Skip to main content
  • Food Microbiology
  • Original Articles
  • Published:

Potential probioticLactobacillus strains for piglets from an arid coast

Abstract

Important centres for the pork industry have become growth in arid regions in the world and pig production needs alternatives to increase the productivity. A screening of predominantLactobacillus strains from healthy piglets was performed in order to select specific probiotics. The ability of 164 strains to grow at different temperatures and concentrations of NaCl was evaluated. Results showed that all of them grew at 45 °C, 75% at 50 °C and 64% resisted 680 mM of salt. Adhesion to mucus and gastric mucin was evaluated showing 45% of strains isolated from faeces were able to adhere whereas 71% of strains from mucus showed mucus binding activity. Among the 164 isolates, 27 adhesive strains were identified using comparisons with 16S rDNA and intergenic 16-23S sequences. Results indicated thatL. fermentum andL. reuteri were the most common species in faeces and mucus, respectively. Ability to grow in gastrointestinal mucus was evaluated showing that 92.6% of strains were able to replicate. Additionally, bacterial strain grown in 3.5% MRS with bile salts was evaluated. These results indicated that animals inhabiting isolated arid coasts are a rich source of probiotics, which resist adverse environmental conditions and can colonise the intestinal tract of pigs.

References

  • Anderson D.G., McKay L.L. (1983). Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol., 46: 549–552.

    CAS  PubMed  Google Scholar 

  • Beachey E.H. (1981). Bacterial adherence: Adhesinreceptor interactions mediating the attachment of bacteria to mucosal surface. J. Infect. Dis., 143: 325–345.

    CAS  PubMed  Google Scholar 

  • Bernet-Camard M.F., Liévin V., Brassart D., Neeser J.R., Servin A.L., Hudault S. (1997). The humanLactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) activein vitro andin vivo. Appl. Environ. Microbiol., 63: 2747–2753.

    CAS  PubMed  Google Scholar 

  • Broda D.M., Lawson P.A., Bell R.G., Musgrave D.R. (1999).Clostridium frigidicarnis sp. nov., a psychrotolerant bacterium associated with ‘blown pack’ spoilage of vacuum-packed meats. Int. J. Syst. Bacteriol., 49: 1539–1550.

    Article  CAS  PubMed  Google Scholar 

  • Chang D.E., Smalley D.J., Tucker D.L., Leatham M.P., Norris W.E., Stevenson S.J., Anderson A.B., Grissom J.E., Laux D.C., Cohen P.S., Conway T. (2004). Carbon nutrition ofEscherichia coli in the mouse intestine. Proc. Natl. Acad. Sci. USA, 101: 7427–7432.

    Article  CAS  PubMed  Google Scholar 

  • Chen X., Xu J., Shuai J., Chen J., Zhang Z., Fang W. (2007). The S-layer proteins ofLactobacillus crispatus strain ZJ001 is responsible for competitive exclusion againstEscherichia coli O157:H7 andSalmonella typhimurium. Int. J. Food. Microbiol., 115: 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Conway P.L. (1997). Development of intestinal microbiota. In: Mackie R.I., White B.A., Isaacson R.E., Eds, Gastrointestinal Microbiology, vol. 2, Chapman and Hall Microbiology Series, New York, pp. 3–38.

  • Conway P.L., Kjelleberg S. (1989). Protein-mediated adhesion ofLactobacillus fermentum strain 737 to mouse stomach squamous epithelium. J. Gen. Microbiol., 135: 1175–1186.

    CAS  PubMed  Google Scholar 

  • Conway P.L., Welin A., Cohen P.S. (1990). Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect. Immun., 58: 3178–3182.

    CAS  PubMed  Google Scholar 

  • De Angelis M., Siragusa S., Berloco M., Caputo L., Settanni L., Alfonsi G., Amerio M., Grandi A., Ragni A., Gobbeti M. (2006). Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res. Microbiol., 157: 792–801.

    Article  PubMed  Google Scholar 

  • De Angelis M., Siragusa S., Caputo L., Ragni A., Burzigotti R., Gobbeti M. (2007). Survival and persistence ofLactobacillus plantarum 4.1 andLactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Vet. Microbiol., 123: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Desmond C., Stanton C., Fitzgerald G.F., Collins K., Ross P. (2001). Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J., 10: 801–808.

    Article  Google Scholar 

  • Domínguez-Cadena R., Guillén-Trujillo A., León-de la Luz J.L., Murillo-Amador B. (2003). Estimación y disponibilidad forrajera de arbustos en Baja California Sur, México. Interciencia, 28: 229–233.

    Google Scholar 

  • Fang L., Gan Z., Marquardt R.R. (2000). Isolation, affinity purification, and identification of piglet small intestine mucosa receptor for enterotoxigenicEscherichia coli K88ac+ fimbrae. Infect. Immun., 68: 564–569.

    Article  CAS  PubMed  Google Scholar 

  • Gueimonde M., Jalonen L., Fang H., Hiramatsu M., Salmien S. (2006). Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food. Res. Int., 39: 467–471.

    Article  CAS  Google Scholar 

  • Hernández M., Maya A.C. (2002). Globalization and pork raisin in Mexico: The challenges of integration in the world market. Int. J. Sociol. Agric. Food, 10: 25–31.

    Google Scholar 

  • Hudson L., Hay G.C. (1989). Antibody as a probe. In: Elaine and Frances, Eds, Practical Immunology, Blackwell Scientific Publications, London, UK, pp 44–46.

    Google Scholar 

  • Jernberg C., Sullivan A., Edlund C., Jansson J.K. (2005). Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl. Environ. Microbiol., 71: 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Karanja D.N., Maingi N., Mbuthia P.G. (2005). Causes of pig mortality in Kenya — a ten year retrospective postmortem study. Kenya Veterianrian, 29: 67–70.

    Google Scholar 

  • Kinoshita H., Uchida H., Kawai Y., Kitazawa H., Miura K., Shiiba K., Horii A., Saito T. (2007). Quantitative evaluation of adhesion of lactobacilli isolated from human intestinal tissues to human colonic mucin using surface plasmon resonance (BIACORE assay). J. Appl. Microbiol., 102: 116–123.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y.K., Puong K.Y., Ouwehand A.C., Salminen S. (2003). Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol., 52: 925–930.

    Article  PubMed  Google Scholar 

  • Lin W.H., Yu B., Jang S.H., Tsen H.Y. (2007). Different probiotic properties forLactobacillus fermentum strains isolated from swine and poultry. Anaerobe, 13: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Mackie R.I., Sghir A., Gaskins H.R. (1999). Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr., 69: 1035S-1045S.

    CAS  PubMed  Google Scholar 

  • Marteau P., Pochart P., Dore J., Bera-Maillet C., Bernalier A., Corthier G. (2001). Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol., 67: 4939–4942.

    Article  CAS  PubMed  Google Scholar 

  • Matijasic B.B., Stojkovic S., Rogelj I. (2006). Survival andin vivo adhesion of human isolatesLactobacillus gasseri LF221 and K7 in weaned piglets and their effects on coliforms, clostridia and lactobacilli viable counts in faeces and mucosa. J. Dairy. Res., 73: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Moser S.A., Savage D.C. (2001). Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl. Environ. Microbiol., 67: 3476–3480.

    Article  CAS  PubMed  Google Scholar 

  • Murillo-Amador B., Troyo-Diéguez E. (2000). Effects of salinity on the germination and seedling characteristics of cowpea (Vigna unguiculata (L.) Walp.). Aust. J. Exp. Agr., 40: 433–438.

    Article  Google Scholar 

  • Namba A., Mano N., Hirose H. (2007). Phylogenetic analysis of intestinal bacteria and their adhesive capability in relation to the intestinal mucus of carp. J. Appl. Microbiol., 102: 1307–1317.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi Y., Tokunaga M., Taketomo N., Ushida K. (2007). Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium,Lactobacillus delbrueckii subsp.bulgaricus strain 2038, in the pigs. J. Nutr. Sci. Vitaminol. (Tokyo), 53: 82–86.

    Article  CAS  Google Scholar 

  • Pedersen C., Jonsson H., Lindberg J.E., Roos S. (2004). Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of lactobacilli with potential as probiotics. Appl. Environ. Microbiol., 70: 1522–1527.

    Article  CAS  PubMed  Google Scholar 

  • Prasad J., McJarrow P., Gopal P. (2003). Heat and osmotic stress responses of probioticLactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol., 69: 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Reid G. (1999). The scientific basis for probiotic strains ofLactobacillus. Appl. Environ. Microbiol., 65: 3763–3766.

    CAS  PubMed  Google Scholar 

  • Reeky E. de F., Pandey A., Franco S.G., Soccoli C.R. (2000). Isolation, identification and physiological study ofLactobacillus fermentum LPB for use as probiotic in chickens. Braz. J. Microbiol., 31: 303–307.

    Google Scholar 

  • Robinson I.M., Allison M.J., Bucklin J.A. (1981). Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol., 41: 950–955.

    CAS  PubMed  Google Scholar 

  • Rojas M., Conway P.L. (1996). Colonization by lactobacilli of piglet small intestinal mucus. J. Appl. Bacteriol., 81: 474–480.

    CAS  PubMed  Google Scholar 

  • Rojas M., Conway P.L. (2001). A dot-blot assay for adhesive components relative to probiotics. Methods Enzymol., 336: 389–402.

    Article  CAS  PubMed  Google Scholar 

  • Rojas M., Ascencio F., Conway P.L. (2002). Purification and characterization of a surface protein fromLactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microbiol., 68: 2330–2336.

    Article  CAS  PubMed  Google Scholar 

  • Servin A.L. (2004). Antagonistic activities of lactobacill and bifidobacteria against microbial pathogens. FEMS. Microbiol. Rev., 28: 405–440.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M., Shimizu Y., Kodama Y. (1978). Effects of ambient temperatures on induction of transmissible gastroenteritis in feeder pigs. Infect. Immun., 21: 747–752.

    CAS  PubMed  Google Scholar 

  • Soto G.E., Hultgren S.J. (1999). Bacterial adhesins: Common themes and variations in architecture and assembly. J. Bacteriol., 181: 1059–1071.

    CAS  PubMed  Google Scholar 

  • Speck M.L. (1976). Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington, USA.

    Google Scholar 

  • Swofford D.L. (2003). PAUP* Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Tajima K., Nonaka I., Higuchi K., Takusari N., Kurihara M., Takenaka A., Mitsumori M., Kajikawa H., Aminov R.I. (2007). Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe, 13: 57–64.

    Article  PubMed  Google Scholar 

  • Tannock G.W., Tilsala-Timisjarvi A., Rodtong S., Ng J., Munro K., Alatossava T. (1999). Identification ofLactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S–23S rRNA gene intergenic spacer region sequence comparisons. Appl. Environ. Microbiol., 65: 4264–4267.

    CAS  PubMed  Google Scholar 

  • Taranto M.P., Perez-Martinez G., Font de Valdez G. (2006). Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res. Microbiol., 157: 720–725.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J.D., Higgins D.G., Gibson T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Thompson-Chagoyán O.C., Maldonado J., Gil A. (2007). Colonization and impact of disease and other factors on intestinal microbiota. Dig. Dis. Sci., 52: 2069–2077.

    Article  PubMed  Google Scholar 

  • Troyo-Diéguez E., Ortega A., Maya Y., León J.L. (1994). Growth and development of the halophyteSalicornia bigelovii torr. as affected by environmental conditions in arid Baja California Sur, Mexico. J. Arid Environ., 28: 207–213.

    Article  Google Scholar 

  • Webster C.C., Wilson P.N. (1980). Agriculture in the Tropics, 2nd edn., Longman, Harlow.

    Google Scholar 

  • Whittenbury R. (1964). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J. Gen. Mirobiol., 35: 13–26.

    CAS  Google Scholar 

  • Zoumpopoulou G., Foligne B., Chistodoulou K., Grangette C. Pot B., Tsakalidou E. (2008).Lactobacillus fermentum ACA-DC 179 displays prehepatic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis andSalmonella infection in murine models. Int. J. Food Microbiol., 121: 18–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurilia Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macías-Rodríguez, M.E., Zagorec, M., Ascencio, F. et al. Potential probioticLactobacillus strains for piglets from an arid coast. Ann. Microbiol. 58, 641–648 (2008). https://doi.org/10.1007/BF03175569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175569

Key words