Skip to main content
  • Food Microbiology
  • Original Articles
  • Published:

The characterisation of a novelPichia anomala β-glucosidase with potentially aroma-enhancing capabilities in wine

Abstract

The production and characterisation of β-glucosidase from an isolated yeast strain classified as aPichia anomala MDD24 were studied. The result shows that cellobiose is a good inducer for extracellular β-glucosidase production and optimum concentration is 1.5 percent cellobiose in yeast peptone dextrose medium. The purified β-glucosidase fromPichia anomala MDD24 exhibited a specific activity of 614±14 U mg−1 of protein and a molecular mass of 42 kDa. This enzyme was slightly inhibited by fructose and sucrose in the range of 4 to 20% (w/v). An ethanol concentration between 4 and 20% (v/v) activated β-glucosidase activity, at presence 16% (v/v) ethanol, β-glucosidases obtained maximum relative activity around 150%. The optimum pH and optimum temperature for β-glucosidase activity were 4.5 and 40 °C, respectively. Although the activity under the pH and temperature of wine production (pH 3.5–4.0 and 15–20 °C) was quite low, the enzyme was stable and the relative activities were higher than commercial enzyme under those conditions. The extracellular β-glucosidase fromPichia anomala MDD24 makes it possible to release glucosidically-bound monoterpenes, which are the major contributors to floral and fruity aromas in wines fromMuscat-type varieties, at final stage of alcoholic fermentation.

References

  • Arevalo Villena M., Ubeda Iranzo J.F., Cordero Otero R.R., Briones Perez A.I. (2005). Optimization of a rapid method for studying the cellular location of β-glucosidase activity in wine yeasts. J. Appl. Microbiol., 99: 558–564.

    Article  PubMed  CAS  Google Scholar 

  • Arevalo Villena M., Ubeda Iranzo J.F., Gundllapalli S.B., Cordero Otero R.R., Briones Perez A.I. (2006). Characterization of an exocellular β-glucosidase fromDebaryomyces pseudopolymorphus. Enzyme Microb. Technol., 39: 229–234.

    Article  CAS  Google Scholar 

  • Aryan A.P., Wilson B., Strauss C.R., Williams P.J. (1987). The properties of glycosidases ofVitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzyme. Am. J. Enol. Vitic., 383: 182–188.

    Google Scholar 

  • Barbagallo R.N., Spagna G., Palmeri R., Restuccia C., Giudici P. (2004). Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb. Technol., 35: 58–66.

    Article  CAS  Google Scholar 

  • Belancic A., Gunata Z., Vallier M.J., Agosin E. (2003). β-Glucosidase from the grape native yeastDebaryomyces vanrijiae: Purification, characterization, and its effects on monoterpene content of a Muscat grape juice. J. Agric. Food Chem., 51: 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  • Cordero Otero R.R., Ubeda Iranzo J.F., Briones-Perez A.I., Potgieter N., Arevalo Villena M., Pretorius I.S., van Rensburg P. (2003). Characterization of the β-glucosidase activity produced by enological strains of Non-Saccharomyces yeasts. J. Food Sci., 68: 2564–2569.

    Article  Google Scholar 

  • Ducret A., Trani M., Lortie R. (2006). Comparison between various commercial sources of almond β-glucosidase for the production of alkyl glucosides. J. Mol. Catal. Enzym., 38: 91–94.

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalez M., Di Stefano R., Briones A. (2003). Hydrolysis and transformation of terpene glycosides from Muscat must by different yeast species. Food Microbiol., 20: 35–41.

    Article  CAS  Google Scholar 

  • Ferreira A.M., Climaco M.C., Faia A.M. (2001). The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components — a preliminary study. J. Appl. Microbiol., 91: 67–71.

    Article  CAS  Google Scholar 

  • Gueguen Y., Chemardin P., Arnaud A., Galzy P. (1994). Purification and characterization of the endocellular β-glucosidase of a new strain ofCandida entomophila isolated from fermenting agave (Agave sp.) juice. Biotechnol. Appl. Biochem., 20: 185–198.

    PubMed  CAS  Google Scholar 

  • Gueguen Y., Chemardin P., Arnaud A., Galzy P. (1995). Comparative study of extracellular and intracellular β-glucosidases of a new strain ofZygosaccharomyces Bailii isolated from fermenting agave juice. J. Appl. Bacteriol., 78: 270–280.

    CAS  Google Scholar 

  • Gueguen Y., Chemardin P., Labrot P., Arnaud A., Galaxy P. (1997). Purification and characterization of an intracellular β-glucosidase from a new strain ofLeuconostoc mesenteroides isolated from cassava. J. Appl. Microbiol., 82: 469–476.

    Article  CAS  Google Scholar 

  • Günata Y.Z., Bayonove C., Baumes R., Codornier R.E. (1985). The aroma of grapes. I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr., 331: 83–90.

    Article  Google Scholar 

  • Günata Z., Bitteur S., Brillouet J.M., Bayonove C., Cordonnier R. (1988). Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydr. Res., 184: 139–149.

    Article  Google Scholar 

  • Günata Y.Z., Bayonove C.L., Tapiero C., Cordonnier R.E. (1990). Hydrolysis of grape monoterpene β-D-glucosides by various β-glucosidases. J. Agric. Food Chem., 38: 1232–1236.

    Article  Google Scholar 

  • Hernandez L.F., Espinosa J.C., Fernandez-Gonzalez M., Briones A. (2002). β-Glucosidase activity in aSaccharomyces cerevisiae wine strain. Int. J. Food Microbiol., 80: 171–176.

    Article  Google Scholar 

  • Kaur J., Chadha B.S., Kumar B., Kaur G.S., Saini H.S. (2007). Purification and characterization of β-glucosidase fromMelanocarpus sp. MTCC 3922. J. Biotechnol., 10: 260–270.

    CAS  Google Scholar 

  • Laemmli U.K. (1970). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lecas M., Gunata Z.Y., Sapis J.C., Bayonove L. (1991). Purification and characterization of β-glucosidase from grape. Phytochemistry, 30: 451–454.

    Article  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Mateo J.J., Di Stefano R. (1997). Description of the β-glucosidase activity of wine yeasts. Food Microbiol., 14: 583–591.

    Article  CAS  Google Scholar 

  • McMahond H., Zoecklein B.W., Fugelsand K., Jasinski Y. (1999). Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J. Ind. Microbiol. Biotechnol., 23: 198–203.

    Article  CAS  Google Scholar 

  • Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426–4288.

    Article  CAS  Google Scholar 

  • Palomo E.S., Hidalgo M.C.D.M., Gonzalez-Vinas M.A., Perez-Coello M.S. (2005). Aroma enhancement in wines from different grape varieties using exogenous glycosidase. Food Chem., 92: 627–635.

    Article  CAS  Google Scholar 

  • Pemberton M.S., Brown R.D., Emert G.H. (1980). The role of β-glucosidase in the bioconversion of cellulose to ethanol. Can. J. Chem. Eng., 58: 723–729.

    Article  CAS  Google Scholar 

  • Quatrini P., Marineo S., Puglia A.M., Restuccia C., Caggia C., Randazzo C.L., Spagna G., Barbagallo R.N., Palmeri R., Giudici P. (2008). Partial sequencing of the β-glucosidase-encoding gene of yeast strains isolated from musts and wines. Ann. Microbiol., 58: 503–508.

    Article  CAS  Google Scholar 

  • Restuccia C., Pulvirenti A., Caggia C., Giudici P. (2002). A β-glucosidase positive strain ofSacharomyces Cerevisiae isolated from grape must. Ann. Microbiol., 52: 47–53.

    CAS  Google Scholar 

  • Riou C., Salmon J.M., Vallier M.J., Günata Z., Barre P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase fromAspergillus oryzae. Appl. Environ. Microbiol., 64: 3607–3614.

    PubMed  CAS  Google Scholar 

  • Rodriguez M.E., Lopes C.A., van Broock M., Valles S., Ramon D., Caballero A.C. (2004). Screening and typing of Patagonian wine yeasts for glycosidase activities. J. Appl. Microbiol., 96: 84–95.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M.E., Lopes C., Valles S., Giraudo M.R., Caballero A. (2007). Selection and preliminary characterization of β-glucosidases producer Patagonian wild yeasts. Enzyme Microb. Technol., 41: 812–820.

    Article  CAS  Google Scholar 

  • Rosi I., Vinella M., Domizio P. (1994). Characterization of β-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol., 77: 519–527.

    PubMed  CAS  Google Scholar 

  • Saha B.C., Bothast R.J. (1996). Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase fromCandida peltata. Appl. Environ. Microbiol., 62: 3165–3170.

    PubMed  CAS  Google Scholar 

  • Spagna G., Barbagallo R.N., Palmeri R., Restuccia C., Giudici P. (2002a). Properties of endogenous β-glucosidase of aSaccharomyces cerevisiae strain isolated from Sicilian musts and wines. Enzyme Microb. Technol., 31: 1030–1035.

    Article  CAS  Google Scholar 

  • Spagna G., Barbagallo R.N., Palmeri R., Restuccia C., Giudici P. (2002b). Properties of endogenous β-glucosidase of aPichia anomala strain isolated from Sicilian musts and wines. Enzyme Microb. Technol., 31: 1036–1041.

    Article  CAS  Google Scholar 

  • Swangkeaw J., Vichitphan S., Thanonkeo P., Vichitphan K. (2006). Screening, production and localization of glycosidase from isolated yeasts. In: Proceeding of Findings of the Young Researchers on Applied Science 2006 (CAS 2006), Kuala Lumpur, Malaysia, pp. 349–353.

  • Ugliano M., Genovese A., Moio L. (2003). Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures ofOenococcus oeni. J. Agri. Food Chem., 51: 5073–5078.

    Article  CAS  Google Scholar 

  • Van Rensburg P., Stidwell T., Lambrechts M.G., Cordero Otero R., Pretorius I.S. (2005). Development and assessment of a recombinantSaccharomyces cerevisiae wine yeast producing two aroma-enhancing β-glucosidases encoded by theSaccharomycopsis fibuligera BGL1 and BGL2 genes. Ann. Microbiol., 55: 33–42.

    Google Scholar 

  • Wallecha A., Mishra S. (2003). Purification and characterization of two β-glucosidases from a thermotolerant yeastchia etchellsii. Biochim. Biophys. Acta, 1649: 74–84.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanit Vichitphan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swangkeaw, J., Vichitphan, S., Butzke, C.E. et al. The characterisation of a novelPichia anomala β-glucosidase with potentially aroma-enhancing capabilities in wine. Ann. Microbiol. 59, 335–343 (2009). https://doi.org/10.1007/BF03178336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178336

Key words