previously described
methods (Hungria et al. 2013). Organic matter (OM)
and total nitrogen (TN) of the soil samples were quanti-
fied wusing KCr,O; and HCIO4-H,SO, digestion
methods, respectively. Available phosphorus (AP) was
measured by Mo-Sb colorimetric method from the soil
samples extracted using NaHCO;. Atomic absorption
spectrometry was performed over the samples extracted
using NH,OAc to quantify the available potassium (AK)
in the soil. The pH and electrical conductivity (EC) of
the soil samples were determined in a 1:5 (w/v) suspen-
sion of soil in water.

DNA extraction, PCR amplification, and Illumina MiSeq
sequencing

Total genomic DNA was extracted from samples using
PowerSoil® DNA Isolation Kit and as instructed by the
manufacturer (Mo Bio Laboratories, Solana Beach, CA,
USA). The purified DNA was subjected to 1% agarose
gels to measure the quality of the soil samples.

The DNA samples were diluted with ddH,O to obtain
dilutions of 1 ng/pl. The 16S rRNA genes of the V4 region
were amplified using 515F-806R (5'-GTGCCAGCMGCC
GCGGTAA-3'and 5'-GGACTACHVGGGTWTCTAAT-
3’) primer pairs having barcodes. All PCR reactions were
carried out using Phusion® High-Fidelity PCR Master Mix
(New England Biolabs).

Sequencing of the DNA samples for further analysis
was performed on an Illumina HiSeq 2500. Paired-end
reads were assigned to samples based on their unique
barcode followed by a truncation of the barcodes and
primer sequences (Mago¢ and Salzberg 2011). The raw
sequencing data were merged using FLASH (v1.2.7).
Chimeras were removed using Mothur, while the short
sequences from the spliced strands, for quality control
and filtering, were obtained effectively by splicing frag-
ments (clean tags). Thereafter, based on the valid data,
Ullust and Uclust methods (Edgar 2013) were used for
the OTU (operational taxonomic unit) clustering and
species classification analysis that is based on the 97%
sequence similarity (Bokulich et al. 2013). The RDP clas-
sifier was used to annotate taxonomic information for
representative sequences of each OTU. An in-house Perl
script was developed and used to analyze a- and -
diversity (Zhang and Wang 2017).

Statistical analysis
The physicochemical data were analyzed by one-way
ANOVA followed by Duncan’s multiple range tests
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using the SPSS Statistical Software Package ver. 26 (SPSS
Inc., USA). The significance level of the data was set at P
< 0.05. In a-diversity analysis, rarefaction curves, Chaol,
and Shannon’s index were generated to reflect commu-
nity richness and their diversity respectively, whereas the
comparative analysis of microbial community compos-
ition of different samples was assessed using [B-diversity.
The degree of bacterial differences between samples was
analyzed based on non-metric multi-dimensional scale
(NMDS). We also performed an unweighted UniFrac
distance matrix for UPGMA (unweighted pair-group
method with arithmetic mean) cluster analysis and inte-
grated the clustering results with the relative abundance
of each sample. Spearman’s correlation heat map pre-
pared to reflect a relationship between soil fungal com-
munity composition and environmental factors.

Results

Soil physical and chemical properties

The physical and chemical properties of soil are shown in
Table 1. The parameters, namely pH, EC, OM, AP, and AK,
of the soil samples from the two cotton lines were not sig-
nificantly different (P > 0.05). Interestingly, a significant dif-
ference was observed in the TN values of the soil samples.
After the first year of planting, the TN values of TH2 and
25C-1 were 0.33 + 0.06 and 0.27 + 0.12, and then increased
to 0.61 £ 0.10 and 0.44 + 0.04 in the second year (P < 0.05).

Soil bacteria community and diversity

A total of 544,645 high-quality reads were obtained from six
samples using Illumina MiSeq sequence analysis. A total of
32,820 OTUs were also observed at a 97% similarity (rhizo-
sphere soil sample of transgenic cotton is denoted by SS1,
while the recipient cotton rhizosphere soil sample by SS2).
The bacterial OTUs were assigned with 54 phyla, 110 classes,
211 orders, 364 families, and 516 genera.

Annotation of the soil microbial data obtained sug-
gests that 10 predominant phyla are predominantly
present in the sample. Subsequent analysis of the data indi-
cates that Proteobacteria, Acidobacteria, Actinobacteria,
Gemmatimonadetes, Bacteroidetes Planctomycetes, Chloro-
flexi, Verrucomicrobia, Nitrospirae, and Firmicutes precisely
share 26,53, 22.34, 1341, 1354 551, 4.14, 3.57, 291, 147,
and 1.20% of the total microbial predominance respectively
(Fig. 1). Furthermore, a heat map was prepared for the abun-
dance in each sample (Fig. 2). It should be noted that the top
35 genera were selected for clustering from the two levels of
species and samples. Arthrobacter, Blastocatella, unidenti-
fied_Gemmatimonadetes, Sphingomonas, Gemmatimonas,
Massilia, Haliangium, Gaiella, Solirubrobacter, and Bryobac-
ter presents the first 10 bacterial genera that precisely share
1.66, 1.39, 1.69, 1.33, 1.20, 0.73, 0.83, 0.75, 0.69, and 0.81% of
the total abundance (Fig. 2).
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Table 1 The basic physical and chemical properties of the soil

Years® Treatment® PH EC (msm™") OM (gkg™) TN (gkg™) AP (mgkg™) AK (mgkg™)

1 TH2 7.88 + 0.08 a 021+£010a 874+1.17a 0.33 + 0.06 bc 1551 +£935a 286.16 £ 47.16 a
25C-1 784 +£032a 022+0.10a 868 £5.17 a 027 +012c¢ 1322 +425a 27636+ 7725 a

2 TH2 794+ 024 a 042 + 047 a 1222 £ 256 a 061 +0.10a 2022 +371a 32205+ 3759 a
25C-1 784+ 028 a 044 +£039a 1233+ 239 a 044 +004 b 1390 £ 545 a 30257 £ 4822 a

3 TH2 750 £0.07 a 0.19 £ 0.06 a 11.09+039a 0.39 + 0.05 bc 11.08+271a 28548 £ 4141 a
25C-1 767 £038 a 0.15+005a 1072 £ 145 a 0.28 £ 0.03 ¢ 10.10 £ 432 a 24857 £ 126.77 a

The data have been shown as mean + SE. Letters following the data indicate significant differences between samples during different sowing years of each

cotton line (Duncan'’s multiple range test was employed, P < 0.05)

1, 2, and 3 represent continuous cropping during the 1st, 2nd, and 3rd year, respectively
PAcceptor cotton rhizosphere soil (TH2) and rhizosphere soil of transgenic cotton (25C-1)

All the sparse curves obtained using QIIME pipeline
with a 97% sequence similarity tend to be close to the
saturation platform. This indicates that the number of
sequencing reads in each sample was reasonable; SS1
and SS2 are equally rich in terms of the species diversity
and uniformity that is also apparent in terms of their
high coincidence values (Fig. 3).

Beta diversity analysis

Non-metric multi-dimensional scale (NMDS) is a classi-
fication method suitable for ecological research that can
be explained by a nonlinear model. It reliably reflects the
nonlinear trend of data that help to overcome the short-
comings of linear models (e.g., PCA, PCoA). The NMDS
model relies on the distance between points in multi-

dimensional space to reflect the degree of difference be-
tween individual samples (Fig. 4). A clustering tree can
be constructed to show the similarity between different
samples by cluster analysis over them. UPGMA cluster
tree structure is denoted on the left, while the species
relative abundance distribution map of each sample at
the gate level is shown on the right (Fig. 4).

The NMDS variation analysis suggests that SS1 and
SS2 are mainly different on the NMDS scale of A-3
and B-3 points (Fig. 4). Unweighted UniFrac cluster
analysis of six soil samples exhibited that SS1.1,
§S1.2, §S2.1, and SS2.2 were relatively similar. On the
contrary, SS1.3 and SS2.3 relate to different branches
and show no significant difference in the classification
levels of the 10 phyla (Fig. 5).
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Correlation between environmental data and microbial
communities

We used Spearman’s correlation analysis to access the
abundance of the top 35 genera identified based on the
heat maps (Fig. 6). The results suggest that TN is the
most critical environmental factor that significantly affects
the soil bacterial community of transgenic cotton. More
specifically, TN was correlated negatively with Acidibacter,
Lysobacter, and Iamia, while positively with Planococcus
and Adhaeribacter bacteria. In addition to the TN, AP
was also negatively correlated with Blastococcus and
Candidatus Entotheonella. Moreover, the correlation
data did not suggest any definitive link between other
environmental factors and bacterial communities.
Taken these results together, it was confirmed that
the microbial communities namely Acidibacter, Lyso-
bacter, Iamia, Planococcus, Adhaeribacter, Blastococ-
cus, and Candidatus Entotheonella were not
significantly different after 3 years of continuous crop-
ping of both the transgenic cotton line 25C-1 and its
parent cotton line TH2. Moreover, they do not be-
long to the dominant genus.

Discussion

Transgenic plants that show herbicide tolerance, salt tol-
erance, drought tolerance, disease resistance, and insect
resistance improved product quality and superior agro-
nomic properties (Liu et al. 2005). Considering the pos-
sible environmental consequences of growing genetically
modified crops, evaluating the impact of genetically
modified crops on soil microorganisms will become an
important issue. In this study, the effects of continuous
cropping of genetically modified cotton on its soil bac-
terial community structure and diversity were investi-
gated by high-throughput sequencing technology.

Based on the studies conducted at Central Institute for
Cotton Research, Nagpur, it was found that growing Bt
cotton does not affect the soil biological properties (Vel-
mourougane and Sahu 2013). In this study, our analysis
showed that soil TN content significantly differs (P <
0.05) (Table 1). Soil TN plays a vital role in controlling
soil fertility and crop yield (He et al. 2009). The TN con-
tent is a dynamic parameter, the level of which in the
soil changes with deposition and consumption of nitro-
gen (Batista et al. 2015). This depends on multiple
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factors, in particular, the nitrogen fixation by plants and
hydrolysis of soil organic matter (Wardle 2008). OM is
an important constituent of the soil that remains present
in trace but is indispensable in maintaining the soil nu-
trients, physical properties, melting, decomposition, and
synthesis of humus (Berg et al. 2014). The results suggest
that after the first year of planting, the OM values of TH2
and 25C-1 were 8.74 + 1.17 and 8.68 + 5.17, and then in-
creased to 12.22 + 2.56 and 12.33 + 2.39 in the second
year (P > 0.05). The further analysis hinted that the
decomposed straw to the cotton field was the main reason
for the accumulation of soil organic matter. Interestingly,
we did not report any significant difference in PH, EC,
OM, AP, and AK in the rhizosphere soil of TH2 and 25C-
1 during 3 years of continuous cropping (P > 0.05). Taken
all these results together, we propose that the transgenic
line 25C-1 imposes no considerable impact on the phys-
ical and chemical properties of the soil and thus may not
have any adverse effects on the plant growth cycle or en-
vironment, which agrees with the results of previous Bt-
cotton research (Sarkar et al. 2009).

The results clearly showed that the main phyla present
in the soil samples were Proteobacteria, Acidobacteria,
Actinobacteria, and Gemmatimonadetes, among which
Proteobacteria was the most important phylum (Fig. 1),
which agrees with the results of Fan et al. (2017). Pro-
teobacteria is a gram-negative bacterium containing ni-
trogen fixation genes in its genome (Delmont et al.
2018). The proportion of Proteobacteria in rhizosphere
soil of 25C-1 cotton strain was found to be higher com-
pared to the TH2 cotton strain (Fig. 1). Notably, the pro-
portion of Actinobacteria in rhizosphere soil of 25C-1
cotton strain was also significantly higher compared to
the TH2 strain (Fig. 1), which is different from the re-
search results of Wei et al. after continuous cropping of

cotton (Wei and Yu 2018). Previous studies have shown
that a reduction in the OM in the soil caused by con-
tinuous cotton cropping is a major factor leading to a
significant reduction in the Actinobacteria population
(Zhang et al. 2013). However, our research has shown
that the TN, OM, Proteobacteria, and Actinobacteria
content in the soil increased after continuous cropping
of genetically modified cotton. This may be a different
effect of genetically modified cotton on the soil.

Among the top 35 genera identified in the soil samples
with an abundance of larger than 1%, five were classified
in bacterial genera namely Arthrobacter, Blastocatella,
unidentified_Gemmatimonadetes, Sphingomonas, and
Gemmatimonas (Fig. 2). Two (Arthrobacter and Sphingo-
monas) of the five among them were significantly differ-
ent (P < 0.5), which was first discovered in the soil of
continuous cropping of genetically modified crops.
Arthrobacter that belong to gram-positive actinomycetes
are found in most of the ecological environments includ-
ing soil. It is reported that some strains of Arthrobacter
have the ability to degrade pesticides, perform nitrogen
fixation, and also produce certain beneficial enzymes (Fu
et al. 2014). As an example, Arthrobacter spp. can de-
grade the herbicide atrazine that poses a threat to the
environment if discharged to waterways. Jiang et al. iso-
lated an Arthrobacter sp. strain HS-G8 that has
nitrogen-fixing ability without any nitrogen medium
(Jiang et al. 2004). In addition to its nitrogen fixation
ability, nitrification and denitrification functions of
Arthrobacter are also well reported (Fu et al. 2014).
Interestingly, a few species of the Arthrobacter, such as
Arthrobacter crystallinis (Camargo et al. 2004) and
Arthrobacter chlorophenolum (Westerberg et al. 2000),
are also capable of biodegradation. This ability has been
exploited for bioremediation of contaminated soil for
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chromium and 4-chlorophenol (Ashvini et al. 2018).
Sphingomonas is a gram-negative bacterium that has a
special cellular structure. The unique metabolic mechan-
ism and ability to tolerate poor nutrition facilitate their
survival to the harshest natural conditions. It has many
potential  biotechnological applications such as
microbe-induced corrosion, production of valuable
extracellular polysaccharide polymers, and degradation
of refractory organic compounds (White et al. 1996).
Previous studies have shown that Sphingomonas can
degrade polyethylene glycol (PEG-4000). In combin-
ation with other bacteria (known as dual cultures),

Sphingomonas can also degrade PEG6000 (Takeuchi
et al. 1993).

According to the UPGMA cluster tree structure and
species relative abundance map in the p-diversity ana-
lysis (Fig. 5), there is no significant difference in soil mi-
crobial abundance between transgenic cotton and non-
transgenic cotton, which is consistent with the results of
Shahmoradi et al. (2019). Similarly, many other previous
studies revealed that the effect of transgenic crops was
minor, transient, or not significant on microbial popula-
tions in rhizosphere soil (Turrini et al. 2004; Shen et al.
2006; Sarkar et al. 2009; Velmourougane and Blaise
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2014; Zaman et al. 2015). However, the effects of genet-
ically modified plants on soil microorganisms can be di-
vided into direct effects and indirect effects (Liu et al.
2005). Direct impact will depend on the accumulation of
genetically modified protein (Oger et al. 1997). For ex-
ample, transgene proteins for pest and disease resistance
can involve the production of chemical substances that
are potentially toxic to non-target soil organisms. In
contrast, indirect effects are mediated by changes in
plant protein and root exudate composition that arise as
a result of modifying the metabolic pathways in the plant
tissues. Therefore, the potential risk assessment of trans-
genic plants still needs a lot of research.

Conclusion

High-throughput sequencing analysis of rhizosphere soil
samples of cotton lines, TH2 and 25C-1, provided in-
sights about the impact of bacterial communities at the
genus level. The results show that Arthrobacter and
Sphingomonas might play a role and impact the soil en-
vironment positively during continuous cropping of
transgenic cotton. According to the physical and chem-
ical properties of the soil, the significant accumulation of
total nitrogen in the soil may also be the result of 25C-1
continuous cropping. Furthermore, the microbial commu-
nity structure in soil was not affected by the cropping of
genetically modified cotton and the total microbial popula-
tion and diversity of experimental fields remain quite simi-
lar during the cropping of both genetically modified cotton
and non-genetically modified cotton. Though it is difficult
to understand the intricate interactions between plant roots
and bacteria in the soil environment, this study provides
necessary insights into the indirect effects of continuous
cropping of genetically modified cotton on soil microorgan-
isms. Cultivation of CBFI cotton may not pose ecological
or environmental risk.
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