Skip to main content
  • Food Microbiology
  • Original Articles
  • Published:

Preliminary selection study of potential probiotic bacteria from aquacultural area in Tunisia

Abstract

In order to test the ability to produce antibacterial substances within marine bacteria, prior to select potential probiotics for use in shellfish farming, we targeted a large collection of bacterial isolates (132 strains), brought from the clamRuditapes decussatus and 37 reference strains. First, we proceeded to their biochemical identification and the screening of antibiotic resistance profiles. Else, we investigated their inhibitory activityin vitro against several fish and shellfish pathogens, using two methods: the double-layer agar and the direct simultaneous antagonism methods. The results showed high frequencies of inhibitory producing bacteria (IPB) within the isolates. These bacteria (25%) were aerobic mesophylic bacteria belonging to various bacterial groups: 33.7% oxidase-positive Gram-negative bacteria, 7.4%Enterobacteriaceae and 28% lactic acid bacteria. Besides this group, nine strains produced strong inhibition effect. These bacteria belonged to:Aeromonas hydrophila, Aeromonas sobria, Pseudomonas cepacia, Vibrio sp,Serratia liquefaciens andLactobacillus rhamnosus. They were active against pathogenic bacteria belonging to the genera:Aeromonas, Pseudomonas andVibrio. These potential probiotics were submitted to further investigations prior to their introduction in larval shellfish farming.

References

  • Austin B., Stuckey L.F., Robertson P.A.W., Effendi I., Griffith D.R.W. (1995). A probiotic strain ofVibrio alginolyticus effective in reducing diseases caused byAeromonas salmonicida, Vibrio anguillarum andVibrio ordalii. J. Fish Dis., 18: 93–96.

    Article  Google Scholar 

  • Bergh O. (1995). Bacteria associated with early life stages of halibut,Hippoglossus hippoglossus L., inhibit growth of a pathogenicVibrio sp. J. Fish Dis., 18: 31–40.

    Article  Google Scholar 

  • Bhattacherjee J., Pathak S., Gaur A. (1988). Antibiotic resistance and metal tolerance of coliform bacteria isolated from Gomati River water at Lucknow city. J. Gen. Appl. Microbiol., 34: 391–399.

    Article  CAS  Google Scholar 

  • Bouamama K. (2001).Mytilus galloprovincialis de la lagune de Bizerte: populations bactériennes et Biomarqueurs non spécifiques. Diplôme d’études approfondies (DEA). Faculté des Sciences de Tunis.

  • Chabbert Y.A. (1982). L’antibiogramme. In: Le Miror M. véron, Ed., Bactériologie Médicale, Flammarion, Medecine Science, Paris, pp. 205–212.

    Google Scholar 

  • Comité de l’Antibiogramme de la Société Française de Microbiologie (1996). Statement 1996 CA-SFM. Zone sizes and MIC breakpoints for non-fastidious organisms. Clin. Microbiol. Infect. 2, Suppl. 1: 46–49.

    Google Scholar 

  • Dellali M. (2001). Utilisation d’Indicateurs Microbiologiques et Biochimiques chezRuditapes decussatus etMytilus galloprovincialis dans la Biosurveillance de la Lagune de Bizerte: Validation de Certains Biomarqueurs. Thèse de doctorat, Faculté des Sciences de Bizerte.

  • Dopazo C., Lemos M., Lodeiros C., Bolinches J., Barja J., Toranzo A. (1988). Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol., 65: 97–101.

    CAS  PubMed  Google Scholar 

  • El Bour M., Attia El Hilli H., Mraouna R., Ayari W. (2001). Bacterial study of mesophilic Aeromonads distribution in shellfish. Proceeding of the fifth international conference on the Mediterranean coastal environment, MEDCOAST, 557–565.

  • Gatesoupe F.J. (1991). The effect of three strains of lactic acid bacteria on the production rate of rotifers,Brachionus plicatilis, and their dietary value for larval turbot,Scophthalmus maximus. Aquaculture, 96: 335–342.

    Article  Google Scholar 

  • Gatesoupe F.J. (1994). Lactic acid bacteria increase the resistance of turbot larvae,Scophthalmus maximus, against pathogenic vibrio. Aquat. Living Resour., 7: 277–282.

    Article  Google Scholar 

  • Gatesoupe F.J. (1997). Siderophore production and probiotic effct ofVibrio sp. associated with turbot larvae,Scophthalmus maximus. Aquat. Living Resour., 10: 239–246.

    Article  Google Scholar 

  • Gatesoupe F.J. (1999). The use of probiotics in aquaculture. Aquaculture, 180: 147–165.

    Article  Google Scholar 

  • Gibson L.F., Woodworth J., George A.M. (1998). Probiotic activity ofAeromonas media on the pacific oyster,Crassostrea gigas, when challenged withVibrio tubiashii. Aquaculture, 169: 111–120.

    Article  Google Scholar 

  • Gibson L.F. (1999). Bacteriocin activity and probiotic activity of Aeromonas media. J. Appl. Microbiol. Symposium Supplement, 85: 243S-248S.

    Google Scholar 

  • Gildberg A., Mikkelsen H. (1998). Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial withVibrio anguillarum. Aquaculture, 167: 103–113.

    Article  CAS  Google Scholar 

  • Gomez-Gil B., Roque A., Turnbull J.F. (2000). The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191: 259–270.

    Article  Google Scholar 

  • Goni-Urriza M., Capdepuy M., Arpin C., Raymoud N., Gaumette P., Quentin C. (2000). Impact of an urban effluent on antibiotic resistance of the riverineEnterobacteriaceae andAeromonas spp. Appl. Environ. Microbiol., 66: 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Gram L., Melchiorsen J., Spanggaard B., Huber I., Nielsen T.F. (1999). Inhibition ofVibrio anguillarum byPseudomonas fluorescens AH2, a possible probiotic treatement of fish. Appl. Environ. Microbiol., 65: 969–973.

    CAS  PubMed  Google Scholar 

  • Hjelm M., Bergh O., Riaza A., Nielson J., Melchiorsen J., Jensen S., Duncan H., Ahrens P., Birkbeck H., Gram L. (2004). Selection and identification of autochthonous potential probiotic bacteria from Turbot larvae (Scophtalmus maximus) rearing units. System. Appl. Microbiol., 27: 360–371.

    Article  Google Scholar 

  • Jayanth K., Jeyasekaran G., Shakila R.J. (2001). Biocontrol of fish bacterial pathogens by the antagonistic bacteria isolated from the Coastal waters of Gulf of Mannar, India. Bull. Eur. Ass. Fish Pathol., 21 (1): 12–18.

    Google Scholar 

  • Jöborn A., Olsson J.C., Westerdahl A., Conway P.L., Kjelleberg S. (1997). Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts byCarnobacterium sp. strain K1. J. Fish Dis., 20: 383–392.

    Article  Google Scholar 

  • Maduwe A. D. B. Navaratna, Hans-Jeorg S., John R. T. (1999). Identification of genes encoding two-component lantibiotic production inStaphylococcus aureus C55 and other phage group IIS. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect. Immun., 67 (8): 4268–4271.

    Google Scholar 

  • Martinez J.C. (1984). La microflore de l’appareil digestif deTeredo navalis L.: ses propriétés métaboliques et son rôle éventuel dans la digestion. Bactériologie Marine, Editions du CNRS, pp. 151–154.

  • Messi P., Guerrieri E., Bondi M. (2003). Bacteriocin-like substance (BLS) production inAeromonas hydrophila water isolates. FEMS Microbiol. Lett., 220: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Nair S., Simidu U. (1987). Distribution and significance of heterotrophic marine bacteria with antibacterial activity. Appl. Environ. Microbiol., 53: 2957–2962.

    CAS  PubMed  Google Scholar 

  • Nogami K., Maeda M. (1992). Bacteria as biocontrol agents for rearing larvae of the CrabPortunus trituberculatus. Can. J. Fish. Aquat. Sci., 2373–2376.

  • Pathak S., Bhattacherjee J., Ray P. (1993). Seasonal variation in survival and antibiotic resistance among various bacterial populations in a tropical river. J. Gen. Appl. Microbiol., 39: 47–56.

    Article  Google Scholar 

  • Prieur D. (1984). Etude qualitative et quantitative des communautés bactériennes associées aux bivalves marins: comparaisons avec les microflores de l’eau et du sédiment. Bactériologie Marine, Editions du CNRS, pp. 161–167.

  • Pybus V., Loutit M.W., Lamont I.L., Tagg J.R. (1994). Growth inhibition of the salmon pathogenVibrio ordalii by a siderophore produced byVibrio anguillarum strain VL4355. J. Fish Dis., 17: 311–324.

    Article  CAS  Google Scholar 

  • Rengpipat S., Phianphak W., Piyatiratitivorakul S., Menasveta P. (1998). Effects of a probiotic bacterium on black tiger shrimpPenaeus monodon survival and growth. Aquaculture, 167: 301–313.

    Article  Google Scholar 

  • Rhodes G., Huys G., Swings J., Megann P., Hiney M., Smith P., Pickup R.W. (2000). Distribution of oxytetracyline resistance plasmids between Aeromonas in hospital and aquaculture environments: Implication of Tn 1721 in dissemination of the tetracycline resistance determinat Tet A. Appl. Environ. Microbiol., 66: 3883–3890.

    Article  CAS  PubMed  Google Scholar 

  • Riquelme C., Araya R., Vergara N., Rojas A., Guaita M., Candia M. (1997). Potential probiotic strains in the culture of the Chilean scallopArgopecten purpuratus (Lamarck, 1819). Aquaculture, 154: 17–26.

    Article  Google Scholar 

  • Riquelme C., Araya R., Escribano R. (2000). Selective incorporation of bacteria byArgopecten purpuratus larvae: implications for the use of probiotics in culturing systems of the Chileanscallop. Aquaculture, 181: 25–36.

    Article  Google Scholar 

  • Robertson P.A.W., Dowd C.O., Burells C., Williams P., Austin B. (2000). Use ofCarnobacterium sp. as a probiotic for Atlantic salmon (Salmon solar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture, 185: 235–243.

    Article  Google Scholar 

  • Skjermo J., Vadstein O. (1999). Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture, 177: 333–343.

    Article  CAS  Google Scholar 

  • Spanggaard B., Huber I., Nielsen J., Sick E.B., Pipper C.B., Martinussen T., Slierendrecht W.J., Gram L. (2001). The probiotic potential against vibriosis of the indigenous microflora of rainbow trout. Environ. Microbiol., 3 (12): 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Sugita H., Shibuya K., Shimooka H., Deguchi Y. (1996). Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture, 145: 195–203.

    Article  Google Scholar 

  • Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiol. Molecul. Biol. Rev., 64 (4): 655–671.

    Article  CAS  Google Scholar 

  • Vijayan K.K., Bright Singh I.S., Jayaprakash N.S., Alavandi S.V., Somnath Pai S., Preetha R., Rajan J.J.S., Santiago T.C. (2006). A brackishwater isolate ofPseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture, 251: 192–200.

    Article  CAS  Google Scholar 

  • Westerdahl A., Olsson C., Kjelleberg S., Conway P. (1991). Isolation and characterization of turbot (Scophthalmus maximus)-associated bacteria with inhibitory effects againstVibrio anguillarum. Appl. Environ. Microbiol., 66: 2223–2228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouissal Chahad Bourouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chahad Bourouni, O., El Bour, M., Mraouna, R. et al. Preliminary selection study of potential probiotic bacteria from aquacultural area in Tunisia. Ann. Microbiol. 57, 185–190 (2007). https://doi.org/10.1007/BF03175205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175205

Key words