Skip to main content
  • Food Microbiology
  • Original Articles
  • Published:

The fungicidal efficacy of various commercial disinfectants used in the food industry

Abstract

The antifungal effects of eight commercial disinfectants namely alcohol, peracetic acid, iodophors, aldehydes, quaternary amine compounds (QAC, a, b and c), and a chlorine-based agent were assessed at different concentrations. The time taken for these disinfectants to kill different microorganisms was used to assess their efficacy. The microorganisms tested were six yeasts,Saccharomyces cerevisiae, Saccharomyces uvarum, Kloeckera apiculata, Candida oleophila, Metschnikowia fructicola, Schizosaccharomyces pombe, and two moulds,Aspergillus niger (5 strains) andPenicillium roqueforti (5 strains). The disinfectants QAC (a) and QAC (c) were the most effective against all the microorganisms tested. The chlorine-based disinfectant worked most efficiently against the moulds at all concentrations used (0.5, 1.0, 1.5 and 2.0%). Peracetic acid and alcohol based disinfectants were most effective against the yeasts than mould. Tested yeasts were more resistant to the aldehyde and iodophors base disinfectants than the others.

References

  • Acar J., Eds (1998). Microbiological spoilage and preservation methods of fruit and vegetable and their products. Mengi Tan Pub, Turkey.

    Google Scholar 

  • Baca E., Wieczorek E. (1998). Peracetic acid as a disinfectant for tanks, piping and bottles. Przemysi Fermentacyjny i Owocowo Warzywny, 42: 1821.

    Google Scholar 

  • Birzele B., Orth R., Kraemer J., Becker B. (1997). Influence of psychotropic yeasts on the spoilage of delicatessen salads. Fleischwirtschaft, 77: 331–333.

    Google Scholar 

  • Blumenthal C.Z. (2004). Production of toxic metabolites inAspergillus niger, Aspergillus oryzae, andTrichoderma reesei: Justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39: 214–228.

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard-Nielsen K., Nielsen P.V. (1996). Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. Journal of Food Protection, 59: 268–275.

    CAS  PubMed  Google Scholar 

  • Defigueiredo M.P., Splittstoesser D.F., Eds (1976) Food Microbiology: Public Health and Spoilage Aspects. The AVI Publishing Company, Inc. Westport, Connecticut.

    Google Scholar 

  • Erdogan A., Gurses M., Sert S. (2003). Isolation of moulds capable of producing mycotoxins from blue mouldy Tulum cheeses produced in Turkey. International Journal of Food Microbiology, 85: 83–85.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler B. (1994). Effect of disinfectants on osmophylic yeasts during sugar manufacture and processing. Zuckerindustrie, 119: 130–133.

    CAS  Google Scholar 

  • Fields L.M., Eds (1979). Fundamentals of Food Microbiology. AVI Publishing Company Inc. USA.

    Google Scholar 

  • Fraise A.P. (1999). Choosing disinfectants. Journal of Hospital Infection, 43: 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Guthrie R.K. (1980). Food Sanitation. 2nd edn. AVI Book Pub. Company Inc. Connecticut.

    Google Scholar 

  • Kivanc M., Akgul A., Dogan A. (1989). The effects of essential oil components against yeast growth. Bursa, 1st International Food Symposium, Turkey.

  • Koivunen J., Heinonen-Tanski H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  • Kreger-Wan Rij N.J.W. (1982). The Yeasts. A Taxonomic Study. 3rd Revised and Enlarged Edition. Elsevier Science B.U., Amsterdam.

    Google Scholar 

  • Langsrud S., Sidhu M.S., Heir E., Holck A.L. (2003). Bacterial disinfectant resistance a challenge for the food industry. International Biodeterioration &Biodegradation, 51: 283–290.

    Article  CAS  Google Scholar 

  • Laubscher P.J., Viljoen B.C. (1999). The resistance of dairy yeasts against commercially available cleaning compounds and disinfectants. Food Technology and Biotechnology, 37: 281–286.

    Google Scholar 

  • Liberti L., Notarnicola M. (1999). Advanced treatment and disinfection for municipal wastewater reuse in agriculture. Water Science and Technology, 40: 235–245.

    Article  CAS  Google Scholar 

  • Orr V.R., Beuchat L.R. (2000). Efficacy of disinfectants in killing spores ofAlicyclobacillus acidoterrestris and performance of media for supporting colony development by survivors. Journal of Food Protection, 63: 1117–1122.

    CAS  PubMed  Google Scholar 

  • Orth R. (1998). The importance of disinfection for the hygiene in the dairy and beverage production. International Biodeterioration & Biodegradation, 41: 201–208.

    Article  CAS  Google Scholar 

  • Overy D.P., Seifert K.A., Savard M.E., Frisvad C.J. (2003). Spoilage fungi and their mycotoxins in commercially marketed chestnuts. International Journal of Food Microbiology, 88: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Ozdamar K. (2003). Statistical analysis by package programme. 2nd edn., Vol. 2. Kaan Pub. Co., Eskisehir, Turkey.

    Google Scholar 

  • Ozyurt M. (2000). Methods of disinfection and sterilization. Journal of Clinic Microbiology, 13: 41–48.

    Google Scholar 

  • Reuter G. (1998). Disinfection and hygiene in the field of food of animal origin. International Biodeterioration & Biodegradation, 41: 209–215.

    Article  CAS  Google Scholar 

  • Reynolds K.A., Bone S., Bright K., Gerba C.P. (2004). Efficacy of sodium hypochlorite disinfectant on the viability and allergenic properties of household mold. The Journal of Allergy and Clinical Immunology, 113: 180.

    Google Scholar 

  • Rundberget T., Skaar I., Flaoyen A. (2004). The presence ofPenicillum andPenicillium mycotoxins in food wastes. International Journal of Food Microbiology, 90: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Sahin I., Korukluoglu M. Eds (2000). Mould-Food-Human. Vipas, Pub. Bursa, Turkey.

    Google Scholar 

  • Salgot M., Folch M., Huertas E., Tapias J., Avellaneda D., Giro S.G., Brissaud F., Verge’ S.C., Molina J., Pigem J. (2002). Comparison of different advanced disinfection systems for wastewater reclamation. Water Science and Technology: Water Supply, 2: 213–218.

    Google Scholar 

  • Senel Y., Basoglu F. (2002). Effects of some disinfectants used in food industry on microorganisms. Journal of Faculty of Agriculture Uludag University, 16: 87–96.

    Google Scholar 

  • Stampi S., De Luca G., Zanetti F. (2001). Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents. Journal of Applied Microbiology, 91: 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Stampi S., De Luca G., Onorato M., Ambrogiani E., Zanetti F. (2002). Peracetic acid as an alternative wastewater disinfectant to chlorine dioxide. Journal of Applied Microbiology, 93: 725–731.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki M.H., Hacking A.D., Pitt J.I., Fleet G.H. (2001). Growth of fungi and mycotoxin production on cheese under modified atmospheres. International Journal of Food Microbiology, 68: 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Varga J., Rigo K., Teren J. (2000). Degradation of ochratoxins A byAspergillus species. International Journal of Food Microbiology, 59: 17.

    Article  Google Scholar 

  • Veschetti E., Cutilli D., Bonadonna L., Briancesco R., Martini C., Cecchini G., Anastasi P., Ottaviani M. (2003). Pilot-plant comparative study of peracetic acid and sodium hypochlorite wastewater disinfection. Water Research, 37: 78–94.

    Article  CAS  PubMed  Google Scholar 

  • Wagner M., Brumelis D., Gehr R. (2002). Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environment Research, 74: 33–50.

    Article  CAS  PubMed  Google Scholar 

  • Winniczuk P.P., Parish M.E. (1997). Minimum Inhibitory Concentrations of antimicrobials against microorganisms related to citrus juice. Food Microbiology, 14: 373–381.

    Article  CAS  Google Scholar 

  • Yin M., Tsao S. (1999). Inhibitory effect of sevenAllium plants upon threeAspergillus species. International Journal of Food Microbiology, 49: 49–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihriban Korukluoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korukluoglu, M., Sahan, Y. & Yigit, A. The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann. Microbiol. 56, 325–330 (2006). https://doi.org/10.1007/BF03175025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175025

Key words