Skip to main content
  • Industrial Microbiology
  • Original Articles
  • Published:

Purification and characterisation of a highly thermostable extracellular protease fromBacillus thermantarcticus, strain M1

Abstract

A high thermostable extracellular protease was purified to homogeneity and characterised fromBacillus thermantarcticus, strain M1. The molecular mass was about 42 kDa. Almost total inhibition of protease by phenyl methyl sulphonylfluoride (PMSF), suggested that the enzyme belonged to the serine protease family. The enzyme was active and stable in a broad range of pH with an optimum at pH 7.0. The protease showed the highest activity at 70°C and was stable for 24 h at 70°C, with an increase of the enzymatic activity of about 4 times, in the presence of CaCl2. The protease retained about 50% activity after 3 h of incubation in the presence of CaCl2 with various commercial detergents. Purified protease was found to be stable, for one week, in presence of DMSO, methanol, ethanol, acetonitrile, isopropanol.

References

  • Adinarayana K., Ellaiah P., Prasad D.S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolatedBacillus subtilis PE-11. AAPS Pharm. Sci. Tech., 4 (4): article 56.

    Article  Google Scholar 

  • Banerjee U.C., Sani R.K., Azmi W., Soni R. (1999). Thermostable alkaline protease fromBacillus brevis and its characterization as a laundry detergent additive. Proc. Biochem., 35: 213–219.

    Article  CAS  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Catara G., Ruggiro G., La Cara F., Digilio F.A., Capasso A., Rossi M. (2003). A novel extracellular subtlisin-like protease from the hyperthermophileAeropyrum pernix K1: biochemical properties, cloning, and expression. Extremophiles, 7: 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Chen X.G., Stabnikova O., Tay J.H., Wang J.Y., Tay S.T.-L. (2004). Thermoactive extracellular proteases ofGeobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles, 8: 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Debadov V.G. (1982). The molecular biology of the Bacilli. In: Dubnau D.A., Ed., The Industrial Use of Bacilli, Academic Press, New York, pp. 331–370.

    Google Scholar 

  • Donaghy J.A., McKay A.M. (1993). Production and properties of an alkaline protease byAureobasidium pullulans. J. Appl. Bacteriol. 74: 662–666.

    CAS  Google Scholar 

  • Dow J.M., Clarke B.R., Milligan D.E., Tang J.-L., Daniels M.J. (1990). Extracellular proteases fromXanthomonas campestris pv.campestris, the black rot pathogen. Appl. Environ. Microbiol., 56: 2994–2998.

    CAS  PubMed  Google Scholar 

  • Gnosspelius G. (1978). Purification and proprierties of an extracellular proteaseMyxococcus virescens. J. Bacteriol., 133: 17–25.

    CAS  PubMed  Google Scholar 

  • Gold A.M., Fahrney D. (1964). Sulfonyl fluorides as inhibitors of esterases II. Formation and reactions of phenylmethanesulfonyl alpha-chymotrypsin. Biochemistry, 3: 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Gupta R., Beg Q.K., Khan S., Chauhan B. (2002a). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol., 60: 381–395.

    Article  CAS  PubMed  Google Scholar 

  • Gupta R., Beg Q.K., Lorenz P. (2002b). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol., 59: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Hawumba J.F., Theron J., Brözel V.S. (2002). Thermophilic protease-producingGeobacillus from Buranga hot springs in Western Uganda. Curr. Microbiol., 45: 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Hutadilok-Towatana N., Painupong A., Suntinanalert P. (1999). Purification and characterization of extracellular protease from alkaliphilic and thermophilicBacillus sp. PS719. J. Biosc. Bioeng., 87: 581–587.

    Article  CAS  Google Scholar 

  • Johnvesly B., Naik G.R. (2001). Studies on production of thermostable alkaline protease from thermophilic and alkaliphilicBacillus sp. JB-99 in a chemically defined medium. Proc. Biochem., 37: 139–144.

    Article  CAS  Google Scholar 

  • Izotova L.S., Strongin A.Y., Chekulaeva L.N., Sterkin V.E., Ostoslavskaya V.I., Lyublinskaya L.A., Timokhina E.A., Stepanov V.M. (1983). Purification and propierties of serine protease fromHalobacterium halobium. J. Bacteriol., 155: 826–830.

    CAS  PubMed  Google Scholar 

  • Kato N., Adachi S., Takeuchi K., Morihara K., Tani Y., Ogata K. (1974). Substrate specificities of the protease from a marine-psichrophilic bacterium,Pseudomonas sp. No 548. Agric. Biol. Chem., 38: 103–109.

    CAS  Google Scholar 

  • Lama L., Romano I., Calandrelli V., Nicolaus B., Gambacorta A. (2005). Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to theSalinivibrio genus”. Res. Microbiol., 156: 478–484.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Mala B.R., Aparn M.T., Mohini S.G., Vasanti V.D. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev., 62: 597–635.

    Google Scholar 

  • Nicolaus B., Lama L., Esposito E., Manca M.C., di Prisco G., Gambacorta A. (1996).Bacillus thermoantarcticus sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol., 16: 101–104.

    Google Scholar 

  • Paliwal N., Singh S.P., Garg S.K. (1994). Cation-induced thermal stability of an alkaline protease from aBacillus species. Biores. Technol., 50: 209–211.

    Article  CAS  Google Scholar 

  • Rahman R.N.Z.A., Razak C.N., Ampon K., Basri M., Zin W.M., Yunus W., Salleh A.B. (1994). Purification and characterization of a heat-stable alkaline protease fromBacillus stearothermophilus F1. Appl. Microbiol. Biotechnol., 40: 822–827.

    Article  Google Scholar 

  • Rahman R.N.Z.R.A., Basri M., Salleh A.B. (2003). Thermostable alkaline protease fromBacillus stearothermophilus F1; nutritional factors affecting protease production. Ann. Microbiol., 53, 199–210.

    CAS  Google Scholar 

  • Rao M.B., Tanksale A.M., Ghatge M.S., Deshpand V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev., 62: 597–635.

    CAS  PubMed  Google Scholar 

  • Sako Y., Croocker P.C., Ishida Y. (1997). An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeonAeropyrum pernix K1. FEBS Lett., 415: 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Singh J., Vohra R.M., Sahoo D.K. (2001). Purification and characterization of two extracellular alkaline proteases from a newly isolated obligate alkalophilicBacillus sphaericus. J. Ind. Microbiol. Biotechnol., 26: 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Sookkheo B., Sinchaikul S., Phutrakul S., Chen S.-T. (2000). “Purification and characterization of the highly thermostable proteases fromBacillus stearothermophilus TLS33”. Protein Expres. Purif., 20: 142–151.

    Article  CAS  Google Scholar 

  • Steele D.B., Fiske M.J., Steele B.P., Kelley V.C. (1992). Production of a low molecular weight, alkaline active, thermostable protease by a novel spiral-shaped bacterium. Enzyme Microb. Technol., 14: 358–360.

    Article  CAS  Google Scholar 

  • Ward O.P. (1983). Proteinases. In: Fogarty W.M., Ed., Microbial Enzymes and Biotechnology, Applied Science Publ., New York, pp. 251–317.

    Google Scholar 

  • Zhu W., Cha D., Cheng G., Peng Q., Shen P. (2007). Purification and characteriztion of a thermostable protease from a newly isolatedGeobacillus sp. YMTC 1049. Enzyme Microbiol. Technol., 40: 1592–1597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licia Lama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dipasquale, L., Calandrelli, V., Romano, I. et al. Purification and characterisation of a highly thermostable extracellular protease fromBacillus thermantarcticus, strain M1. Ann. Microbiol. 58, 253–259 (2008). https://doi.org/10.1007/BF03175325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175325

Key words