Angiolella LMF, StringaroB. MarasN. SimonettiA. Cassone, (1996) Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. J Infect Dis 173(3):684–690. https://doi.org/10.1093/infdis/173.3.684
Article
CAS
PubMed
Google Scholar
Breitenbach MBS, ProbstH. OberkoflerF. FerreiraP. BrizaG. AchatzA. UngerC. EbnerD. KraftR. Hirschwehr, (1997) Enolases are highly conserved fungal allergens. Int Arch Allergy Immunol 113(1–3):114–117. https://doi.org/10.1159/000237521
Article
CAS
PubMed
Google Scholar
Cabezón V-P, NombelaL. MonteolivaC. Gil, (2009) Analysis of Candida albicans plasma membrane proteome. Proteomics 9(20):4770–4786. https://doi.org/10.1002/pmic.200800988
Article
CAS
PubMed
Google Scholar
Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72(3):495–544. https://doi.org/10.1128/mmbr.00032-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Eroles PMS, ElorzaRSentandreu V (1995) Cloning of a DNA fragment encoding part of a 70-kDa heat shock protein of Candida albicans. FEMS Microbiol Lett 128(1):95–100. https://doi.org/10.1111/j.1574-6968.1995.tb07506.x
Article
CAS
PubMed
Google Scholar
Eroles PMS, ElorzaRSentandreu V (1997) The highly immunogenic enolase and Hsp70p are adventitious Candida albicans cell wall proteins. Microbiology (reading) 143(Pt 2):313–320. https://doi.org/10.1099/00221287-143-2-313
Article
CAS
Google Scholar
Feng Y, Pan X, Sun W, Wang C, Zhang H, Li X, Ma Y, Shao Z, Ge J, Zheng F, Gao GF, Tang J (2009) Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. J Infect Dis 200(10):1583–1592. https://doi.org/10.1086/644602
Article
CAS
PubMed
Google Scholar
Font de Mora JE, Sentandreu Herrero R (1993) A kinetic study on the regeneration of Candida albicans protoplasts in the presence of cell wall synthesis inhibitors. FEMS Microbiol Lett 111(1):43–47. https://doi.org/10.1111/j.1574-6968.1993.tb06359.x
Article
CAS
PubMed
Google Scholar
Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW, Li RL, Zhao MY, Zhen Y, Yu XL, Chen YY, Luo RC, Li R, Li LB, Deng XJ, Fang WY, Liu Z, Song X (2015) Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol 8:22. https://doi.org/10.1186/s13045-015-0117-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Funk J, Schaarschmidt B, Slesiona S, Hallström T, Horn U, M. Brock (2016) The glycolytic enzyme enolase represents a plasminogen-binding protein on the surface of a wide variety of medically important fungal species. Int J Med Microbiol 306(1):59–68. https://doi.org/10.1016/j.ijmm.2015.11.005
Article
CAS
PubMed
Google Scholar
Gil-Bona A, Llama-Palacios A, ParraVivanco CMF, Nombela C, Monteoliva L, Gil C (2015a) Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 14(1):142–153. https://doi.org/10.1021/pr5007944
Article
CAS
PubMed
Google Scholar
Gil-Bona A, Parra-Giraldo CM, Hernáez ML, Reales-Calderon JA, Solis NV, Filler S G, Monteoliva L, Gil C (2015b) Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 127(Pt B):340–351. https://doi.org/10.1016/j.jprot.2015.06.006
Article
CAS
PubMed
PubMed Central
Google Scholar
Gil-Bona A, Amador-García A, Gil C, Monteoliva L (2018) The external face of Candida albicans: a proteomic view of the cell surface and the extracellular environment. J Proteomics 180:70–79. https://doi.org/10.1016/j.jprot.2017.12.002
Article
CAS
PubMed
Google Scholar
He ZX, Chen J, Li W, Cheng Y, Zhang HP, Zhang LN, Hou TW (2015) Serological response and diagnostic value of recombinant candida cell wall protein enolase, phosphoglycerate kinase, and β-glucosidase. Front Microbiol 6:920. https://doi.org/10.3389/fmicb.2015.00920
Article
PubMed
PubMed Central
Google Scholar
He ZX, Shi LC, Ran XY, Li W, Wang XL, Wang FK (2016) Development of a lateral flow immunoassay for the rapid diagnosis of invasive candidiasis. Front Microbiol 7:1451. https://doi.org/10.3389/fmicb.2016.01451
Article
PubMed
PubMed Central
Google Scholar
Himananto O, Yoohat K, Danwisetkanjana K, Kumpoosiri M, Rukpratanporn S, Theppawong Y, Phuengwas S, Makornwattana M, Charlermroj R, Karoonuthaisiri N, Thummabenjapone P, Kositcharoenkul N, Gajanandana O (2020) Double antibody pairs sandwich-ELISA (DAPS-ELISA) detects Acidovorax citrulli serotypes with broad coverage. PLoS ONE 15(8):e0237940. https://doi.org/10.1371/journal.pone.0237940
Article
CAS
PubMed
PubMed Central
Google Scholar
Jong AYSHM, ChenM F, StinsK S, KimT L, TuanS H, Huang, (2003) Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52(Pt 8):615–622. https://doi.org/10.1099/jmm.0.05060-0
Article
CAS
PubMed
Google Scholar
Jung DW, Kim WH, Williams DR (2014) Chemical genetics and its application to moonlighting in glycolytic enzymes. Biochem Soc Trans 42(6):1756–1761. https://doi.org/10.1042/bst20140201
Article
CAS
PubMed
Google Scholar
Karkowska-Kuleta J, Wronowska E, Satala D, Zawrotniak M, Bras G, Kozik A, Nobbs AH, Rapala-Kozik M (2021) Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins. Cell Microbiol 23(4):e13297. https://doi.org/10.1111/cmi.13297
Article
CAS
PubMed
Google Scholar
Ko HC, Hsiao TY, Chen CT, Yang YL (2013) Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. J Microbiol 51(3):345–351. https://doi.org/10.1007/s12275-013-2577-z
Article
CAS
PubMed
Google Scholar
Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kedracka-Krok S, Jankowska U, Rapala-Kozik M (2015) Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol 15:197. https://doi.org/10.1186/s12866-015-0531-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FQ, Ma CF, Shi LN, Lu JF, Wang Y, Huang M, Kong QQ (2013) Diagnostic value of immunoglobulin G antibodies against Candida enolase and fructose-bisphosphate aldolase for candidemia. BMC Infect Dis 13:253. https://doi.org/10.1186/1471-2334-13-253
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O (2016) Immunoproteomic analysis of antibody responses to extracellular proteins of Candida albicans revealing the importance of glycosylation for antigen recognition. J Proteome Res 15(8):2394–2406. https://doi.org/10.1021/acs.jproteome.5b01065
Article
CAS
PubMed
Google Scholar
Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S (2012) α-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps. J Biol Chem 287(13):10472–10481. https://doi.org/10.1074/jbc.M111.280321
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohno S, Drummen GP, Kuroda M (2016) Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. Int J Mol Sci 17(2):172. https://doi.org/10.3390/ijms17020172
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitarch A, Jiménez A, Nombela C, Gil C (2006) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5(1):79–96. https://doi.org/10.1074/mcp.M500243-MCP200
Article
CAS
PubMed
Google Scholar
Rahi A, Matta SK, Dhiman A, Garhyan J, Gopalani M, Chandra S, Bhatnagar R (2017) Enolase of Mycobacterium tuberculosis is a surface exposed plasminogen binding protein. Biochim Biophys Acta Gen Subj 1861(1 Pt A):3355–3364. https://doi.org/10.1016/j.bbagen.2016.08.018
Article
CAS
PubMed
Google Scholar
Reyna-Beltrán E, Iranzo M, Calderón-González KG, Mondragón-Flores R, Labra-Barrios ML, Mormeneo S, Luna-Arias JP (2018) The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J Biol Chem 293(12):4304–4323. https://doi.org/10.1074/jbc.M117
Article
PubMed
PubMed Central
Google Scholar
Satala D, Karkowska-Kuleta J, Zelazna A, Rapala-Kozik M, Kozik A (2020) Moonlighting proteins at the candidal cell surface. Microorganisms 8(7):1046. https://doi.org/10.3390/microorganisms8071046
Article
CAS
PubMed Central
Google Scholar
Silva RCAC, PadovanD C, PimentaR C, da FerreiraC V, SilvaMBriones R (2014) Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol 4:66. https://doi.org/10.3389/fcimb.2014.00066
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Lu T, Tian K, Zhou D, Yuan J, Wang X, Zhu Z, Wan D, Yao Y, Zhu X, He S (2019) Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. Eur J Pharmacol 845:8–15. https://doi.org/10.1016/j.ejphar.2018.12.035
Article
CAS
PubMed
Google Scholar
Sundstrom P, Jensen J, Balish E (1994) Humoral and cellular immune responses to enolase after alimentary tract colonization or intravenous immunization with Candida albicans. J Infect Dis 170(2):390–395. https://doi.org/10.1093/infdis/170.2.390
Article
CAS
PubMed
Google Scholar
Tracy MR, Hedges SB (2000) Evolutionary history of the enolase gene family. Gene 259(1–2):129–138. https://doi.org/10.1016/s0378-1119(00)00439-x
Article
CAS
PubMed
Google Scholar
Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes A M, Medeiros LC, Miranda K, Sobreira T J, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-LimaI CG, Almeida C, Nimrichter L (2015) Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 17(3):389–407. https://doi.org/10.1111/cmi.12374
Article
CAS
PubMed
Google Scholar
Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL (2012) Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 12(14):2331–2339. https://doi.org/10.1002/pmic.201100588
Article
CAS
PubMed
Google Scholar
Walsh TJ, Hathorn JW, Sobel JD, Merz WG, Sanchez V, Maret SM, Buckley HR, Pfaller MA, Schaufele R, Slivaet C et al (1991) Detection of circulating candida enolase by immunoassay in patients with cancer and invasive candidiasis. N Engl J Med 324(15):1026–1031. https://doi.org/10.1056/nejm199104113241504
Article
CAS
PubMed
Google Scholar
Wang W, Jeffery CJ (2016) An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol Biosyst 12(5):1420–1431. https://doi.org/10.1039/c5mb00550g
Article
CAS
PubMed
Google Scholar
Wiśniewski J R, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322
Article
CAS
PubMed
Google Scholar
Wolf J M, Espadas J, Luque-Garcia J, Reynolds T, Casadevall A (2015) Lipid biosynthetic genes affect Candida albicans extracellular vesicle morphology, cargo, and immunostimulatory properties. Eukaryot Cell 14(8):745–754. https://doi.org/10.1128/ec.00054-15
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Yang W, Wu C, Ma X, Li H, Zheng J (2020) Enolase 1 correlated with cancer progression and immune-infiltrating in multiple cancer types: a pan-cancer analysis. Front Oncol 10:593706. https://doi.org/10.3389/fonc.2020.593706
Article
PubMed
Google Scholar
Zhu Y, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW (2016) Development of a laser capture microscope based single cellN type proteomics tool for studying proteomes of individual cell layers of plant roots. Horticulture Res 3:16026. https://doi.org/10.1038/hortres.2016.26
Article
CAS
Google Scholar