Skip to main content

Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects

Abstract

Largely accessible organic wastes can be turned into valuable compost product for raising crops organically on one hand, and get them disposed off safely at the other end. Straight use of organic wastes has tribulations like transportation and handling, wider C:N ratio, high application rates, nutrient overloading, weed seeds, pathogens, and metal toxicities. Composting bestows a tactic for coping high volumes of organic wastes in environmentally sound and desirable manners. Composted materials are remarkably regarded for their ability to improve soil health and plant growth, and suppress pathogens and plant diseases. Currently several composting systems have become available; ranging from a crude and slow windrows method, to the most speedy and computer monitored in-vessel system. Scientific investigations of this biological cum chemical process have reached to molecular level. Value addition of compost through beneficial microorganisms, mineral materials and fertilisers is also being considered. The nature and composition of materials put into composting is imperative for its quality rationale. On the whole, principles and processes governing composting are not so straightforward that ordinary enterprises could develop efficient composting facilities for the treatment of organic wastes. In this scenario, accessibility of comprehensive information to the scientific community as well as environmental protection agencies is imperative. This review article brings together the current information necessary for effective composting of organic wastes from different origins with diversified characteristics under various situations. It also covers the schematic description of well known composting systems, and various factors controlling the process.

References

  • Ahmad R. (2007). Use of recycled organic waste for sustainable maize (Zea mays L.) Production. Ph.D. Thesis, Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.

    Google Scholar 

  • Ahmad R., Shehzad S.M., Khalid A., Arshad M., Mahmood M.H. (2007). Growth and yield response of wheat (Triticum aestivum L.) and maize (Zea mays L.) to nitrogen and L-tryptophan enriched compost. Pak. J. Bot., 39 (2): 541–549.

    Google Scholar 

  • Anonymous (1998). Compost Use in Florida. Florida Centre for Solid and Hazardous Waste Management Florida, USA.

  • Anthonis G. (1994). Standards for organic fertilizer. Agro Chemicals News-in-Brief, 17: 12–15.

    Google Scholar 

  • Arshad M., Frankenberger Jr. W.T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Adv. Agron., 62: 145–151.

    Google Scholar 

  • Atkinson C.F., Jones D.D., Gauthier J.J. (1996). Biodegradabilities and microbial activities during composting of oxidation ditch sludge. Compost Sci. Utiliz., 4: 84–96.

    Google Scholar 

  • Baheri H., Meysami P. (2002). Feasibility of fungi bioaugmentation in composting a flare pit soil. J. Hazard. Mat., 89 (2–3): 279–286.

    Article  CAS  Google Scholar 

  • Banger K.C., Kapoor K.K., Mishra M.M. (1988). Effect of pyrite on conversion of nitrogen during composting. Biol. Wastes, 25: 227–231.

    Article  Google Scholar 

  • Banger K.C., Shanker S., Kapoor K.K., Kukreja K., Mishra M.M. (1989). Preparation of nitrogen and phosphorus-enriched paddy straw compost and its effect on yield and nutrient uptake by wheat (Triticum aestivum L.). Biol. Fert. Soils, 8 (4): 339–342.

    Google Scholar 

  • Barker A.V. (1997). Composition and uses of compost. In: Rechigl J.E., Mackinnon H.C., Eds, Agricultural Uses of By-Products and Wastes. Amer. Chem. Soc., Washington, D.C.

    Google Scholar 

  • Bary A., Cogger C., Sullivan D. (2002). What does compost analysis tell you about compost? Biologically Intensive and Organic Farming Research Conference, Yakima, WA.

  • Bhardwaj K.K.R., Gaur A.C. (1985). Recycling of organic wastes. ICAR, New Delhi.

    Google Scholar 

  • Bhawalkar U.S. (1991). Vermiculture biotechnology for LEISA. Seminar on Low External Input Sustainable Agriculture, Amsterdam, Netherlands.

  • Bhawalkar U.S. Bhawalkar U.V. (1993). Vermicultre biotechnology. In: Thampan P.K., Ed., Organic in Soil Health and Crop Production, Peekay Tree Crops Development Foundation, Cochin, pp. 69–85.

    Google Scholar 

  • Breidenbach A.W. (1971). Composting of Municipal Solid Wastes in the United States. Pub.SW-47r, U.S. Environmental Protection Agency.

  • Cáceres R., Flotats X., Marfá O. (2006). Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different aeration strategies. Waste Manag., 26 (10): 1081–1091.

    Article  PubMed  Google Scholar 

  • Crawford J.H. (1983). Composting of agricultural wastes: a review. Proc. Biochem., 18: 14–18.

    Google Scholar 

  • Deportes I., Benoit-Guyod J.L., Zmirou D. (1995). Hazard to man and the environment posed by the use of urban waste compost: a review. Sci. Tot. Environ., 172 (2–3): 197–222.

    Article  CAS  Google Scholar 

  • Diby P., Sarma Y.R., Srinivasan V., Anandaraj M. (2005).Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green house cultivation. Ann. Microbiol., 55 (3): 171–174.

    Google Scholar 

  • Dinçer S., Çolak Ö., Arikan B., Güvenmez H. (1996). Composting of soybean oil industry solid wastes and research of the elimination effect of this process on enteric bacteria. J. Kükem., 19 (2): 1–7.

    Google Scholar 

  • Dinçer S., Güvenmez H., Çolak Ö. (2003). Mesophilic composting of food waste and bacterial pathogen reduction. Ann. Microbiol., 53 (3): 267–274.

    Google Scholar 

  • Dix N.J., Webster J. (1995). Fungal Ecology. Chapman & Hall, Cambridge, Great Britain.

    Google Scholar 

  • Edwards C.A., Burrows I., Fletcher K.E., Jones B.A. (1985). The use of earthworms for composting farm wastes. In: Crasser J.K.R., Ed., Composting of Agricultural and other Wastes, Elsevier Applied Science, Oxford, pp. 229–241.

    Google Scholar 

  • Epstein E., Willson G.B., Burg W.D., Mullen D.C., Enkiri N.K. (1976). A forced aeration system for composting wastewater sludge. J. Water Pollut. Contr. Fed., 48: 688–691.

    Google Scholar 

  • Epstein E. (1997). The Science of Composting. Technomic Publishing Co. Inc., Lancaster, Pennsylvania, USA, pp. 56–69.

    Google Scholar 

  • Frankenberger Jr. W.T., Arshad M. (1995). Phytohormones in Soil: Microbial Production and Function. Marcel Dekker Inc., NY. USA.

    Google Scholar 

  • Gaur A.C. (1982). A Manual of Rural Composting. Field Document No. 15, FAO, Rome.

    Google Scholar 

  • Gaur A.C., Sadasivam K.V. (1993). Theory and practical considerations of composting organic wastes. In: Thampan P.K., Ed., Organics in Soil Health and Crop Production, Peekay Tree Crops Development Foundation, Cochin, pp. 1–22.

    Google Scholar 

  • Gaur A.C., Singh G. (1993). Role of integrated plant nutrient systems in sustainable and environmentally sound agricultural development. In: RAPA Publication: 1993/13, FAO, Bangkok, pp. 110–130.

    Google Scholar 

  • Gaur A.C., Singh G. (1995). Recycling of rural and urban wastes through conventional and vermicomposting. In: Tandon H.L.S., Ed., Recycling of Crop, Animal, Human and Industrial Wastes in Agriculture, FDCO, New Delhi, India, pp. 31–35.

    Google Scholar 

  • Gaur A.C. (1997). Bulky organic manures and crop residues. In: Tandon H.L.S., Ed., Fertilizers, Organic Manures, Recyclable Wastes and Biofertilizers, FDCO, New Delhi, India, pp. 37–51.

    Google Scholar 

  • Giuntini E., Bazzicalupo M., Castaldini M., Fabiani A., Miclaus N., Piccolo R., Ranalli G., Santomassimo F., Zanobini S., Mengoni A. (2006). Genetic diversity of dinitrogen-fixing bacterial communities in soil amended with olive husks. Ann. of Microbiol., 56 (2): 83–88.

    CAS  Article  Google Scholar 

  • Goldstein J. (1980). An overview of composting installations. Compost Sci., 21 (4): 28–32.

    Google Scholar 

  • Golueke C.G. (1991). Principles of composting. In: The Staff of Biocycle Journal of Waste Recycling, The Art and Science of Composting, The JG Press, Pennsylvania, pp. 14–27.

    Google Scholar 

  • Gowda T.K., Radakrishna S.D., Balakrishna A.N., Sreenivas K.N. (1992). Studies on the manurial value and nutrient enrichment of municipal waste compost produced from Banglore city garbage. In: Proceedings of National Seminar on Organic Farming, MPKV, Pune, India, pp. 39–41.

  • Graetz D.A. (1996). Compost maturity/stability measures important to nitrogen and toxic metal availability and accumulation in crops. In: A Market Development Program for Compost in Florida, Annual Report, Center for Biomass Programs, University of Florida, pp. 38–54.

  • Haimi J., Huhta V. (1987). Effect of earthworms on decomposition processes in raw humus forest soil: A microcosm. Biol. Fert. Soils, 10 (3): 178–183.

    Google Scholar 

  • Hamdy H.S. (2005). Purification and characterization of the pectin lyase produced byRhizopus oryzae grown on orange peels. Ann. Microbiol., 55 (3): 205–211.

    CAS  Google Scholar 

  • Haug R.T. (1993). The Practical Handbook of Compost Engineering. Lewis Pub., Boca Raton, Florida, USA.

    Google Scholar 

  • Hernando S., Lobo M.C., Polo A. (1989). Effect of the application of municipal refuse compost on the physical and chemical properties of a soil. Sci. Tot. Environ., 81/82: 589–596.

    Article  Google Scholar 

  • Howard A. (1943). An Agricultural Testament. Oxford University Press, London.

    Google Scholar 

  • Hyvönen R., Agren G.I., Andren O. (1996). Modeling long-term carbon and nitrogen dynamics in an arable soil receiving organic matter. Ecol. Appl., 6: 1345–1354.

    Article  Google Scholar 

  • Jambhekar H.K. (1992). Use of earthworms as a potential source to decompose organic waste. In: Proceedings of National Seminar on Organic Farming, MPKV, Pune, India, pp. 52–53.

  • Jilani G., Akram A., Ali R.M., Hafeez F.Y., Shamsi I.H., Chaudhry A.N., Chaudhry A.G. (2007). Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann. Microbiol., 57 (2): 177–183.

    Article  CAS  Google Scholar 

  • Kale R.D., Bano K., Krishnamoorthy R.V. (1982). Potential ofPerionyx excavatus for utilization of organic wastes. Pedobiologia, 23: 419–425.

    Google Scholar 

  • Kale R.D., Bano K. (1994) Laboratory studies on age specific survival and fecundity of earthwormEurilus eugeniae. Mitt. Hamb. Zool. Mus. Inst., 89: 139–148

    Google Scholar 

  • Kara O., Asan A. (2007). Microfungal community structure from forest soils in Northern Thrace Region, Turkey. Ann. Microbiol., 57 (2): 149–155.

    Article  Google Scholar 

  • Khalid A., Arshad M., Zahir Z.A. (2006). Phytohormones: microbial production and applications. In: Uphoff N., Ball A.S., Fernandes E., Herren H., Husson O., Laing M., Palm C., Pretty J., Sanchez P., Sanginga N., Thies J., Eds, Biological Approaches to Sustainable Soil Systems, Taylor & Francis/CRC, Boca Raton, Florida, pp. 207–220.

    Google Scholar 

  • Lei F., Gheynst J.S.V. (2000). The effect of microbial inoculation and pH on microbial community structure changes during composting. Proc. Biochem., 35: 923–929.

    Article  CAS  Google Scholar 

  • Lekasi J.K., Tanner J.C., Kimani S.K., Harris P.J.C. (2003). Cattle manure quality in Maragua District, Central Kenya: Effect of management practices and development of simple methods of assessment. Agr. Ecosyst. Environ., 94: 289–298.

    Article  Google Scholar 

  • McKinley V.L., Vestal J.R. (1985). Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Appl. Environ. Microbiol., 50: 1395–1403.

    CAS  PubMed  Google Scholar 

  • Mishra M.M. (1992). Enrichment of organic manures with fertilizers. In: Tandon H.L.S., Ed., Non Traditional Sector for Fertilizer Use, FDCO, New Delhi, India, pp. 48–60.

    Google Scholar 

  • Reddy K.S., Kumar N., Sharma A.K., Acharya C.L., Dalal R.C. (2005). Biophysical and sociological impacts of farmyard manure and its potential role in meeting crop nutrient needs: a farmers’ survey in Madhya Pradesh, India. Aust. J. Exp. Agri., 45 (4): 357–367.

    Article  Google Scholar 

  • Reinikainen O., Herranen M. (1999). Different methods for measuring compost stability and maturity. Soil Sci. Sco. Amer. J., 55: 1020–1025.

    Google Scholar 

  • Rodrigues M.S. (1996). Composted societal organic wastes for sustainable wheat (Triticum aestivum) production. Ph. D. Thesis, Wye College, University of London.

  • Roger S.W., Jokela E.J., Smith W.H. (1991). Recycling composted organic wastes on Florida forest lands. Dept. of Forest Resources and Conservation, Florida Cooperative Extension Services, University of Florida, USA.

    Google Scholar 

  • Rynk R. (1992). On-farm Composting Handbook. Northeast Regional Agricultural Engineering Service, Coop. Ext., NRAES-54 Ithaca, USA.

  • Sadasivam K.V., Mathur R.S., Magu S.P., Gaur A.C. (1981). Enrichment of compost withAzotobacter and phosphorus solubilizer. Zbl. Bakl. 11 Abt., 136: 628–630.

    CAS  Google Scholar 

  • Shin H.S., Hwang E.J., Park B.S., Sakai T. (1999). The effects of seed inoculation on the rate of garbage composting. Environ. Tech., 20: 293–300.

    Article  CAS  Google Scholar 

  • Shiralipour A., McConnell D.B., Smith W.H. (1992). Uses and Benefits of Municipal Solid Waste Composts: A Literature Review. The Composting Council, Alexandria, VA.

    Google Scholar 

  • Silva T.B.S., Menduiña A.M., Seijo Y.C., Viqueira F. (2007). Assessment of municipal solid waste compost quality using standardized methods before preparation of plant growth media. Waste Manage. Res., 25: 99–108.

    Article  CAS  Google Scholar 

  • Singh C.P., Amberger A. (1990). Humic substances in straw compost with rock phosphate. Biol. Wastes, 31 (3): 165–174.

    Article  CAS  Google Scholar 

  • Singh A., Sharma S. (2003). Effect of microbial inocula on mixed solid waste composting, vermicomposting and plant response. Compost Sci. Util., 11: 190–199.

    Google Scholar 

  • Smith S.R. (1996). Agricultural Recycling of Sewage Sludge and the Environment. CAB International.

  • Stratton M.L., Barker A.V., Rechcigl J.E. (1995). Compost. In: Rechcigl J.E., Ed., Soil Amendments and Environmental Quality, CRC Press, Boca Raton, Florida, pp. 249–309.

    Google Scholar 

  • Stratton M.L., Rechcigl J.E. (1997). Compost application to ryegrass. Agron. Abst., SII-031-P, Anaheim, CA.

  • Stratton M.L., Rechcigl J.E. (1998). Agronomic Benefits of Agricultural, Municipal, and Industrial By-products and their Co-utilization: An Overview. United States Department of Agriculture, Beltsville, MD.

    Google Scholar 

  • Strom P.F. (1985). Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl. Environ. Microbiol., 50: 899–905.

    CAS  PubMed  Google Scholar 

  • Tisdale S.L., Nelson W.L., Beaton J.D., Havlin J.L. (1993). Soil Fertility and Fertilizers. 5th edn., Macmillan, New York.

    Google Scholar 

  • Tiwari V.N. (1989). Composting of dairy farm wastes and evaluation of its manurial value. Proceedings of National Academy of Sciences, India, 59: 109–114.

    Google Scholar 

  • Tiwari V.N., Pathak A.N., Lehri L.K. (1989). Effect of cattle dung and rock phosphate on composting of wool waste. Biol. Wastes, 27 (3): 237–241.

    Article  CAS  Google Scholar 

  • Tomati U., Grappelli A., Galli E. (1983). Fertility factors in earthworm humus. In: Proceedings of International Symposium on Agriculture and Environment: Prospects in Earthworm Farming, Ministero della Ricerca Scientifica e Technologica, Rome, pp. 49–56.

  • Tuomela M., Vikman M., Hatakka A., Itävaara M. (2000). Biodegradation of lignin in a compost environment: a review. Biores. Tech., 72: 169–183.

    Article  CAS  Google Scholar 

  • Willson G.B. (1989). Combining raw materials for composting. Biocycle, August: 82–85.

    Google Scholar 

  • Wolkowski R.P. (2003). Nitrogen management considerations for land spreading municipal solid waste compost. J. Environ. Qual., 32: 1844–1850.

    CAS  PubMed  Article  Google Scholar 

  • Yadav K., Prasad D., Prasad C.R., Mandak K. (1992). Effect of enriched compost andRhizobium culture on the yield of greengram. J. Ind. Soc. Soil Sci., 40: 71–75.

    Google Scholar 

  • Zahir Z.A., Iqbal M., Arshad M., Naveed M., Khalid M. (2007). Effectiveness of IAA, GA3 and kinetin blended with recycled organic waste for improving growth and yield of wheat (Triticum aestivum L.). Pak. J. Bot., 39 (3): 761–768.

    Google Scholar 

  • Zia M.S., Khalil S., Aslam M., Hussain F. (2003). Preparation of compost and its use for crop-production. Sci. Tech. Develop., 22: 32–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Jilani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmad, R., Jilani, G., Arshad, M. et al. Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann. Microbiol. 57, 471–479 (2007). https://doi.org/10.1007/BF03175343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175343

Key words

  • environmental pollution
  • composting
  • microorganisms
  • soil productivity
  • systems
  • additives