Skip to main content
  • Industrial Microbiology
  • Original Articles
  • Published:

Statistical optimisation of medium components for chitinase production byPaenibacillus sabina strain JD2

Abstract

Paenibacillus sabina strain JD2, a chitinolytic marine bacterium, was isolated from sea dumps collected at Sultanpur near Bhavnagar, India and its nutritional requirement for chitinase production was defined using statistical optimisation method. Effect of 8 different medium components on chitinase production byPaenibacillus sabina strain JD2 was screened by Plackett-Burman design. The screened medium components were further used in central composite design where chitinase production, pH and biomass responses were used in different models to evaluate fit ones. After performing power transformation, quadratic model was found to be fit for chitinase response and 2F1 model was found to be fit for biomass response. Whilst for pH response, quadratic model was found to be fit without any requirement of power transformation. In multiresponse analysis, medium formulation consisting of (g/l): chitin 18, yeast extract 0.50, and CaCl2 0.08, was found to predict 82.93 U/ml of chitinase with overall highest desirability of 0.842 as compared to other formulations. The selection of model was done on basis of high adjusted R2 value and loweredp-value for each model in individual analysis of each response. Through desirability analysis, it was found that biomass and pH played an important role in increasing the chitinase production byPaenibacillus sabina strain JD2. Through statistical optimisation method, 2.74-fold increase in chitinase production was achieved as compared to unoptimised medium.

References

  • Bhushan B. (2000). Production and characterization of thermostable chitinase from a new alkalophilicBacillus sp. BG-1. J. Appl. Microbiol., 88: 800–808.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan K., Trivedi U., Patel K. C. (2006). Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol., 16:1410–1415.

    CAS  Google Scholar 

  • Derringer G., Suich R. (1980). Simultaneous optimization of several response variables. J. Qual. Technol., 12:214–219.

    Google Scholar 

  • Gohel V., Chaudhary T., Vyas P., Chhatpar H. S. (2004a). Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Indian J. Exp. Biol., 42: 715–720.

    PubMed  Google Scholar 

  • Gohel V., Jiwan D., Vyas P., Chhatpar H. S. (2005). Statistical optimization of chitinase production byPantoea dispersa to enhance degradation of crustacean chitin waste. J. Microbiol. Biotechnol., 15: 197–201.

    CAS  Google Scholar 

  • Gohel V., Megha C., Vyas P., Chhatpar H.S. (2004b). Strain improvement of chitinase producing isolatePantoea dispersa for enhancing its biocontrol potential against fungal plant pathogens. Annals Microbiol., 54:503–515.

    CAS  Google Scholar 

  • Gohel V., Trivedi S., Vyas P., Chhatpar H. S. (2004c). Formulation of medium constituents by multiresponse analysis of central composite design to enhance chitinase production inPantoea dispersa. Indian J. Exp. Biol., 42: 1123–1131.

    CAS  PubMed  Google Scholar 

  • Gohel V. (2006) Studies on chitinase based biocontrol of pigeonpea wilt byPantoea dispersa. PhD Thesis, M S University of Baroda Vadodara, Gujarat, India, pp. 113.

    Google Scholar 

  • Gohel V., Chaudhary T., Vyas P., Chhatpar H. S. (2006). Statistical screenings of medium components for the production of chitinase by the marine isolatePantoea dispersa. Biochem. Eng. J., 28: 50–56.

    Article  CAS  Google Scholar 

  • Greasham R. L. (1983) Media for microbial fermentations, In Rehm H. J., Read P. A., Stagler P. (eds.). Bioprocessing, (Biotechnology, Vol. 3). VCH Publisher Inc., New York, pp. 128–139.

    Google Scholar 

  • Hackman R. H. (1962). Studies on Chitin V: The action of mineral acids on chitin. Aus. J. Biol. Sci., 15: 526–537.

    CAS  Google Scholar 

  • Hill W. G., Hunter W. G. (1996). A review of response surface methodology: A literature survey. Technometrics, 8:571–590.

    Article  Google Scholar 

  • James M. L. (1976). Which response surface design is best? Technometrics, 18:411–417.

    Article  Google Scholar 

  • Lowry O.H., Rosebrough J. N., Farr A. L., Randall R. J. (1951). Protein measurement with folin-phenol reagent. J. Biol. Chem., 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Monreal J., Reese E. T. (1969). The chitinase ofSerratia marcescens. Can J. Microbiol., 15:689–696.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery D. C. (1997) Design and Analysis of Experiments, 4th ed., Willey, New York.

    Google Scholar 

  • Myers R. H., Montgomery D. C. (1995). Response surface methodology: Process and product optimization using design experiments, Wiley, New York.

    Google Scholar 

  • Nawani N. N., Kapadnis B. P. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochem., 40:651–660.

    Article  CAS  Google Scholar 

  • Nelson N. (1994). A photometric adaptation of the Somogyii method for the determination of glucose. J. Biol. Chem., 153: 375–380.

    Google Scholar 

  • Plackett R. L., Burman J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 37: 305–325.

    Article  Google Scholar 

  • Pujari V., Chandra T. S. (2000). Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant ofEremothecium ashbyii, Process Biochem., 36:31–37.

    Article  CAS  Google Scholar 

  • Rao K. J., Kim C. H., Rhee S. K. (2000). Statistical optimization of medium for the production of recombinant hirudin fromSaccharomyces cerevisiae using response surface methodology. Process Biochem., 35: 639–647.

    Article  CAS  Google Scholar 

  • Simpson T. W., Peplinski J. D., Koch P. N., Allen J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Eng. Comp. 17: 129–150.

    Article  Google Scholar 

  • Taguchi G. (1987). Systems of experimental design: engineering methods to optimize quality and minimize the cost, UNIPUB, White Plains, New York.

    Google Scholar 

  • Tan S. H. (2000). ThePenaeus monodon chitinase 1 gene is differentially expressed in the hepatopancreas during the molt cycle. Mar. Biotechnol., 4: 126–135.

    Google Scholar 

  • Vaidya R. J., Shah I. M., Vyas P. R., Chhatpar H S (2001). Production of chitinase and its optimization from a novel isolateAlcaligenes xylosoxydans: potential in antifungal biocontrol. World J. Microbiol. Biotechnol., 17:691–696.

    Article  CAS  Google Scholar 

  • Vaidya R., Vyas P, Chhatpar H S (2003). Statistical optimization of medium components for the production of chitinase byAlcaligenes xylosoxydans, Enzyme Microb. Technol., 33 92–96.

    Article  CAS  Google Scholar 

  • Vyas P., Deshpande M. V. (1989). Chitinase production byMyrothecium verrucaria and its significance for fungal mycelia degradation. J. Gen. Appl. Microbiol., 35: 343–350.

    Article  CAS  Google Scholar 

  • Waterborg J. H., Matthews H. R. (1996) The Lowry Method for Protein Quantitation. In: Walker JM. editor. The protein protocols handbook, Humana Press, New Jersey Totowa [ISBN 0-89603-338-4].

    Google Scholar 

  • Wiwat C., Siwayaprahm P., Bhumiratana A. (1999). Purification and characterization of chitinase fromBacillus circulans No. 4.1. Curr. Microbiol., 39:134–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Gohel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, B., Gohel, V. & Raol, B. Statistical optimisation of medium components for chitinase production byPaenibacillus sabina strain JD2. Ann. Microbiol. 57, 589–597 (2007). https://doi.org/10.1007/BF03175360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175360

Key words