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Abstract

Purpose: To evaluate the production of a cold-active CMCase (endoglucanase) by Bacillus mycoides AR20-61
isolated from Alpine forest soil and to characterize the crude enzyme.

Methods: After studying the effect of cultivation parameters (medium composition, temperature, NaCl
concentration, pH) on bacterial growth and enzyme production, the crude enzyme was characterized with regard
to the effect of pH, temperature, and inhibitors on enzyme activity and stability.

Result: Optimum growth and enzyme production occurred at 20-25 °C, pH 7, and 1-1.5% (w/v) CMC. Despite high
biomass production over the whole growth temperature range (10-35 °C), enzyme production was low at 10 and
35°C. CMC concentration had a minor effect on growth, independent of the growth temperature, but a significant
effect on CMCase production at temperatures = 20 °C. The crude enzyme was active over a broad temperature
range (0-60 °C); the apparent optimum temperature for activity was at 40-50 °C. The cultivation temperature
influenced the effect of temperature on enzyme activity and stability. A significantly higher thermosensitivity of the
enzyme produced at a cultivation temperature of 10 °C compared to that produced at 25 °C was noted at 50 and
65 °C. The enzyme was highly active over a pH range of 4-6 and showed optimum activity at pH 5. No activity was
lost after 60 min of incubation at 30 °C and pH 4-9. The CMCase was resistant against a number of monovalent and
divalent metal ions, metal-chelating agents, and phenol.

Conclusion: The CMCase produced by the studied strain is characterized by high activities in the low temperature
range (down to 0°C) and acidic pH range, high stability over a broad pH range, and high resistance against a
number of effectors. Our results also demonstrate the different, independent roles of temperature in bacterial
growth, enzyme production, nutrient requirements during enzyme production, and enzyme characteristics
regarding thermosensitivity, which has not yet been described for cellulases.
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Introduction

Cellulose is the most abundant renewable biopolymer
and one of the most important carbon sources on Earth.
It is the major structural component of the cell-wall of
terrestrial plants and marine algae and is also produced
by some bacteria and terrestrial animals (Teeri 1997).
The degradation of cellulose and hemicelluloses repre-
sents a key step in terrestrial carbon cycling (Lépez-
Mondéjar et al. 2016). Beside this crucial ecological role,
cellulose transformation is also of great importance in
biotechnology. Enzymatic depolymerization is environ-
mentally friendly. Cellulases cleave the B-1,4-glycosidic
bonds in the cellulose chain. They are widely used in the
pulp, textile, food, and feed industries and are involved
in the production of value-added products, such as
bioethanol, and sustainable energy from biomass (Juturu
and Wu 2014; Menendez et al. 2015; de Cassia Pereira
et al. 2017).

Cellulolytic enzymes are produced by a number of
microorganisms (Islam and Roy 2019). Although it is
typically assumed that fungi are the major decomposers
of complex plant biopolymers (Boer et al. 2005), numer-
ous bacteria have been described in recent years as
efficient cellulose degraders (de Cassia Pereira et al.
2017; Banerjee et al. 2020), often more effective than
fungi (Ariffin et al. 2006). Bacteria have a number of ad-
vantages compared to fungi: higher growth rates allow
for the higher recombinant production of enzymes, they
express multienzyme complexes with increased function
and synergy, and they inhabit a wide variety of environ-
ments and are often resistant to extreme conditions
(Sadhu and Maiti 2013; Li et al. 2016).

Most studies on cellulolytic bacteria have been focused
on mesophilic or thermophilic representatives. The
number of studies on cellulose degraders in cold envi-
ronments is low (Li et al. 2016; Lin et al. 2019; Sun et al.
2020). It has been recognized that cold-active enzymes
provide a wide biotechnological potential. They are
characterized by high catalytic efficiency at low and
moderate temperatures and are thermolabile, which is
often desirable in industrial processes (Juturu and Wu
2014; Collins and Margesin 2019).

In an earlier study (Berger et al. 2020), we demon-
strated the ability of a high number of bacterial strains
isolated from soil from an Alpine coniferous forest site
to produce CMCase. Among the 68 tested strains, Ba-
cillus mycoides AR20-61 was the best enzyme producer
and was therefore selected for further studies on
CMCase production and enzyme characterization. It
was the aim of this study to evaluate the production of
a cold-active CMCase (endoglucanase) by Bacillus mycoides
AR20-61 and to characterize the crude enzyme. We studied
the effect of temperature on growth, enzyme production,
and enzyme characteristics.

Page 2 of 8

Materials and methods

Strain

The bacterial strain used in this study was isolated from
soil from an Alpine coniferous forest site (46° 35" 16.2"
N, 11° 26" 4.9" E) located 7 km north of Bozen/Bolzano,
Italy, below the Rittner Horn at an altitude of 1724—
1737 m above sea level (Franca et al. 2016) and identified
as member of the species Bacillus mycoides (GenBank
accession no. ACU01000002; Berger et al. 2020). The
strain was stored at — 80 °C using ROTI©Store cryovials.

Effect of cultivation parameters on growth and CMCase
production

Growth (OD600) and CMCase activity in the cell-free
supernatant obtained by centrifugation were monitored
at regular intervals until the stationary phase was
reached. Experiments were carried out in triplicate.

To determine the effect of the medium composition
on growth and enzyme production, the strain was
cultured at 25 °C and 150 rpm in the following four pH-
neutral liquid media supplemented with carboxymethyl
cellulose (CMC; Fluka 21900; 0.5% w/v) (compositions
indicated per liter): (i) mineral salts medium (Nay,H-
PO42H,O 35g KH,PO, 20g (NHy),SO, 10g,
MgSO47H,0 0.2 g, Ca(NO3),4H,O 0.05g, yeast extract
0.05g), (ii) R2A (yeast extract 5.0g, Bacto Tryptone 0.5g,
K,HPO, 0.3g, MgSO4.7H,O 0.05g), (iii) NB (Nutrient
broth; Merck 05443; 8.0g), and (iv) Standard I (peptone
from casein 7.8 g, peptone from meat 7.8 g, yeast extract
3.0g, NaCl 6.0 g).

The effects of various parameters on growth and en-
zyme production were determined in medium iii (Stand-
ard I) at 150rpm. The effect of temperature was
determined at temperatures ranging from 0 to 40°C
(5°C intervals). To determine the effect of NaCl, the
medium was supplemented with 0%, 0.5%, 1%, 1.5%, 2%,
3%, 5%, 7.5%, and 10% (w/v) NaCl. The effect of pH was
evaluated in medium with the pH adjusted to values
ranging from pH5 to 9 using 67 mM citrate buffer (pH
5-6) or Tris buffer (pH 7-9) at 25°C. To determine the
effect of CMC concentration and temperature, the strain
was cultured in its growth temperature range (10-35 °C;
5°C intervals) in medium supplemented with 0.5, 1.0,
and 1.5% (w/v) CMC.

Enzyme assays

Enzyme assays were performed in triplicate in bacterial
culture supernatants obtained after centrifugation for 5
min at 12,000xg.

CMCase (endoglucanase) activity was determined by
the 3,5-dinitrosalicyclic acid (DNS) colorimetric method
as described by Ariffin et al. (2006) and Li et al. (2016).
The crude enzyme (0.5ml) was mixed with 2ml of
substrate solution (1% w/v CMC dissolved in 50 mM
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sodium citrate buffer (pH 4.8)) and incubated for 30 min
at 30°C in a water bath. The reaction was stopped by
adding 3 ml DNS reagent (Li et al. 2016), followed by
heating for 5 min in a boiling water bath. After 10 min
of cooling, the absorbance at 540 nm was determined in
a spectrophotometer. The concentration of released
glucose was determined from a glucose calibration curve
prepared in culture medium. Enzyme blanks, reagent
blanks, and glucose standard solutions were treated in
exactly the same way like samples. CMCase activity was
expressed as the amount of glucose equivalents (GLCeq;
micrograms glucose) released per milliliter of crude
enzyme solution and incubation time.

Filterpaperase (FP; exoglucanase) activity was deter-
mined by using the method described by Wood and
Bhat (1988) and Ariffin et al. (2006). The crude enzyme
(0.5 ml) was mixed with 2 ml of substrate (Whatman no.
1 filter paper strips; 1 x 3cm and 1 x 6 cm) suspended
in 50 mM sodium citrate buffer (pH 4.8) and incubated
for 30 min at 30 °C in a water bath. Afterwards, the same
procedure as described for CMCase activity was applied.

Cellobiase (B-glucosidase) activity was determined ac-
cording to Wood and Bhat (1988) and Ariffin et al.
(2006). To detect cell-free or cell-associated activity,
cell-free culture supernatant and cell-containing medium
(0.5 ml) was mixed with 2ml of substrate (0.15% w/v
pNPG (p-nitrophenyl-B-D-glucopyranoside)) dissolved
in 50 mM sodium citrate buffer (pH 4.8) and incubated
for 30 min at 30°C in a water bath. The reaction was
stopped by adding 2 ml of 1 M Na,COs. The absorbance
at 400 nm was determined in a spectrophotometer. The
concentration of released pNP (p-nitrophenol) was
determined from a pNP calibration curve. Enzyme
blanks, reagent blanks, and pNP standard solutions were
treated in exactly the same way like samples. Cellobiase
activity was expressed as the amount of micrograms
pNP released per milliliter of crude enzyme solution and
incubation time.

CMCase characterization

Enzyme characterization was performed in triplicate in
cell-free supernatants of cultures grown in Standard I
medium (pH 7) containing 1% (w/v) CMC at 25°C. The
effect of pH on enzyme activity was tested by using
substrate solutions prepared in 50 mM citrate buffer
(pH 3-6) or Tris buffer (pH7-9). To test the effect of
pH on enzyme stability, enzyme solutions were incubated
with citrate buffer (pH 3-6) or Tris buffer (pH 7-9) for
60min at 30°C; afterwards, the residual activity was
determined. The effect of potential inhibitors and induc-
tors (metals, chelating agents, detergents, phenolic com-
pounds) on enzyme activity was tested by determining the
residual activity after incubating the enzymes with each of
the tested agents for 60 min at 30 °C (Table 1).
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Table 1 Effect of mono- and divalent metal ions, metal-
chelating agents, surfactants, and phenolic compounds on
CMCase activity (mean values of three replicates)

Agent Concentration Residual
activity (%)

None 100
Mn?* (MnCl,2 H,0) 10 MM 36

Fe’* (FeCly) 10mMm 75

Mg?* (MgCl»6 H,0) 10mM 111

Pb”* (PL(NO3)) 10mM 56

Zn’" (ZnSO47 H,0) 10mMm m

Cu®* (CuCly2 H,0) 10mM 110

Fe’" (FeCly4 H,0) 10mMm 11

K* (KC) 100 mM 101

Na* (NaCl) 100 mM 111
EDTA (Titriplex 1) 3% (W/v) 109
Ethylene glycol 3% (v/v) 103
Triton X-100 3% (v/v) 125
Tween 20 3% (v/v) 82
Phenol 10 mM 103

To determine whether the cultivation temperature has
an influence on the effect of temperature on activity and
stability of the enzyme, the strain was cultured at 10 and
25°C. For the evaluation of the optimum temperature
for enzyme activity, the reaction was carried out at vari-
ous temperatures (0-70 °C) using the CMCase standard
assay. For the determination of the effect of temperature
on enzyme stability, the crude enzymes were incubated
for 10, 30, and 60 min at 20, 35, 50, and 65°C. After
cooling on ice, the residual activity was measured.

Results
Growth and CMCase production
The medium composition had a significant effect on
growth and CMCase production of the strain investi-
gated in this study. Best growth was obtained in Stand-
ard I medium (OD600 14.1), the nutrient-richest among
the tested media; about half of this biomass was detected
in NB medium (OD600 7.5). Low growth was observed
in R2A medium (OD600 1.2) and no growth occurred in
the mineral salts medium. The same trend was visible
for CMCase production, which was negligible in R2A
medium and about twice as high in Standard I medium
compared to NB. CMCase production was highest in the
early stationary growth phase. NaCl had almost no
growth-inhibiting effect in the range of 0-3% (w/v).
NaCl contents of 5% (w/v) and higher inhibited growth
completely (data not shown).

Temperature influenced growth and CMCase produc-
tion significantly (Fig. 1). The strain showed best growth
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at 20-25 °C. Ninety percent and 71%, respectively, of the
maximum biomass were found at 30 and 10°C. No
growth occurred at 0-5°C and at 40°C. Despite high
biomass production at temperatures of 10-35°C, en-
zyme production had a narrow temperature optimum of
20-25°C, coinciding with the optimum temperature for
growth, was low at 10 and 35°C (21% and 35% of the
maximum production, respectively) and reduced by 43%
at 30°C. At 15°C, 75% of the enzyme production occur-
ring at 20-25% were measured.

The optimum pH for growth and CMCase production
(Fig. 1) was pH7. More than 90% of the maximum
growth and enzyme production were found at pH6.5;
good growth and enzyme production were detected at
pH 6 and pH 8. A pH of 9 resulted in about half of the
maximum values. No growth occurred at pH 5.

CMC concentration (5-15g/l) had a minor effect on
growth, independent of the growth temperature, but a
significant effect on CMCase production at temperatures
of 20 °C and above (Fig. 2). The maximum CMCase pro-
duction was obtained at cultivation temperatures of 20—

25°C and a CMC concentration of 1-1.5% (w/v); lower
amounts of CMC resulted in significantly lower enzyme
production.

FPase and cellobiase production

Filter paper consists of crystalline cellulose and is thus
suitable to test exoglucanase activity; 50 mg filter paper
can release maximally 2 mg of glucose (Wood and Bhat
1988). In our study, this activity was below the detection
limit.

Cellobiases (B-glucosidases) complete the hydrolysis of
cellobiose, released by endo- and exoglucanases, to glu-
cose. Microbial extracellular cellulases can be cell-free or
cell-associated (Sadu and Maiti 2013). In our study, cel-
lobiase activity was neither detectable in the cell-free
culture supernatant nor in the cell-containing medium.

CMCase characterization

The crude enzyme was active over a broad temperature
range, and remarkably high activities were detectable in
the low temperature range (Fig. 3). The apparent
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optimum temperature for CMCase activity was at 40—
50°C, independently of the cultivation temperature
(10°C and 25°C). CMCase produced at 10 °C was more
temperature sensitive at temperatures below the optimum
temperature for activity than CMCase produced at 25 °C.

Thermostability decreased with increasing temperature.
CMCase activity was fully retained after an incubation
time up to 60 min at 20 and 35 °C, independently of the
cultivation temperature. However, a higher thermosensi-
tivity of the enzyme produced at 10 °C compared to that
produced at 25 °C was noted at 50 and 65 °C (Fig. 3). After
60 min at 50°C, the enzyme produced at 25°C was not
affected, while the enzyme produced at 10°C lost 38% of
its activity. An incubation temperature of 65 °C resulted
after 10 min in a loss of 46% (cultivation at 10 °C) or 34%
(cultivation at 25 °C).

The enzyme showed optimum activity at pH5, 89%
and 74% of this activity were retained at pH 4 and pH 6,
respectively. Almost comparable activities were detected
at pH3 and pH7 (27-30%), while at least 80% of the
optimum activity were lost at pH 8-9 and at pH 3 (Fig. 4).
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Fig. 4 Effect of pH on activity of the CMCase produced by Bacillus
mycoides AR20-61 (mean values + SD of three replicates)

The enzyme lost no activity after 60 min of incubation at
30°C and pH4-9, while about one third of the activity
(32%) was lost at pH 3.

Table 1 shows the effect of various agents on CMCase
activity. Several metal ions had an inhibiting effect: Fe**
(11% residual activity) > Mn>* > Pb** > Fe**. The mono-
valent ion K* was without any effect, and Na* enhanced
activity slightly. Metal chelators had no inhibiting effect,
EDTA was slightly stimulating. Detergents had either an
inhibitory (Tween 20) or a considerably stimulating (Triton
X-100) effect. The CMCase was also resistant against
phenol

Discussion

The majority of the organic matter in forest soils origi-
nates from plants. Enzyme activities are thus required
for the efficient litter decomposition and nutrient turn-
over in forest soils. The strain investigated in this study,
Bacillus mycoides AR20-61, was isolated from a conifer-
ous Alpine forest site. The presence of cellulose de-
graders at this site has been earlier observed (Margesin
et al. 2016; Siles and Margesin 2017). Representatives of
the genus Bacillus have been often described as cellulase
producers (Shaikh et al. 2013; Behera et al. 2014; Pata-
gundi et al. 2014; Rasul et al. 2015).

The complete microbial hydrolysis of cellulose is ob-
tained by the synergistic process of three major groups
of cellulases: endo-1,4-p-glucanases (CMCase), exo-1,4-
B-glucanases (FPase, cellobiohydrolases), and cellobiases
(p-glucosidases) (Sadhu and Maiti 2013; Juturu and Wu
2014; Yang et al. 2019). Only few bacteria synthesize the
complete enzyme system. Bacteria that produce only
part of the complete system are called “pseudocelluloly-
tic” and may have obtained the genes encoding these en-
zymes by horizontal transfer from true cellulolytic
bacteria (Sadhu and Maiti 2013). The strain investigated
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in our study belonged to this group and produced only
an endoglucanase (CMCase) and was unable to utilize
filter paper (crystalline cellulose; this study) and micro-
crystalline cellulose (data not shown). The same property
has been often described for members of the genus Bacil-
lus (Robson and Chambliss 1984; Yan et al. 2011). How-
ever, exoglucanase activity (Acharya and Chaudhari 2012;
Kim et al. 2012; Ladeira et al. 2015) and membrane-bound
cellobiase activity (Kim et al. 2012) also have been
detected in Bacillus strains. Most bacteria described as
“cellulolytic” in the literature produce only extracellular
endoglucanases which cleave the p-1,4-glycosidic bond
only in soluble, artificial derivatives of cellulose, such as
CMC, and are thus not able to utilize crystalline cellulose;
their cellulases are functional for other purposes such as
infection of plant cells (Medie et al. 2012; Koeck et al.
2014). A possible explanation for the occurrence of
bacteria that produce only endo- or exoglucanase could
be that they use the products resulting from endo- or exo-
cellulolytic activity in their metabolism, instead of using
the simple sugars that would result from complete cellu-
lose degradation (Soares et al. 2012).

CMCase activity of Bacillus mycoides AR20-61 was
favored in nutrient rich media containing high amounts
of CMC, as observed in other studies with bacilli (Karim
et al. 2015; Rasul et al. 2015). Interestingly, in our study,
the interaction between growth temperature and CMC
concentration had a minor effect on growth, but a
significant effect on CMCase production. Such a
temperature effect has, to the best of our knowledge, not
yet been described for cellulases. However, it has been
reported for extracellular proteases produced by cold-
adapted bacteria (Margesin and Schinner 1992) and indi-
cates a substantial difference in cell organization and
metabolism at each temperature.

Despite the site-specific cold climate conditions (a
mean annual air temperature of 4.0°C, a mean annual
soil temperature of 4.3°C, a minimum annual soil
temperature of 1.9°C, and a maximum annual soil
temperature of 6.1 °C; Franca et al. 2016), the strain had
a growth temperature range of 10-35 °C and was unable
to grow at 0-5°C and 40°C. Thus, it could neither be
classified as a psychrophile (due to its inability to grow
at 0°C) nor as a mesophile (due to its inability to grow
at 40°C). In our study, CMCase activity was even more
temperature sensitive than growth. The optimum
temperatures for growth and enzyme production were
identical (20-25°C); however, enzyme production at
10°C was considerably reduced, in contrast to growth.
Nonetheless, the produced enzyme maintained a high
level of activity at temperatures down to 0°C. Remark-
ably, the cultivation temperature had a significant influ-
ence on the sensitivity of the produced enzyme towards
temperature. At a cultivation temperature of 10°C, the
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enzyme showed a lower relative activity in the temperature
range 0—20 °C compared to the enzyme produced at 25 °C,
and a lower thermal stability at 50 °C.

For endoglucanases from bacilli, a broad range of
optimum temperatures for activity, ranging from 40 to
70°C, has been reported (Ariffin et al. 2006; Lin et al.
2012; Sadhu and Maiti 2013; Seo et al. 2013). The
optimum temperature for activity of the strain described
in our study was at 40—50 °C. Lower optimum tempera-
tures for activity have not been reported for bacilli, but
for Actinobacteria (35°C; Lin et al. 2019) and Gram-
negative bacteria (25-35°C; Sadhu and Maiti 2013; Li
et al. 2016).

The isolation source (forest soil) of the strain investi-
gated in this study had a pH of 3.4 (Franca et al. 2016).
The enzyme described in our study showed optimal ac-
tivity in the acidic pH range (4-5) and good stability
over a broad pH range (4-9). High stability over a wide
pH range (Yan et al. 2011; Gaur and Tiwari 2015) and
an acidic pH optimum for activity has been described
for a number of endoglucanases from bacilli (Robson
and Chambliss 1984; Lin et al. 2012; Lisdyanti et al.
2012; Lin et al. 2019).

Surprisingly, the CMCase described in this study was
resistant against 10 mM phenol. Phenol and phenolic
compounds are known to inhibit microbial cellulases
(Ximenes et al. 2010; Gonzdlez-Bautista et al. 2017). The
CMCase was also resistant against a number of monova-
lent and divalent metal ions (Mg**, Zn**, Cu**, K*, Na*)
and metal-chelating agents. A strong inhibitory effect of
Fe®* on bacterial endoglucanases, such as observed in
our study, has been reported (Yin et al. 2010). The effect
of divalent ions is not well elucidated and seems to be
variable among enzymes produced by various microor-
ganisms. Redox effects on amino acids may decrease or
increase enzyme activities (de Cassia Pereira et al. 2017).
No general inhibitory or stimulating agents for endoglu-
canases from bacilli can be recognized from literature
(Yin et al. 2010; Yan et al. 2011; Seo et al. 2013; Gaur
and Tiwari 2015), which can be attributed to varying
concentrations and incubation conditions, beside enzyme-
specific characteristics.

In conclusion, the results obtained in this study clearly
demonstrate the different, independent roles of temperature
in growth, enzyme production, nutrient requirements dur-
ing enzyme production, and enzyme characteristics regard-
ing thermosensitivity. This may be attributed to separate
strategies at the cellular level. The temperature range for
growth and enzyme production gives no indication about
the effect of temperature on activity and stability of the
enzyme. Moreover, the latter can be significantly affected by
the cultivation temperature, which is of relevance for the
selective production of enzymes with desired properties.
The CMCase produced by Bacillus mycoides AR20-61 is
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characterized by a number of interesting properties, such as
high activities in the low temperature range (down to 0°C)
and acidic pH range, high stability over a broad pH range
and high resistance against a number of effectors (including
metal ions and phenol). Such enzymes are of interest for in-
dustrial applications (Seo et al. 2013; Juturu and Wu 2014;
Menendez et al. 2015).
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