Addy MM, Kabir F, Zhang R, Lu Q, Deng X, Current D, Griffith R, Ma Y, Zhou W, Chen P, Ruan R (2017) Co-cultivation of microalgae in aquaponic systems. Bioresour Technol 245:27–34
Article
CAS
PubMed
Google Scholar
Aoi Y, Miyoshi T, Okamoto T, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2000) Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J Biosci Bioeng 90:234–240
Article
CAS
PubMed
Google Scholar
Ballinger SJ, Head IM, Curtis TP, Godley AR (2002) The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor. Water Sci Technol 46:543–550
Article
CAS
PubMed
Google Scholar
Bartelme RP, Oyserman BO, Blom JE, Sepulveda-Villet OJ, Newton RJ (2018) Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Front Microbiol 9:8
Article
PubMed
PubMed Central
Google Scholar
Bartelme RP, Smith MC, Sepulveda-Villet OJ, Newton RJ (2019) Component microenvironments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere 4:e00143–e00119
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas R, Sarkar A (2018) ‘Omics’ tools in soil microbiology: the state of the art. In: Adhya TK, Lal B, Mohapatra B, Paul D, Das S (eds) Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 35–64
Chapter
Google Scholar
Blancheton JP, Attramadal KJK, Michaud L, D’Orbcastel ER, Vadstein O (2013) Insight into bacterial population in aquaculture systems and its implication. Aquacult Eng 53:30–39
Article
Google Scholar
Brailo M, Schreier HJ, McDonald R, Maršić-Lučić J, Gavrilović A, Pećarević M, Jug-Dujaković J (2019) Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum. Aquaculture 503:198–206
Article
CAS
PubMed
Google Scholar
Chagas FO, Pessotti RC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47:1652–1704
Article
CAS
PubMed
Google Scholar
Chitmanat C, Pimpimol T, Chaibu P (2015) Investigation of bacteria and fish pathogenic bacteria found in freshwater aquaponic system. J Agric Sci 7:254–259
Google Scholar
da Silva CB, Fitzsimmons K (2016) Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci Hortic 211:277–282
Article
CAS
Google Scholar
Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:555–559
Article
CAS
Google Scholar
Daskalov H (2006) The importance of Aeromonas hydrophila in food safety. Food Control 17:474–483
Article
Google Scholar
DeLong DP, Losordo TM (2012) How to start a biofilter. Southern Regional Aquaculture Center. SRAC Publication 4502:1–4
Google Scholar
Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257:346–358
Article
Google Scholar
Eck M, Sare AR, Massart S, Schmautz Z, Junge R, Smits THM, Jijakli MH (2019) Exploring bacterial communities in aquaponic systems. Water 11:260
Article
CAS
Google Scholar
Elumalai SD, Shaw AM, Pattillo DA, Currey CJ, Rosentrater KA, Xie K (2017) Influence of UV treatment on the food safety status of a model aquaponic system. Water 9:27
Article
CAS
Google Scholar
Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A (2010) A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour Technol 10:1511–1517
Article
CAS
Google Scholar
FAO/WHO (2008) Microbiological hazards in fresh leafy vegetables and herbs: meeting report. Microbiological Risk Assessment Series No. 14, Rome, pp 2–9 Available at: http://www.fao.org/3/a-i0452e.pdf (accessed on 7th June 2020)
Google Scholar
Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP, Ronald PC, Rosegrant MW, Sanchez PA, Vonshak A, Zhu JK (2010) Radically rethinking agriculture for the 21st Century. Science 327:833–834
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox BK, Tamaru CS, Hollyer J, Castro LF, Fonseca JM, Jay-Russell M, Low T (2012) A preliminary study of microbial water quality related to food safety in recirculating aquaponic fish and vegetable production systems. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa. Food Safety and Technology. FST 51:1–11 Available at: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/fst-51.pdf (accessed 7 June 2020)
Google Scholar
Galloway-Pena J, Hanson B (2020) Tools for analysis of the microbiome. Dig Dis Sci 65:674–685
Article
CAS
PubMed
PubMed Central
Google Scholar
Goddek S, Joyce A, Wuertz S, KörnerIngo O, Bläser I, Reuter M, Keesman KJ (2019) Decoupled aquaponics systems. In: Goddek S, Joyce A, Kotzen B, Burnell G (eds) Aquaponics food production systems. Springer, Cham, Switzerland, pp 202–204
Chapter
Google Scholar
Goddek S, Schmautz Z, Scott B, Delaide B, Keesman KJ, Wuertz S, Junge R (2016) The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. Agronomy 6:37
Article
Google Scholar
Gomes C, Da Silva P, Moreira RG, Castell-Perez E, Ellis EA, Pendleton M (2009) Understanding E. coli internalization in lettuce leaves for optimization of irradiation treatment. Int J Food Microbiol 135:238–247
Article
CAS
PubMed
Google Scholar
Haberman A, Peterson M, Ruby A (2015) The effect of red wiggler worms (Eisenia fetida) on aquaponics nutrient solution properties and system stability across solution temperature. Retrieved from the University of Minnesota Digital Conservancy Available at: https://conservancy.umn.edu/bitstream/handle/11299/172221/Allison%20Ruby%20Team%202%20Poster.pdf?sequence=l&isAllowed=y (accessed on 8 June 2020)
Hagopian DS, Riley JG (1998) A closer look at the bacteriology of nitrification. Aquacult Eng 18:223–244
Article
Google Scholar
Head MA, Oleszkiewicz JA (2004) Bioaugmentation for nitrification at cold temperatures. Water Res 38:523–530
Article
CAS
PubMed
Google Scholar
Holmes DE, Dang Y, Smith JA (2019) Nitrogen cycling during wastewater treatment. Adv. Appl Microbiol 106:118–148
Google Scholar
Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24:189–208
Article
Google Scholar
Hu Z, Lee JW, Chandran K, Kim S, Brotto AC, Khanal SK (2015) Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol 188:92–98
Article
CAS
PubMed
Google Scholar
Joyce A, Timmons M, Goddek S, Pentz T (2019) Bacterial relationships in aquaponics: new research directions. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, Cham, Switzerland, pp 145–161
Chapter
Google Scholar
Karkman A, Mattila K, Tamminen M, Virt M (2011) Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol Bioeng 108:2876–2883
Article
CAS
PubMed
Google Scholar
Kasozi N, Kaiser H, Wilhelmi B (2020) Metabarcoding analysis of bacterial communities associated with media grow bed zones in an aquaponic system. Int J Microbiol 2020:8884070
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim D-J, Ahn DH, Lee D-I (2005) Effects of free ammonia and dissolved oxygen on nitrification and nitrite accumulation in a biofilm airlift reactor. Korean J Chem Eng 22:85–90
Article
CAS
Google Scholar
Kotzen B, Emerenciano MGC, Moheimani N, Burnell GM (2019) Aquaponics: alternative types and approaches. In: Goddek S, Joyce A, Kotzen B, Burnell G (eds) Aquaponics food production systems. Springer, Cham, Switzerland, pp 301–310
Chapter
Google Scholar
Krom MD, Ellner S, Van Rijn J, Neori A (1995) Nitrogen and phosphorus cycling and transformations in a prototype ‘non-polluting’ integrated mariculture system. Eilat, Israel Mar Ecol Prog Ser 118:25–36
Article
CAS
Google Scholar
Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Lee J (2015) Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci Hortic 195:206–215
Article
CAS
Google Scholar
Li M, Ishiguro Y, Otsubo K, Suzuki H, Tsuji T, Miyake N, Nagai H, Suga H, Kageyama K (2014) Monitoring by real-time PCR of three water-borne zoosporic Pythium species in potted flower and tomato greenhouses under hydroponic culture systems. Eur J Plant Pathol 140:229–242
Article
CAS
Google Scholar
Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015) Commercial aquaponics production and profitability: findings from an international survey. Aquaculture 435:67–74
Article
Google Scholar
Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254
Article
CAS
PubMed
Google Scholar
Macarisin D, Patel J, Sharma VK (2014) Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil. Int J Food Microbiol 173:48–53
Article
PubMed
Google Scholar
Mehle N, Gutiérrez-aguirre I, Prezelj N, Delic D (2014) Survival and transmission of potato virus Y, Pepino Mosaic virus, and potato spindle tuber viroid in water. J Appl Environ Microbiol 80:1455–1462
Article
CAS
Google Scholar
Mehle N, Ravnikar M (2012) Plant viruses in aqueous environment: survival, water mediated transmission and detection. Water Res 46:4902–4917
Article
CAS
PubMed
Google Scholar
Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663
Article
CAS
PubMed
Google Scholar
Michalet S, Rohr J, Warshan D, Bardon C, Rogy J-C, Domenach A-M, Czarnes S, Pommier T, Combourieu B, Guillaumaud N, Bellvert F, Comte G, Poly F (2013) Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiol Biochem 72:169–177
Article
CAS
PubMed
Google Scholar
Michaud L, Giudice AL, Interdonato F, Triplet S, Ying L, Blancheton JP (2014) C/N ratio-induced structural shift of bacterial communities inside lab-scale aquaculture biofilters. Aquacult Eng 58:77–87
Article
Google Scholar
Molden AD (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earth scan and Colombo: International Water Management Institute, London, pp 9–15
Google Scholar
Mori J, Smith R (2019) Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: a systematized review. Aquaculture 504:380–395
Article
Google Scholar
Moriarty MJ, Semmens K, Bissonnette GK, Jaczynski J (2018) Inactivation with UV radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. LWT–Food Sci Technol 89:624–630
Article
CAS
Google Scholar
Munguia-Fragozo P, Alatorre-Jacome O, Rico-Garcia E, Torres-Pacheco I, Cruz-Hernandez A, Ocampo-Velazquez RV, Garcia-Trejo JF, Guevara-Gonzalez RG (2015) Perspective for aquaponic systems: “omic” technologies for microbial community analysis. Biomed Res Int 2015:480386
Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045
Article
PubMed
PubMed Central
Google Scholar
Pant A, Radovich TJK, Hue NV, Talcott ST, Krenek KA (2009) Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in Pak choi (Brassica rapa cv. Bonsai Chinensis group) grown under vermicompost and chemical fertilizer. J Sci Food Agric 89:2383–2392
Article
CAS
Google Scholar
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878
Article
CAS
PubMed
PubMed Central
Google Scholar
Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774
Article
CAS
PubMed
PubMed Central
Google Scholar
Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407
Article
CAS
PubMed
Google Scholar
Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics–integrating fish and plant culture. SRAC Publication 454:1–16
Google Scholar
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2015) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29
Article
PubMed
CAS
Google Scholar
Reinecke AJ, Viljoen SA (1991) A comparison of the biology of Eisenia fetida and Eisenia andrei (Oligo-chaeta). Biol Fertil Soils 11:295–300
Article
Google Scholar
Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339
Article
CAS
Google Scholar
Roosta HR, Hamidpour M (2011) Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci Hortic 129:396–402
Article
CAS
Google Scholar
Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37:1371–1377
Article
CAS
PubMed
Google Scholar
Rurangwa E, Verdegem MCJ (2015) Microorganisms in recirculating aquaculture systems and their management. Rev Aquac 7:117–130
Article
Google Scholar
Sallenave R (2016) Important water quality parameters in aquaponics systems. New Mexico State University. Circular 680:1–8
Google Scholar
Sanchez FA, Vivian-Rogers VR, Urakawa H (2019) Tilapia recirculating aquaculture systems as a source of plant growth promoting bacteria. Aquac Res 50:2054–2065
Article
CAS
Google Scholar
Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits THM (2017) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol 199:613–620
Article
CAS
PubMed
Google Scholar
Schreier HJ, Mirzoyan N, Saito K (2010) Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotechnol 21:318–325
Article
CAS
PubMed
Google Scholar
Shakya M, Lo C-C, Chain PSG (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222
Article
CAS
PubMed
Google Scholar
Shete AP, Verma AK, Chadha NK, Prakash C, Peter RM, Ahmad I, Nuwansi KKT (2016) Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis). Aquacult Eng 72:53–57
Article
Google Scholar
Shulaev V (2016) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139
Article
Google Scholar
Sirakov I, Lutz M, Graber A, Mathis A, Staykov Y, Smits THM, Junge R (2016) Potential for combined biocontrol activity against fungal fish and plant pathogens by bacterial isolates from a model aquaponic system. Water 8:528
Article
Google Scholar
Sirsat SA, Neal JA (2013) Microbial profile of soil-free versus in-soil grown lettuce and intervention methodologies to combat pathogen surrogates and spoilage microorganisms on lettuce. Foods 2:488–498
Article
PubMed
PubMed Central
Google Scholar
Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353
Article
PubMed
Google Scholar
Solomon CM, Collier JL, Berg GM, Gilbert PM (2010) Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat Microb Ecol 59:67–88
Article
Google Scholar
Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production: integrated fish and plant farming In: FAO U (eds) FAO Fisheries and Aquaculture Technical Paper. Rome, Italy, pp 1–262
Google Scholar
Stein LY, Klotz MG (2016) The nitrogen cycle. Curr Biol 26:R94–R98
Article
CAS
PubMed
Google Scholar
Stouvenakers G, Dapprich P, Massart S, Jijakli MH (2019) Plant pathogens and control strategies in aquaponics. In: Goddek S, Joyce A, Kotzen B, Burnell G (eds) Aquaponics food production systems. Springer, Cham, Switzerland, pp 353–371
Chapter
Google Scholar
Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18
Article
Google Scholar
Tyson RV, Treadwell DD, Simonne EH (2011) Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 21:6–13
Article
CAS
Google Scholar
Urakawa H, Tajima Y, Numata Y, Tsuneda S (2008) Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl Environ Microbiol 74:894–900
Article
CAS
PubMed
Google Scholar
van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquacult Eng 34:364–376
Article
Google Scholar
Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological agents in aquaculture. Microbiol Mol Biol Rev 64:655–671
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H (2020) Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 219:1–11
Article
CAS
Google Scholar
Wani KA, Mamta RRJ (2013) Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida. Saudi J Biol Sci 20:149–154
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report Series 778. WHO, Geneva, p 33
Google Scholar
Wongkiew S, Hu Z, Chandran K, Lee JW, Khanal SK (2017) Aquaponic systems for sustainable resource recovery: linking nitrogen transformations to microbial communities. Aquacult Eng 76:9–19
Article
Google Scholar
Wongkiew S, Park MR, Chandran K, Khanal SK (2018) Aquaponic systems for sustainable resource recovery: linking nitrogen transformations to microbial communities. Environ Sci Technol 52:12728–12739
Article
CAS
PubMed
Google Scholar
Xin L, Hong-ying H, Ke G, Jia Y (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus spp. LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381
Article
Google Scholar
Xu WJ, Morris TC, Samocha TM (2016) Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 453:169–175
Article
CAS
Google Scholar
Yang T, Kim H-J (2020) Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae 6:9
Article
Google Scholar
Zheng X, Zhang D, Qin J, Wang Y (2018) The effect of C/N ratio on bacterial community and water quality in a mussel-fish integrated system. Aquac Res 49:1699–1708
Article
CAS
Google Scholar
Zhu S, Chen S (2001) Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacult Eng 25:1–11
Article
Google Scholar
Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y (2016) Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol 210:81–87
Article
CAS
PubMed
Google Scholar
Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
CAS
PubMed
PubMed Central
Google Scholar