Skip to main content

The effects of glass surfaces and probe GC content on signal intensities of a 60-mer diagnostic microarray

Abstract

The effects of glass surfaces and probe GC content on signal intensities of a 60-mer diagnostic microarray were studied. Twelve virus-specific oligonucleotide probes for severe acute respiratory syndrome coronavirus (SARS-CoV) were divided into a high GC content group (≥ 50%) and a low GC content group (< 50%), and spotted onto four different chemically-modified glass surfaces: a poly-amine coating activated by 1,4-phenylene diisothiocyanate (Poly-Amine surface), an acrylic acid-co-acrylamide copolymer coating activated by 1-(3-dimethylamino propyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide (AACA-Copolymer surface), a commercial Corning CMT-GAPS amino surface, and a Telechem SuperAmine amino surface. RNA samples from cultured SARS-CoV strain were labelled using direct cDNA labelling with restriction display in a single colour format. The background-subtracted signal intensities were analysed using two-way analysis of variance. The effects of glass surfaces on background-subtracted signal intensities were significant (p=0.003). Multiple comparisons showed that differences existed mainly between the AACA-Copolymer surface and the other glass surfaces, and that the AACA-Copolymer surface had the highest background-subtracted signal intensity. The probe GC content had no significant effect on signal intensities in the narrow range of GC content represented (p=0.07). The results suggested that the AACA-Copolymer surface may be a novel choice of microorganism survey based on long oligonucleotide microarray.

References

  1. Bodrossy L., Sessitsch A. (2004). Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol., 7: 245–254.

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell C.M., Cass A.E. (2001). A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal. Chem., 73: 2476–2483.

    Article  CAS  PubMed  Google Scholar 

  3. Hessner M.J., Meyer L., Tackes J., Muheisen S., Wang X. (2004). Immobilized probe and glass surface chemistry as variables in microarray fabrication. BMC Genomics, 5: 53–61.

    Article  PubMed  Google Scholar 

  4. Lemarchand K., Masson L., Brousseau R. (2004). Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit. Rev. Microbiol., 30: 145–172.

    Article  CAS  PubMed  Google Scholar 

  5. Li L., Ma W.L., Zhu J., Shi R., Liu C.H., Chen J.K., Zheng W.L. (2003). A modified restriction display PCR method in sample-labeling of DNA microarray. J. Virol. Methods, 114: 71–75.

    Article  CAS  PubMed  Google Scholar 

  6. Mo X.Y., Ma W.L., Li L., Xu Q.L., Zhang Y.L., Zheng W.L. (2006). The effects of different sample labeling methods on signal intensities of a 60-mer diagnostic microarray. J. Virol. Methods, 134: 36–40.

    Article  CAS  PubMed  Google Scholar 

  7. Reed C., Fofanov V., Putonti C., Chumakov S., Slezak T., Fofanov Y. (2007). Effect of the mutation rate and background size on the quality of pathogen identification. Bioinformatics, 23: 2665–2671.

    Article  CAS  PubMed  Google Scholar 

  8. Sergeev N., Distler M., Courtney S., Al-Khaldi S.F., Volokhov D., Chizhikov V., Rasooly A. (2004). Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron., 20: 684–698.

    Article  CAS  PubMed  Google Scholar 

  9. Tembe W., Zavaljevski N., Bode E., Chase C., Geyer J., Wasieloski L., Benson G., Reifman J. (2007). Oligonucleotide fingerprint identification for microarray-based pathogen diagnostic assays. Bioinformatics, 23: 5–13.

    Article  CAS  PubMed  Google Scholar 

  10. Vora G.J., Meador C.E., Stenger D.A., Andreadis J.D. (2004). Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl. Envir. Microbiol., 70: 3047–3054.

    Article  CAS  Google Scholar 

  11. Wang D., Coscoy L., Zylberberg M., Avila P.C., Boushey H.A., Ganem D., DeRisi J.L. (2002). Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci., 99: 15687–15692.

    Article  CAS  PubMed  Google Scholar 

  12. Wu Q.H., Ma W.L., Wang H.M., Mao X.M., Zhang B., Li L., Zheng W.L. (2005). Comparison of two amine-modified chemical platforms for DNA microarray preparation. Di Yi Jun Yi Da Xue Xue Bao, 25: 794–798.

    CAS  PubMed  Google Scholar 

  13. Zhou J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol., 6: 288–294.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J., Thompson D.K. (2002). Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol., 13: 204–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Mo.

Additional information

These authors contributed equally to this paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mo, X., Wu, Q., Hu, J. et al. The effects of glass surfaces and probe GC content on signal intensities of a 60-mer diagnostic microarray. Ann. Microbiol. 58, 313 (2008). https://doi.org/10.1007/BF03175336

Download citation

Key words

  • glass surfaces
  • oligonucleotide probe
  • ANOVA
  • diagnostic microarray